

Application Type
Facility Type
Major / Minor

Renewal
Industrial
Minor

**NPDES PERMIT FACT SHEET
INDIVIDUAL INDUSTRIAL WASTE (IW)
AND IW STORMWATER**

Application No. PA0087165
APS ID 517480
Authorization ID 1480807

Applicant and Facility Information

Applicant Name	<u>Bleyer Gift Packs LLC</u>	Facility Name	<u>Bleyer Gift Packs Mt Union Plant</u>
Applicant Address	<u>80 Voice Road</u>	Facility Address	<u>436 North Industrial Drive</u>
Applicant Contact	<u>Carle Place, NY 11514</u>	Facility Contact	<u>Mount Union, PA 17066</u>
Applicant Phone	<u>(516) 873-9000</u>	Facility Phone	<u>(814) 542-8661</u>
Client ID	<u>227421</u>	Site ID	<u>251622</u>
SIC Code	<u>3081</u>	Municipality	<u>Mount Union Borough</u>
SIC Description	<u>Manufacturing - Unsupported Plastics, Film And Sheet</u>	County	<u>Huntingdon</u>
Date Application Received	<u>April 16, 2024</u>	EPA Waived?	<u>Yes</u>
Date Application Accepted	<u>April 17, 2024</u>	If No, Reason	
Purpose of Application	<u>NPDES permit renewal.</u>		

Summary of Review

The application submitted by the applicant requests a NPDES renewal permit for the Bleyer Gift Packs, LLC located at 436 North Industrial Drive, Mount Union, PA 17066 in Huntingdon County, municipality of Mount Union Borough. The NPDES expired on October 31, 2024. The application for renewal was received by DEP Southcentral Regional Office (SCRO) on April 16, 2024.

The subject facility is a 0.022 MGD treatment facility. The applicant does not anticipate any proposed upgrades to the treatment facility in the next five years. The NPDES application has been processed as an Industrial Wastewater application with effluent limitation guidelines (ELG) due to the type of wastewater and the design flow rate for the facility.

Plastic pellets are extruded into a film. The film sheet is then cooled by on-site well water. The cooled film sheet is then shredded into Easter Grass. The cooling water is then discharged to an existing on-site storm water catch basin which is connected to the Mt. Union Borough's storm water collection system. This system then drains into the Juniata River.

Sludge use and disposal description and location(s): N/A

Changes from the previous permit: N/A

Based on the review outline in this fact sheet, it is recommended that the permit be drafted and published in the Pennsylvania Bulletin for public comments for 30 days.

Approve	Deny	Signatures	Date
X		<i>Hilaryle</i> Hilary H. Le / Environmental Engineering Specialist	May 31, 2024
X		<i>Maria D. Bebenek for</i> Daniel W. Martin, P.E. / Environmental Engineer Manager	June 25, 2024

Discharge, Receiving Waters and Water Supply Information			
Outfall No.	001	Design Flow (MGD)	0.022
Latitude	40° 23' 0.00"	Longitude	-77° 52' 25.00"
Quad Name	Newton Hamilton	Quad Code	
Wastewater Description:	Contact Cooling Water (CCW)		
Receiving Waters	Juniata River (WWF)	Stream Code	11414
NHD Com ID	66209983	RMI	79.8
Drainage Area	2050 mi. ²	Yield (cfs/mi ²)	0.1
Q ₇₋₁₀ Flow (cfs)	204	Q ₇₋₁₀ Basis	USGS StreamStats
Elevation (ft)	54259	Slope (ft/ft)	
Watershed No.	12-C	Chapter 93 Class.	WWF
Existing Use		Existing Use Qualifier	
Exceptions to Use		Exceptions to Criteria	
Assessment Status	Attaining Use(s)		
Cause(s) of Impairment			
Source(s) of Impairment			
TMDL Status		Name	
Nearest Downstream Public Water Supply Intake	Mifflintown Municipal Authority		
PWS Waters	Juniata River	Flow at Intake (cfs)	
PWS RMI	37.26 miles	Distance from Outfall (mi)	Approximate 43.0 miles

Changes Since Last Permit Issuance: none

Drainage Area

The discharges are to Juniata River at RMI 79.8 miles. A drainage area upstream of the discharge is estimated to be 2050 mi.², according to USGS PA StreamStats available at: <https://streamstats.usgs.gov/ss/>.

Stream Flow

According to StreamStats, the discharge point on Juniata River has a Q₇₋₁₀ of 204 cfs and a drainage area of 2050 mi.², which results in a Q₇₋₁₀ low flow yield of 0.0995 (0.1) cfs/mi.². This information is used to obtain a chronic or 30-day (Q₃₀₋₁₀), and an acute or 1-day (Q₁₋₁₀) exposure stream flow for the discharge point as follows (Guidance No. 391-2000-023):

$$\begin{aligned}
 Q_{7-10} &= 204 \text{ cfs} \\
 \text{Low Flow Yield} &= 204 \text{ cfs} / 2050 \text{ mi.}^2 = 0.0995 \text{ (0.1) cfs/mi.}^2 \\
 Q_{30-10} &= 1.36 * 204 \text{ cfs} = 277.44 \text{ cfs} \\
 Q_{1-10} &= 0.64 * 204 \text{ cfs} = 130.56 \text{ cfs}
 \end{aligned}$$

303d Listed Streams

The receiving waters is listed in the 2024 Pennsylvania Integrated Water Quality Monitoring and Assessment Report as a Category 2 waterbody. The surface waters are an attaining stream that supports fish consumption. The designated use has been classified as protected waters for warm water fishes and migratory fishes (WWF & MF).

Public Water Supply

The nearest downstream public water supply intake is the Mifflintown Borough Municipal Authority Juniata County on Juniata River. It is approximately 43.0 miles downstream of the discharge at RMI 37.26 miles. Due to the distance, dilution, and effluent limits the discharge is not expected to impact the water supply.

Treatment Facility Summary				
Treatment Facility Name: Bleyer Gift Packs LLC				
WQM Permit No.		Issuance Date		
Waste Type	Degree of Treatment	Process Type	Disinfection	Avg Annual Flow (MGD)
Industrial				0.022
Hydraulic Capacity (MGD)	Organic Capacity (lbs/day)	Load Status	Biosolids Treatment	Biosolids Use/Disposal
0.022				

Changes Since Last Permit Issuance: none

Other Comments:

The subject facility treats wastewater using a quench tank for cooling the plastic film prior to discharge through the catch basin and the borough's storm sewer. The wastewater discharged to Juniata River.

Chemical additives are chemical products introduced into a waste stream that is used for cleaning, disinfecting, or maintenance and which may be detected in effluent discharged to waters of the Commonwealth. Chemicals excluded are those used for neutralization of waste streams, the production of goods, and treatment of wastewater.

No chemicals are used for the treatment process.

Compliance History	
Summary of DMRs:	A summary of past 12-month DMRs is presented on the next page.
Summary of Inspections:	1/04/24: Mr. Clark, DEP WQS, conducted a compliance evaluation inspection. The field test results were within permit limits. The cooling water looked clear. The discharge water and outfall area looked clear. 10/19/22: Mr. Clark, DEP WQS, conducted a compliance evaluation inspection. The field test results were within permit limits. There were no violations noted during inspection.
Other comments:	There are no violations against the permittee or applicant.

Other Comments:

Compliance History

DMR Data for Outfall 001 (from April 1, 2023 to March 31, 2024)

Parameter	MAR-24	FEB-24	JAN-24	DEC-23	NOV-23	OCT-23	SEP-23	AUG-23	JUL-23	JUN-23	MAY-23	APR-23
Flow (MGD) Average Monthly		0.004710	0.009565	0.009386	0.009135	0.009336	0.010540	0.007226				
Flow (MGD) Daily Maximum		0.004710	0.011964	0.01590	0.010125	0.011320	0.011360	0.008660				
pH (S.U.) Minimum		6.75	7.18	7.30	7.32	7.37	7.01	7.63				
pH (S.U.) Instantaneous Maximum		6.84	7.46	7.59	7.67	8.41	8.07	8.04				
Temperature (°F) Daily Maximum		76	100	80	78	78	80	80				
CBOD5 (mg/L) Daily Maximum		< 3.00	< 3.00	< 3.00	< 3.00	< 3.00	< 3.00	< 3.00				
TSS (mg/L) Daily Maximum		< 1.60	< 1.60	< 1.60	< 1.60	2.80	< 1.60	< 1.60				
Oil and Grease (mg/L) Daily Maximum		< 4.95	< 5.15	< 5.45	< 5.80	< 5.95	< 6.85	< 4.95				

Development of Effluent Limitations

Outfall No. 001
Latitude 40° 23' 0.00"
Wastewater Description: Contact Cooling Water (CCW)

Design Flow (MGD) .022
Longitude -77° 52' 25.00"

Water Quality-Based Limitations

DEP's SOP No. BPNPSM-PMT-032 recommends the average monthly flow as a design flow in water quality modeling unless a different flow is determined to be more representative of conditions. The applicable ELG for this type of industrial facility is Contact Cooling and Heating Water Subcategory (i.e. 40 CFR 463 Subpart A). A copy of the ELG is below.

④ **Subpart A—Contact Cooling and Heating Water Subcategory**

④ **§ 463.10 Applicability; description of the contact cooling and heating water subcategory.**

This subpart applies to discharges of pollutants from processes in the contact cooling and heating water subcategory to waters of the United States and the introduction of such pollutants into publicly owned treatment works. Processes in the contact cooling and heating water subcategory are processes where process water comes in contact with plastic materials or plastic products for the purpose of heat transfer during plastics molding and forming.

④ **§ 463.11 Specialized definitions.**

For the purpose of this subpart:

- (a) The "average process water usage flow rate" of a contact cooling and heating water process in liters per day is equal to the volume of process water (liters) used per year by a process divided by the number of days per year the process operates. The "average process water usage flow rate" for a plant with more than one plastics molding and forming process that uses contact cooling and heating water is the sum of the "average process water usage flow rates" for the contact cooling and heating processes.
- (b) The "volume of process water used per year" is the volume of process water that flows through a contact cooling and heating water process and comes in contact with the plastic product over a period of one year.

④ **§ 463.12 Effluent limitations guidelines representing the degree of effluent reduction attainable by the application of the best practicable control technology currently available.**

Except as provided in [40 CFR 125.30](#) through [125.32](#), any existing point source subject to this subpart must achieve the effluent limitations guidelines (i.e., mass of pollutant discharged) representing the degree of effluent reduction attainable by the application of the best practicable control technology currently available, which are calculated by multiplying the average process water usage flow rate for the contact cooling and heating water processes at a point source times the following pollutant concentrations:

Subpart A

Expand

Table [Contact cooling and heating water]

Concentration used to calculate BPT effluent limitations	
Pollutant or pollutant property	Maximum for any 1 day (mg/l)
BOD ₅	26
Oil and grease	29
TSS	19
pH	(¹)

¹ Within the range of 6.0 to 9.0 at all times.

The permit authority will obtain the average process water usage flow rate for the contact cooling and heating water processes from the permittee.

Bleyer Gift Packs Mt Union Plant

Flow

The requirement to monitor the volume of effluent will remain in the draft permit per 40 CFR §122.44(i)(1)(ii).

pH

The effluent limits always assigned by 40 CFR Subpart 463.12 as pH are within the range 6.0 to 9.0. Therefore, the minimum and maximum pH of 6.0 and 9.0, respectively, will be maintained per part 40 CFR § 423.12(b)(1) and 25 Pa. Code § 95.2(1).

CBOD₅

The effluent limits are assigned by 40 CFR Subpart 463.12 as 26.0 mg/L BOD₅. Converting the BOD₅ to CBOD₅ using a conversion factor of 0.8 will yield a CBOD₅ of 20.0 mg/L WQM modeling indicates that the TBEL is more stringent than the WQBEL. Thus, the existing daily maximum limit of 20 mg/L, due to anti-backsliding requirements, and the monitoring requirements for CBOD₅ will continue in the proposed permit.

Oil and Grease

The effluent limits are assigned by 40 CFR Subpart 463.12 as 29.0 mg/L Oil and Grease. Therefore, the existing daily maximum limit of 29 mg/L, due to anti-backsliding requirements, and the monitoring requirements for Oil & Grease will continue in the proposed permit.

TSS

The effluent limits are assigned by 40 CFR Subpart 463.12 as 19.0 mg/L TSS. Therefore, the existing daily maximum limit of 19 mg/L, due to anti-backsliding requirements, and the monitoring requirements for TSS will continue in the proposed permit.

Toxics

The Application for Individual Permit to Discharge Industrial Wastewater Instructions specifies which pollutant groups require sampling. Typically, a minimum of three (3) effluent analyses should be completed for each pollutant at each outfall and internal monitoring point. The sampling events should occur at least a week apart.

The facility sampled had one or two or three samples events for many of the Pollutants in Groups 1 and 3. A summary of the pollutants in Groups 1 and 2 submitted in the application is shown in the Table below.

Parameter (mg/L)	Pollutant Group 1	
	Max Avg. Monthly Concentration	No Analyses
TDS	352	3
Bromide	< 0.011	3
Chloride	22.0	3
Sulfate	140	3
Sulfide	< 0.6	3
Fluoride	0.845	3
Total Hardness	336	3

Parameter (ug/L)	Pollutant Group 3	
	Max Avg. Monthly Concentration	No. Analyses
Acrolein	< 50.0	3
Acrylonitrile	< 5.0	3
Benzene	< 2.15	3
Bromoform	< 5.0	3
Carbon Tetrachloride	< 10.0	3
Chlorobenzene	< 5.0	3
Chlorodibromomethane	< 5.0	3
Chloroethane	< 5.0	3
2-Chloroethylvinyl Ether	< 50.0	3
Chloroform	< 5.0	3
Dichlorobromomethane	< 5.0	3
1,1-Dichloroethane	< 5.0	3
1,2-Dichloroethane	< 5.0	3
1,1-Dichloroethylene	< 5.0	3
1,2 Dichloropropane	< 5.0	3
1,3-Dichloropropylene	< 5.0	3
1,4-Dioxane	< 3.0	3
Ethylbenzene	< 5.0	3

Bleyer Gift Packs Mt Union Plant

Methyl Bromide	< 5.0	3
Methyl Chloride	< 5.0	3
Methylene Chloride	< 25.0	3
1,1,2,2-Tetrachloroethane	< 5.0	3
Tetrachloroethylene	< 5.0	3
Toluene	< 5.0	3
1,2-Trans-Dichloroethylene	< 5.0	3
1,1,1-Trichloroethane	< 5.0	3
1,1,2-Trichloroethane	< 5.0	3
Trichloroethylene	< 5.0	3
Vinyl Chloride	< 5.0	3

DEP utilizes a Toxics Management Spreadsheet (TMS) (last modified on May 2023, ver. 1.4) to facilitate calculations necessary for completing a reasonable potential analysis for toxic pollutants.

Recommended WQBELs & Monitoring Requirements

No. Samples/Month: 4

Pollutants	Mass Limits		Concentration Limits				Governing WQBEL	WQBEL Basis	Comments
	AML (lbs/day)	MDL (lbs/day)	AML	MDL	IMAX	Units			

There are no monitoring requirements for any pollutants.

Whole Effluent Toxicity (WET)

This is not applicable to the subject facility.

Total Maximum Daily Loading (TMDL)

The subject facility does not discharge into a local TMDL.

WQM 7.0

CBOD₅ and NH₃-N are not pollutants of concern for the water treatment waste as the discharge of these pollutants is not resulting from the water treatment process. Therefore, WQM 7.0 modeling is not necessary and permit requirements for these pollutants are not recommended.

Chesapeake Bay TMDL Requirement

Based upon the supplement the subject facility has been categorized as a Sector C discharger. The supplement defines Sector C as a sewage facility is considered non-significant dischargers if it is a Phase 4 facility or Phase 5 facility having a specified flow rate (i.e., Phase 4 facility \geq 0.2 MGD and $<$ 0.4 MGD, Phase 5 facility $>$ 0.002 MGD and $<$ 0.2 MGD), a small flow/single residence sewage treatment facilities (\leq 0.002 MGD), or a non-significant IW facilities. These facilities may be covered by statewide general permits or may have individual NPDES permits.

For non-significant IW facilities, monitoring and reporting of TN and TP will be required throughout the permit term in renewed or amended permits anytime the facility has the potential to introduce a net TN or TP increase to the load contained within the intake water used in processing.

Based upon the anticipated flow rate of the discharge and the non-usage of nitrogen and phosphorus additives, the facility is not subject to Sector C monitoring requirements.

The subject facility is not listed in Attachment B in the Phase 2 WIP as a non-significant industrial waste dischargers with a cap load.

Thermal Modeling

Due to potential thermal impacts to the environment, the facility was evaluated for (a) compliance with PA DEP Implementation Guidance for Temperature Criteria and (b) 316(a) requirements.

PA DEP regulates thermal effluent limits consistent with the Implementation Guidance for Temperature Criteria (Document # 391-2000-017). There are five assumptions that were used to determine thermal effluent limits.

1. The physical configuration of the facility. Since the facility withdraws of water from a well and discharges the wastewater to the receiving stream, the facility has been modeled as Case 2.

Bleyer Gift Packs Mt Union Plant

2. The critical use of the river. Chapter 93.7 itemizes 19 different time segments for maximum temperatures in the receiving water body resulting from heated waste sources to protect designated and existing uses. The designated use for the receiving water is warm water fishes (WWF).
3. The ambient temperature of the river. Since the facility is not known for collecting upstream temperature samples, default ambient temperatures were utilized for the modeling estimations.
4. The allowable rise in temperature of the river. The guidance manual prescribes the allowance of a minimum of 1° F rise in ambient temperature.
5. The amount of mixing in the river. Instantaneous complete mix of the discharge with the receiving stream has been assumed in the water quality analyses.

The DEP utilizes a worksheet to estimate impacts of cooling water used in the process when discharged to the receiving waters. The required input variables are summarized in the table below.

The intake of water from the well is 0.022 MGD (15 GPM).

Using StreamStats the Q7-10 was estimated as 204 ft³/s. By DEP policy (Implementation Guidance for Temperature Criteria), stream flow is adjusted by a set multiplier depending upon the month.

The table in the appendix summarizes the thermal discharge recommended permit limits on a monthly basis.

Facility: <u>Bleyer Gift Packs Industrial Waste</u>		Permit No.: <u>PA0087165</u>		
Stream Name: <u>Juniata River</u>		Analyst/Engineer:		
Stream Q7-10 (cfs)*: <u>204.0</u>		Analysis Type*: <u>WWF</u>		
Facility Flows				
Semi-Monthly Increment	Intake (Stream) (MGD)*	Intake (External) (MGD)*	Consumptive Loss (MGD)*	Discharge Flow (MGD)
Jan 1-31	0.044	0	0.022	0.022
Feb 1-29	0.044	0	0.022	0.022
Mar 1-31	0.044	0	0.022	0.022
Apr 1-15	0.044	0	0.022	0.022
Apr 16-30	0.044	0	0.022	0.022
May 1-15	0.044	0	0.022	0.022
May 16-31	0.044	0	0.022	0.022
Jun 1-15	0.044	0	0.022	0.022
Jun 16-30	0.044	0	0.022	0.022
Jul 1-31	0.044	0	0.022	0.022
Aug 1-15	0.044	0	0.022	0.022
Aug 16-31	0.044	0	0.022	0.022
Sep 1-15	0.044	0	0.022	0.022
Sep 16-30	0.044	0	0.022	0.022
Oct 1-15	0.044	0	0.022	0.022
Oct 16-31	0.044	0	0.022	0.022
Nov 1-15	0.044	0	0.022	0.022
Nov 16-30	0.044	0	0.022	0.022
Dec 1-31	0.044	0	0.022	0.022

Stream Flows			
Q7-10 Multipliers (Default Shown)	PMF	Seasonal Stream Flow (cfs)	Downstream Stream Flow (cfs)
3.2	1.00	652.80	652.77
3.5	1.00	714.00	713.97
7	1.00	1428.00	1427.97
9.3	1.00	1897.20	1897.17
9.3	1.00	1897.20	1897.17
5.1	1.00	1040.40	1040.37
5.1	1.00	1040.40	1040.37
3	1.00	612.00	611.97
3	1.00	612.00	611.97
1.7	1.00	346.80	346.77
1.4	1.00	285.60	285.57
1.4	1.00	285.60	285.57
1.1	1.00	224.40	224.37
1.1	1.00	224.40	224.37
1.2	1.00	244.80	244.77
1.2	1.00	244.80	244.77
1.6	1.00	326.40	326.37
1.6	1.00	326.40	326.37
2.4	1.00	489.60	489.57

Thermal Limits Spreadsheet
Version 1.0, April 2024

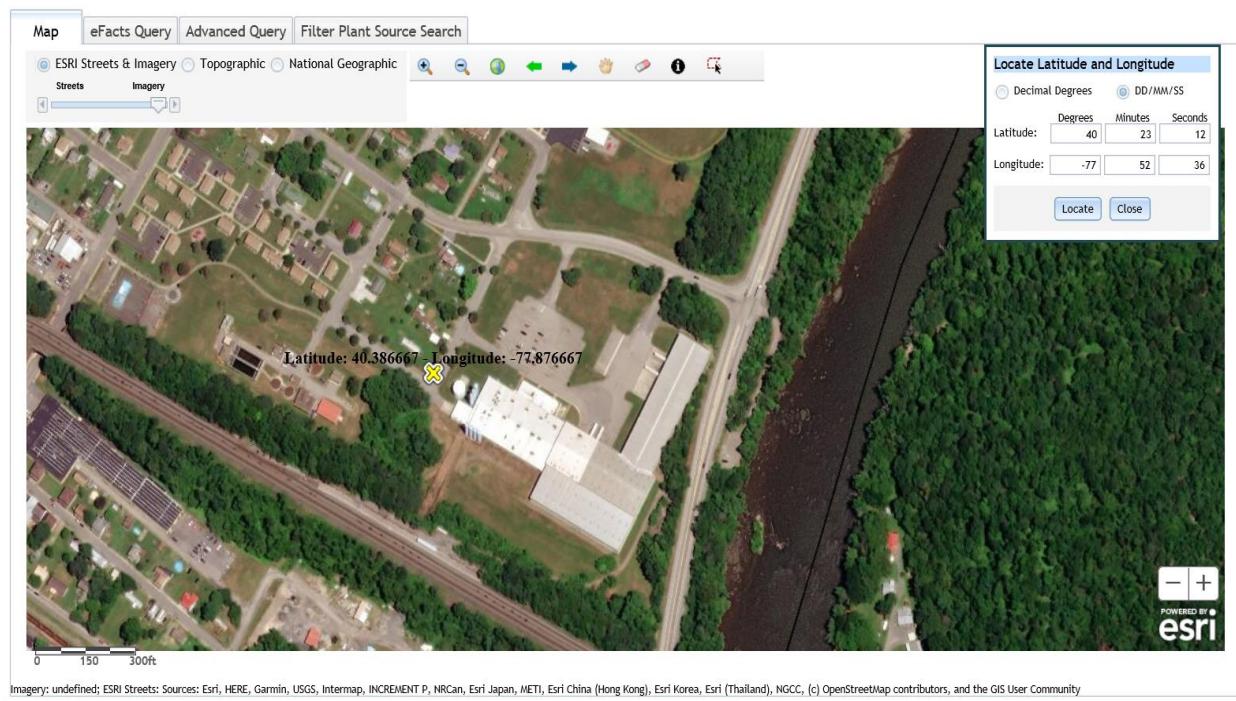
Recommended Limits for Case 1 or Case 2			
Semi-Monthly Increment	WWF Target Maximum Stream Temp. (°F)	Case 1 Daily WLA (Million BTUs/day)	Case 2 Daily WLA (°F)
Jan 1-31	40	17,592	110.0
Feb 1-29	40	19,241	110.0
Mar 1-31	46	46,180	110.0
Apr 1-15	52	51,129	110.0
Apr 16-30	58	51,129	110.0
May 1-15	64	33,645	110.0
May 16-31	72	56,076	110.0
Jun 1-15	80	42,880	110.0
Jun 16-30	84	42,880	110.0
Jul 1-31	87	22,429	110.0
Aug 1-15	87	20,010	110.0
Aug 16-31	87	20,010	110.0
Sep 1-15	84	15,721	110.0
Sep 16-30	78	15,721	110.0
Oct 1-15	72	15,831	110.0
Oct 16-31	66	15,831	110.0
Nov 1-15	58	17,591	110.0
Nov 16-30	50	14,073	110.0
Dec 1-31	42	13,194	110.0

The effluent limitations were analyzed using the Case 2 Thermal Worksheet for WWF streams. The worksheet recommended permit limits of 110°F for all months. The existing permit limit for Temperature of 110°F is consistent with this analysis, and will remain in the permit. A printout of the worksheet is attached.

Anti-Degradation

The effluent limits for this discharge have been developed to ensure that existing instream water uses and the level of water quality necessary to protect the existing uses are maintained and protected. No High-Quality Waters are impacted by this discharge. No Exceptional Value Waters are impacted by this discharge.

303(d) Listed Streams


The discharge is located on a stream segment that is designated on the 303(d) list as impaired. There is a recreational impairment for industrial point source – organic enrichment.

Class A Wild Trout Fisheries

No Class A Wild Trout Fisheries are impacted by this discharge.

Anti-Backsliding

Pursuant to 40 CFR § 122.44(l)(1), all proposed permit requirements addressed in this fact sheet are at least as stringent as the requirements implemented in the existing NPDES permit unless any exceptions are addressed by DEP in this fact sheet.

NPDES Permit Fact Sheet Bleyer Gift Packs Mt Union Plant

NPDES Permit No. PA0087165

Map eFacts Query Advanced Query Filter Plant Source Search

Locate Latitude and Longitude

Latitude: 40 23 12

Longitude: -77 52 36

Locate Close

Methodist Training Camp

Outfall 001

Latitude: 40.386667 Longitude: -77.76667

RIVER

Boro

High Sch

Ball Park

Huntingdon

Mifflin

PENN CENTRAL

4 TRACKS

Oil

Quarry

Water

Conveyor

Kilns

PO

Tailings

Mount Union

Latitude: 40.386667 Longitude: -77.76667

0 0.1 0.2mi

POWERED BY esri

SELECT A STATE / REGION

Pennsylvania

IDENTIFY A STUDY AREA

Basin Delineated

SELECT SCENARIOS

BUILD A REPORT Report Built

Step 1: You can modify computed basin characteristics here, then select the types of reports you wish to generate. Then click the "Build Report" button.

Show Basin Characteristics

Select available reports to display:

- Basin Characteristics Report
- Scenario Flow Reports

Open Report

POWERED BY WIM

[USGS Home](#) [Contact USGS](#) [Search USGS](#)
[Accessibility](#) [FOIA](#) [Privacy](#) [Policy & Notices](#)

Morgantown MARYLAND Leaflet | ESR

Collapse All

Basin Characteristics

Parameter Code	Parameter Description	Value	Unit
CARBON	Percentage of area of carbonate rock	20.81	percent
DRNAREA	Area that drains to a point on a stream	2050	square miles
PRECIP	Mean Annual Precipitation	38	inches
ROCKDEP	Depth to rock	4.5	feet
STRDEN	Stream Density -- total length of streams divided by drainage area	2.04	miles per square mile

Low-Flow Statistics

Low-Flow Statistics Parameters [Low Flow Region 2]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	2050	square miles	4.93	1280
PRECIP	Mean Annual Precipitation	38	inches	35	50.4
STRDEN	Stream Density	2.04	miles per square mile	0.51	3.1
ROCKDEP	Depth to Rock	4.5	feet	3.32	5.65
CARBON	Percent Carbonate	20.81	percent	0	99

Low-Flow Statistics Disclaimers [Low Flow Region 2]

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors.

Low-Flow Statistics Flow Report [Low Flow Region 2]

Statistic	Value	Unit
7 Day 2 Year Low Flow	312	ft ³ /s
30 Day 2 Year Low Flow	381	ft ³ /s
7 Day 10 Year Low Flow	204	ft ³ /s
30 Day 10 Year Low Flow	249	ft ³ /s
90 Day 10 Year Low Flow	324	ft ³ /s

Batch Processor Report About ? Help

Layers

Base Maps

Application Layers

National Layers

PA Map Layers

Displaying simplified Basin. See FAQ for more information.

NPDES Permit Fact Sheet
Bleyer Gift Packs Mt Union Plant

NPDES Permit No. PA0087165

USGS StreamStats

SELECT A STATE / REGION
Pennsylvania

IDENTIFY A STUDY AREA
Basin Delineated

SELECT SCENARIOS

BUILD A REPORT Report Built

Step 1: You can modify computed basin characteristics here, then select the types of reports you wish to generate. Then click the Build Report button.

Show Basin Characteristics

Select available reports to display:

- ✓ Basin Characteristics Report
- ✓ Scenario Flow Reports

Open Report

POWERED BY WIM

USGS Home Contact USGS Search USGS Accessibility FAQ Privacy Policy & Notices

Basin Characteristics

Parameter Code	Parameter Description	Value	Unit
CARBON	Percentage of area of carbonate rock	20.69	percent
DRNAREA	Area that drains to a point on a stream	2060	square miles
PRECIP	Mean Annual Precipitation	38	inches
ROCKDEP	Depth to rock	4.5	feet
STRDEN	Stream Density -- total length of streams divided by drainage area	2.03	miles per square mile

Low-Flow Statistics

Low-Flow Statistics Parameters [Low Flow Region 2]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	2060	square miles	4.93	1280
PRECIP	Mean Annual Precipitation	38	inches	35	50.4
STRDEN	Stream Density	2.03	miles per square mile	0.51	3.1
ROCKDEP	Depth to Rock	4.5	feet	3.32	5.65
CARBON	Percent Carbonate	20.69	percent	0	99

Low-Flow Statistics Disclaimers [Low Flow Region 2]

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors.

Low-Flow Statistics Flow Report [Low Flow Region 2]

Statistic	Value	Unit
7 Day 2 Year Low Flow	315	ft³/s
30 Day 2 Year Low Flow	384	ft³/s
7 Day 10 Year Low Flow	206	ft³/s
30 Day 10 Year Low Flow	252	ft³/s
90 Day 10 Year Low Flow	327	ft³/s

Toxic:

The following data were used in the attached computer model (WQM 7.0) of the stream:

- Discharge pH 8.0 (median July-Sep, 2013-2015, DMR)
- Discharge Hardness 336 mg/l (Application data)
- Stream pH 7.0 (Default)
- Stream Hardness 100 mg/l (Default)

The following two nodes were used in modeling:

Node 1: Outfall 001 at Juniata River (11414)
 Elevation: 542.59 ft (USGS)
 Drainage Area: 2050 mi² (StreamStats)
 River Mile Index: 79.8 (PA DEP eMapPA)
 Low Flow Yield: 0.1 cfs/mi²
 Discharge Flow: 0.022 MGD

Node 2: At the confluence with Aughwick Creek (12753)
 Elevation: 525.50 ft (USGS)
 Drainage Area: 2060 mi² (StreamStats)
 River Mile Index: 77.43 (PA DEP eMapPA)
 Low Flow Yield: 0.1 cfs/mi²
 Discharge Flow: 0.00 MGD

Discharge Information

Instructions **Discharge** Stream

Facility: Bleyer Gift Packs LLC NPDES Permit No.: PA0087165 Outfall No.: 001

Evaluation Type: Major Sewage / Industrial Waste Wastewater Description: Juniata River

Discharge Characteristics											
Design Flow (MGD)*	Hardness (mg/l)*	pH (SU)*	Partial Mix Factors (PMFs)				Complete Mix Times (min)				
			AFC	CFC	THH	CRL	Q ₇₋₁₀	Q _h			
0.022	336	8									

	Discharge Pollutant	Units	Max Discharge Conc	0 if left blank		0.5 if left blank		0 if left blank		1 if left blank	
				Trib Conc	Stream Conc	Daily CV	Hourly CV	Stream CV	Fate Coeff	FOS	Criteri a Mod
Group 1	Total Dissolved Solids (PWS)	mg/L	352								
	Chloride (PWS)	mg/L	22								
	Bromide	mg/L	< 0.011								
	Sulfate (PWS)	mg/L	140								
	Fluoride (PWS)	mg/L	0.845								
Group 2	Total Aluminum	µg/L									
	Total Antimony	µg/L									
	Total Arsenic	µg/L									
	Total Barium	µg/L									
	Total Beryllium	µg/L									
	Total Boron	µg/L									
	Total Cadmium	µg/L									
	Total Chromium (III)	µg/L									
	Hexavalent Chromium	µg/L									
	Total Cobalt	µg/L									
	Total Copper	mg/L									
	Free Cyanide	µg/L									
	Total Cyanide	µg/L									
	Dissolved Iron	µg/L									
	Total Iron	µg/L									
	Total Lead	µg/L									
	Total Manganese	µg/L									
	Total Mercury	µg/L									
	Total Nickel	µg/L									
	Total Phenols (Phenolics) (PWS)	µg/L									
	Total Selenium	µg/L									
	Total Silver	µg/L									
	Total Thallium	µg/L									
	Total Zinc	mg/L									
	Total Molybdenum	µg/L									
	Acrolein	µg/L	< 50								
	Acrylamide	µg/L	<								
	Acrylonitrile	µg/L	< 5								
	Benzene	µg/L	< 2.15								
	Bromoform	µg/L	< 5								

Carbon Tetrachloride	µg/L	<	10	██████████									██████████
Chlorobenzene	µg/L	<	5	██████████									
Chlorodibromomethane	µg/L	<	5	██████████									
Chloroethane	µg/L	<	5	██████████									
2-Chloroethyl Vinyl Ether	µg/L	<	50	██████████									
Chloroform	µg/L	<	5	██████████									
Dichlorobromomethane	µg/L	<	5	██████████									
1,1-Dichloroethane	µg/L	<	5	██████████									
1,2-Dichloroethane	µg/L	<	5	██████████									
1,1-Dichloroethylene	µg/L	<	5	██████████									
1,2-Dichloropropane	µg/L	<	5	██████████									
1,3-Dichloropropylene	µg/L	<	5	██████████									
1,4-Dioxane	µg/L	<	3	██████████									
Ethylbenzene	µg/L	<	5	██████████									
Methyl Bromide	µg/L	<	5	██████████									
Methyl Chloride	µg/L	<	5	██████████									
Methylene Chloride	µg/L	<	25	██████████									
1,1,2,2-Tetrachloroethane	µg/L	<	5	██████████									
Tetrachloroethylene	µg/L	<	5	██████████									
Toluene	µg/L	<	5	██████████									
1,2-trans-Dichloroethylene	µg/L	<	5	██████████									
1,1,1-Trichloroethane	µg/L	<	5	██████████									
1,1,2-Trichloroethane	µg/L	<	5	██████████									
Trichloroethylene	µg/L	<	5	██████████									
Vinyl Chloride	µg/L	<	5	██████████									
2-Chlorophenol	µg/L	<											
2,4-Dichlorophenol	µg/L	<											
2,4-Dimethylphenol	µg/L	<											
4,6-Dinitro-o-Cresol	µg/L	<											
2,4-Dinitrophenol	µg/L	<											
2-Nitrophenol	µg/L	<											
4-Nitrophenol	µg/L	<											
p-Chloro-m-Cresol	µg/L	<											
Pentachlorophenol	µg/L	<											
Phenol	µg/L	<											
2,4,6-Trichlorophenol	µg/L	<											
Acenaphthene	µg/L	<											
Acenaphthylene	µg/L	<											
Anthracene	µg/L	<											
Benzidine	µg/L	<											
Benzo(a)Anthracene	µg/L	<											
Benzo(a)Pyrene	µg/L	<											
3,4-Benzofluoranthene	µg/L	<											
Benzo(ghi)Perylene	µg/L	<											
Benzo(k)Fluoranthene	µg/L	<											
Bis(2-Chloroethoxy)Methane	µg/L	<											
Bis(2-Chloroethyl)Ether	µg/L	<											
Bis(2-Chloroisopropyl)Ether	µg/L	<											
Bis(2-Ethylhexyl)Phthalate	µg/L	<											
4-Bromophenyl Phenyl Ether	µg/L	<											
Butyl Benzyl Phthalate	µg/L	<											
2-Chloronaphthalene	µg/L	<											
4-Chlorophenyl Phenyl Ether	µg/L	<											
Chrysene	µg/L	<											
Dibenzo(a,h)Anthracene	µg/L	<											
1,2-Dichlorobenzene	µg/L	<											
1,3-Dichlorobenzene	µg/L	<											
1,4-Dichlorobenzene	µg/L	<											
3,3-Dichlorobenzidine	µg/L	<											
Diethyl Phthalate	µg/L	<											
Dimethyl Phthalate	µg/L	<											
Di-n-Butyl Phthalate	µg/L	<											
2,4-Dinitrotoluene	µg/L	<											

Stream / Surface Water Information

Bleyer Gift Packs LLC, NPDES Permit No. PA0087165, Outfall 001

Instructions **Discharge** Stream

Receiving Surface Water Name: Juniata River

No. Reaches to Model: 1

Location	Stream Code*	RMI*	Elevation (ft)*	DA (mi ²)*	Slope (ft/ft)	PWS Withdrawal (MGD)	Apply Fish Criteria*
Point of Discharge	011414	79.8	542.59	2050			Yes
End of Reach 1	011414	77.43	525.5	2060			Yes

Statewide Criteria
 Great Lakes Criteria
 ORSANCO Criteria

Q₇₋₁₀

Location	RMI	LFY (cfs/mi ²)*	Flow (cfs)		W/D Ratio	Width (ft)	Depth (ft)	Velocity (fps)	Travel Time (days)	Tributary		Stream		Analysis	
			Stream	Tributary						Hardness	pH	Hardness*	pH*	Hardness	pH
Point of Discharge	79.8	0.1								100	7				
End of Reach 1	77.43	0.1								100	7				

Q_h

Location	RMI	LFY (cfs/mi ²)*	Flow (cfs)		W/D Ratio	Width (ft)	Depth (ft)	Velocity (fps)	Travel Time (days)	Tributary		Stream		Analysis	
			Stream	Tributary						Hardness	pH	Hardness	pH	Hardness	pH
Point of Discharge	79.8														
End of Reach 1	77.43														

Stream / Surface Water Information

5/31/2024

Page 4

Model Results

Bleyer Gift Packs LLC, NPDES Permit No. PA0087165, Outfall 001

Instructions **Results** RETURN TO INPUTS SAVE AS PDF PRINT All Inputs Results Limits

Hydrodynamics

Wasteload Allocations

AFC

CCT (min): 15

PMF: 0.091

Analysis Hardness (mg/l): 100.43

Analysis pH: 7.00

Pollutants	Stream Conc (µg/L)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A	
Chloride (PWS)	0	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
Fluoride (PWS)	0	0		0	N/A	N/A	N/A	
Acrolein	0	0		0	3	3.0	1,640	
Acrylonitrile	0	0		0	650	650	355,298	
Benzene	0	0		0	640	640	349,832	
Bromoform	0	0		0	1,800	1,800	983,903	
Carbon Tetrachloride	0	0		0	2,800	2,800	1,530,515	
Chlorobenzene	0	0		0	1,200	1,200	655,935	
Chlorodibromomethane	0	0		0	N/A	N/A	N/A	
2-Chloroethyl Vinyl Ether	0	0		0	18,000	18,000	9,839,028	
Chloroform	0	0		0	1,900	1,900	1,038,564	
Dichlorobromomethane	0	0		0	N/A	N/A	N/A	
1,2-Dichloroethane	0	0		0	15,000	15,000	8,199,190	
1,1-Dichloroethylene	0	0		0	7,500	7,500	4,099,595	
1,2-Dichloropropane	0	0		0	11,000	11,000	6,012,739	
1,3-Dichloropropylene	0	0		0	310	310	169,450	
Ethylbenzene	0	0		0	2,900	2,900	1,585,177	
Methyl Bromide	0	0		0	550	550	300,637	
Methyl Chloride	0	0		0	28,000	28,000	15,305,154	
Methylene Chloride	0	0		0	12,000	12,000	6,559,352	
1,1,2,2-Tetrachloroethane	0	0		0	1,000	1,000	546,613	
Tetrachloroethylene	0	0		0	700	700	382,629	
Toluene	0	0		0	1,700	1,700	929,242	
1,2-trans-Dichloroethylene	0	0		0	6,800	6,800	3,716,966	

Model Results

5/31/2024

Page 5

NPDES Permit Fact Sheet
Bleyer Gift Packs Mt Union Plant

NPDES Permit No. PA0087165

1,1,1-Trichloroethane	0	0	██████████	0	3,000	3,000	1,639,838	
1,1,2-Trichloroethane	0	0	██████████	0	3,400	3,400	1,858,483	
Trichloroethylene	0	0	██████████	0	2,300	2,300	1,257,209	
Vinyl Chloride	0	0	██████████	0	N/A	N/A	N/A	

CFC

CCT (min): 720

PMF: 0.628

Analysis Hardness (mg/l): 100.06

Analysis pH: 7.00

Pollutants	Stream Conc (µg/L)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0	██████████	0	N/A	N/A	N/A	
Chloride (PWS)	0	0	██████████	0	N/A	N/A	N/A	
Sulfate (PWS)	0	0	██████████	0	N/A	N/A	N/A	
Fluoride (PWS)	0	0	██████████	0	N/A	N/A	N/A	
Acrolein	0	0	██████████	0	3	3.0	11,343	
Acrylonitrile	0	0	██████████	0	130	130	491,545	
Benzene	0	0	██████████	0	130	130	491,545	
Bromoform	0	0	██████████	0	370	370	1,399,013	
Carbon Tetrachloride	0	0	██████████	0	560	560	2,117,425	
Chlorobenzene	0	0	██████████	0	240	240	907,468	
Chlorodibromomethane	0	0	██████████	0	N/A	N/A	N/A	
2-Chloroethyl Vinyl Ether	0	0	██████████	0	3,500	3,500	13,233,904	
Chloroform	0	0	██████████	0	390	390	1,474,635	
Dichlorobromomethane	0	0	██████████	0	N/A	N/A	N/A	
1,2-Dichloroethane	0	0	██████████	0	3,100	3,100	11,721,458	
1,1-Dichloroethylene	0	0	██████████	0	1,500	1,500	5,671,673	
1,2-Dichloropropane	0	0	██████████	0	2,200	2,200	8,318,454	
1,3-Dichloropropylene	0	0	██████████	0	61	61.0	230,648	
Ethylbenzene	0	0	██████████	0	580	580	2,193,047	
Methyl Bromide	0	0	██████████	0	110	110	415,923	
Methyl Chloride	0	0	██████████	0	5,500	5,500	20,796,135	
Methylene Chloride	0	0	██████████	0	2,400	2,400	9,074,677	
1,1,2,2-Tetrachloroethane	0	0	██████████	0	210	210	794,034	
Tetrachloroethylene	0	0	██████████	0	140	140	529,356	
Toluene	0	0	██████████	0	330	330	1,247,768	
1,2-trans-Dichloroethylene	0	0	██████████	0	1,400	1,400	5,293,562	
1,1,1-Trichloroethane	0	0	██████████	0	610	610	2,306,480	
1,1,2-Trichloroethane	0	0	██████████	0	680	680	2,571,158	
Trichloroethylene	0	0	██████████	0	450	450	1,701,502	
Vinyl Chloride	0	0	██████████	0	N/A	N/A	N/A	

THH

CCT (min): 720

PMF: 0.628

Analysis Hardness (mg/l): N/A

Analysis pH: N/A

Pollutants	Stream Conc (µg/L)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0	██████████	0	500,000	500,000	N/A	
Chloride (PWS)	0	0	██████████	0	250,000	250,000	N/A	

Model Results

5/31/2024

Page 6

Sulfate (PWS)	0	0	██████████	0	250,000	250,000	N/A	
Fluoride (PWS)	0	0	██████████	0	2,000	2,000	N/A	
Acrolein	0	0	██████████	0	3	3.0	11,343	
Acrylonitrile	0	0	██████████	0	N/A	N/A	N/A	
Benzene	0	0	██████████	0	N/A	N/A	N/A	
Bromoform	0	0	██████████	0	N/A	N/A	N/A	
Carbon Tetrachloride	0	0	██████████	0	N/A	N/A	N/A	
Chlorobenzene	0	0	██████████	0	100	100.0	378,112	
Chlorodibromomethane	0	0	██████████	0	N/A	N/A	N/A	
2-Chloroethyl Vinyl Ether	0	0	██████████	0	N/A	N/A	N/A	
Chloroform	0	0	██████████	0	5.7	5.7	21,552	
Dichlorobromomethane	0	0	██████████	0	N/A	N/A	N/A	
1,2-Dichloroethane	0	0	██████████	0	N/A	N/A	N/A	
1,1-Dichloroethylene	0	0	██████████	0	33	33.0	124,777	
1,2-Dichloropropane	0	0	██████████	0	N/A	N/A	N/A	
1,3-Dichloropropylene	0	0	██████████	0	N/A	N/A	N/A	
Ethylbenzene	0	0	██████████	0	68	68.0	257,116	
Methyl Bromide	0	0	██████████	0	100	100.0	378,112	
Methyl Chloride	0	0	██████████	0	N/A	N/A	N/A	
Methylene Chloride	0	0	██████████	0	N/A	N/A	N/A	
1,1,2,2-Tetrachloroethane	0	0	██████████	0	N/A	N/A	N/A	
Tetrachloroethylene	0	0	██████████	0	N/A	N/A	N/A	
Toluene	0	0	██████████	0	57	57.0	215,524	
1,2-trans-Dichloroethylene	0	0	██████████	0	100	100.0	378,112	
1,1,1-Trichloroethane	0	0	██████████	0	10,000	10,000	37,811,154	
1,1,2-Trichloroethane	0	0	██████████	0	N/A	N/A	N/A	
Trichloroethylene	0	0	██████████	0	N/A	N/A	N/A	
Vinyl Chloride	0	0	██████████	0	N/A	N/A	N/A	

CRL

CCT (min): 720

PMF: 0.975

Analysis Hardness (mg/l): N/A

Analysis pH: N/A

Pollutants	Stream Conc (µg/L)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0	██████████	0	N/A	N/A	N/A	
Chloride (PWS)	0	0	██████████	0	N/A	N/A	N/A	
Sulfate (PWS)	0	0	██████████	0	N/A	N/A	N/A	
Fluoride (PWS)	0	0	██████████	0	N/A	N/A	N/A	
Acrolein	0	0	██████████	0	N/A	N/A	N/A	
Acrylonitrile	0	0	██████████	0	0.06	0.06	1,338	
Benzene	0	0	██████████	0	0.58	0.58	12,939	
Bromoform	0	0	██████████	0	7	7.0	156,158	
Carbon Tetrachloride	0	0	██████████	0	0.4	0.4	8,923	
Chlorobenzene	0	0	██████████	0	N/A	N/A	N/A	
Chlorodibromomethane	0	0	██████████	0	0.8	0.8	17,847	
2-Chloroethyl Vinyl Ether	0	0	██████████	0	N/A	N/A	N/A	

Model Results

5/31/2024

Page 7

NPDES Permit Fact Sheet
Bleyer Gift Packs Mt Union Plant

NPDES Permit No. PA0087165

Chloroform	0	0		0	N/A	N/A	N/A	
Dichlorobromomethane	0	0		0	0.95	0.95	21,193	
1,2-Dichloroethane	0	0		0	9.9	9.9	220,852	
1,1-Dichloroethylene	0	0		0	N/A	N/A	N/A	
1,2-Dichloropropane	0	0		0	0.9	0.9	20,077	
1,3-Dichloropropylene	0	0		0	0.27	0.27	6,023	
Ethylbenzene	0	0		0	N/A	N/A	N/A	
Methyl Bromide	0	0		0	N/A	N/A	N/A	
Methyl Chloride	0	0		0	N/A	N/A	N/A	
Methylene Chloride	0	0		0	20	20.0	446,165	
1,1,2,2-Tetrachloroethane	0	0		0	0.2	0.2	4,462	
Tetrachloroethylene	0	0		0	10	10.0	223,082	
Toluene	0	0		0	N/A	N/A	N/A	
1,2-trans-Dichloroethylene	0	0		0	N/A	N/A	N/A	
1,1,1-Trichloroethane	0	0		0	N/A	N/A	N/A	
1,1,2-Trichloroethane	0	0		0	0.55	0.55	12,270	
Trichloroethylene	0	0		0	0.6	0.6	13,385	
Vinyl Chloride	0	0		0	0.02	0.02	446	

Recommended WQBELs & Monitoring Requirements

No. Samples/Month: 4

Pollutants	Mass Limits		Concentration Limits					Governing WQBEL	WQBEL Basis	Comments
	AML (lbs/day)	MDL (lbs/day)	AML	MDL	IMAX	Units				

Other Pollutants without Limits or Monitoring

The following pollutants do not require effluent limits or monitoring based on water quality because reasonable potential to exceed water quality criteria was not determined and the discharge concentration was less than thresholds for monitoring, or the pollutant was not detected and a sufficiently sensitive analytical method was used (e.g., <= Target QL).

Pollutants	Governing WQBEL	Units	Comments
Total Dissolved Solids (PWS)	N/A	N/A	PWS Not Applicable
Chloride (PWS)	N/A	N/A	PWS Not Applicable
Bromide	N/A	N/A	No WQS
Sulfate (PWS)	N/A	N/A	PWS Not Applicable
Fluoride (PWS)	N/A	N/A	PWS Not Applicable
Acrolein	1,051	µg/L	Discharge Conc ≤ 25% WQBEL
Acrylonitrile	N/A	N/A	Discharge Conc < TQL
Benzene	12,939	µg/L	Discharge Conc ≤ 25% WQBEL
Bromoform	156,158	µg/L	Discharge Conc ≤ 25% WQBEL
Carbon Tetrachloride	8,923	µg/L	Discharge Conc ≤ 25% WQBEL
Chlorobenzene	378,112	µg/L	Discharge Conc ≤ 25% WQBEL

Model Results

5/31/2024

Page 8

Chlorodibromomethane	17,847	µg/L	Discharge Conc ≤ 25% WQBEL
Chloroethane	N/A	N/A	No WQS
2-Chloroethyl Vinyl Ether	6,306,420	µg/L	Discharge Conc ≤ 25% WQBEL
Chloroform	21,552	µg/L	Discharge Conc ≤ 25% WQBEL
Dichlorobromomethane	21,193	µg/L	Discharge Conc ≤ 25% WQBEL
1,1-Dichloroethane	N/A	N/A	No WQS
1,2-Dichloroethane	220,852	µg/L	Discharge Conc ≤ 25% WQBEL
1,1-Dichloroethylene	124,777	µg/L	Discharge Conc ≤ 25% WQBEL
1,2-Dichloropropane	20,077	µg/L	Discharge Conc ≤ 25% WQBEL
1,3-Dichloropropylene	6,023	µg/L	Discharge Conc ≤ 25% WQBEL
1,4-Dioxane	N/A	N/A	No WQS
Ethylbenzene	257,116	µg/L	Discharge Conc ≤ 25% WQBEL
Methyl Bromide	192,696	µg/L	Discharge Conc ≤ 25% WQBEL
Methyl Chloride	9,809,986	µg/L	Discharge Conc ≤ 25% WQBEL
Methylene Chloride	446,165	µg/L	Discharge Conc ≤ 25% WQBEL
1,1,2,2-Tetrachloroethane	4,462	µg/L	Discharge Conc ≤ 25% WQBEL
Tetrachloroethylene	223,082	µg/L	Discharge Conc ≤ 25% WQBEL
Toluene	215,524	µg/L	Discharge Conc ≤ 25% WQBEL
1,2-trans-Dichloroethylene	378,112	µg/L	Discharge Conc ≤ 25% WQBEL
1,1,1-Trichloroethane	1,051,070	µg/L	Discharge Conc ≤ 25% WQBEL
1,1,2-Trichloroethane	12,270	µg/L	Discharge Conc ≤ 25% WQBEL
Trichloroethylene	13,385	µg/L	Discharge Conc ≤ 25% WQBEL
Vinyl Chloride	446	µg/L	Discharge Conc ≤ 25% WQBEL

Model Results

5/31/2024

Page 9

Existing Effluent Limitations and Monitoring Requirements

Outfall 001,

Parameter	Effluent Limitations						Monitoring Requirements	
	Mass Units (lbs/day) ⁽¹⁾		Concentrations (mg/L)				Minimum ⁽²⁾ Measurement Frequency	Required Sample Type
	Average Monthly	Average Weekly	Minimum	Daily Maximum	Maximum	Instant. Maximum		
Flow (MGD)	Report	Report Daily Max	XXX	XXX	XXX	XXX	Continuous	Measured
pH (S.U.)	XXX	XXX	6.0	XXX	XXX	9.0	1/day	Grab
Temperature (°F)	XXX	XXX	XXX	110	XXX	XXX	1/day	I-S
CBOD ₅	XXX	XXX	XXX	20.0	XXX	20	1/month	8-Hr Composite
TSS	XXX	XXX	XXX	19.0	XXX	19	1/month	8-Hr Composite
Oil and Grease	XXX	XXX	XXX	29.0	XXX	29	1/month	8-Hr Composite

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (386-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

Parameter	Effluent Limitations						Monitoring Requirements	
	Mass Units (lbs/day) ⁽¹⁾		Concentrations (mg/L)				Minimum ⁽²⁾ Measurement Frequency	Required Sample Type
	Average Monthly	Average Weekly	Minimum	Daily Maximum	Maximum	Instant. Maximum		
Flow (MGD)	Report	Report Daily Max	XXX	XXX	XXX	XXX	Continuous	Measured
pH (S.U.)	XXX	XXX	6.0 Daily Min	XXX	XXX	9.0	1/day	Grab
Temperature (°F)	XXX	XXX	XXX	110	XXX	XXX	1/day	I-S
CBOD ₅	XXX	XXX	XXX	20.0	XXX	20.0	1/month	8-Hr Composite
TSS	XXX	XXX	XXX	19.0	XXX	19.0	1/month	8-Hr Composite
Oil and Grease	XXX	XXX	XXX	29.0	XXX	29.0	1/month	8-Hr Composite

Compliance Sampling Location:

Other Comments:

Tools and References Used to Develop Permit	
<input type="checkbox"/>	WQM for Windows Model (see Attachment [REDACTED])
<input checked="" type="checkbox"/>	Toxics Management Spreadsheet (see Attachment [REDACTED])
<input type="checkbox"/>	TRC Model Spreadsheet (see Attachment [REDACTED])
<input checked="" type="checkbox"/>	Temperature Model Spreadsheet (see Attachment [REDACTED])
<input type="checkbox"/>	Water Quality Toxics Management Strategy, 361-0100-003, 4/06.
<input type="checkbox"/>	Technical Guidance for the Development and Specification of Effluent Limitations, 386-0400-001, 10/97.
<input type="checkbox"/>	Policy for Permitting Surface Water Diversions, 386-2000-019, 3/98.
<input type="checkbox"/>	Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 386-2000-018, 11/96.
<input type="checkbox"/>	Technology-Based Control Requirements for Water Treatment Plant Wastes, 386-2183-001, 10/97.
<input type="checkbox"/>	Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 386-2183-002, 12/97.
<input type="checkbox"/>	Pennsylvania CSO Policy, 386-2000-002, 9/08.
<input checked="" type="checkbox"/>	Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.
<input checked="" type="checkbox"/>	Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 386-2000-008, 4/97.
<input type="checkbox"/>	Determining Water Quality-Based Effluent Limits, 386-2000-004, 12/97.
<input type="checkbox"/>	Implementation Guidance Design Conditions, 386-2000-007, 9/97.
<input type="checkbox"/>	Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 386-2000-016, 6/2004.
<input type="checkbox"/>	Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 386-2000-012, 10/1997.
<input type="checkbox"/>	Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 386-2000-009, 3/99.
<input type="checkbox"/>	Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 386-2000-015, 5/2004.
<input type="checkbox"/>	Implementation Guidance for Section 93.7 Ammonia Criteria, 386-2000-022, 11/97.
<input type="checkbox"/>	Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 386-2000-013, 4/2008.
<input type="checkbox"/>	Implementation Guidance Total Residual Chlorine (TRC) Regulation, 386-2000-011, 11/1994.
<input checked="" type="checkbox"/>	Implementation Guidance for Temperature Criteria, 386-2000-001, 4/09.
<input type="checkbox"/>	Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 386-2000-021, 10/97.
<input type="checkbox"/>	Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 386-2000-020, 10/97.
<input type="checkbox"/>	Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 386-2000-005, 3/99.
<input type="checkbox"/>	Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 386-2000-010, 3/1999.
<input type="checkbox"/>	Design Stream Flows, 386-2000-003, 9/98.
<input type="checkbox"/>	Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 386-2000-006, 10/98.
<input type="checkbox"/>	Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 386-3200-001, 6/97.
<input checked="" type="checkbox"/>	Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.
<input type="checkbox"/>	SOP: [REDACTED]
<input type="checkbox"/>	Other: [REDACTED]