

Southcentral Regional Office CLEAN WATER PROGRAM

Application Type Renewal
Facility Type Municipal
Major / Minor Major

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

Application No. PA0087181

APS ID 276674

Authorization ID 1241033

Applicant and Facility Information				
Ephrata Borough Authority Lancaster County	Facility Name	Ephrata STP Plant #2		
124 S State Street	Facility Address	43 Springhouse Road		
Ephrata, PA 17522-2411		Ephrata, PA 17522		
Jay Snyder	Facility Contact	Jay Snyder		
(717) 738-9282	Facility Phone	(717) 738-9282		
66907	Site ID	264277		
Not Overloaded	Municipality	Ephrata Township		
No Limitations	County	Lancaster		
vedJuly 30, 2018	EPA Waived?	No		
oted August 29, 2018	If No, Reason	Major Facility, Significant CB Discharge		
	County 124 S State Street Ephrata, PA 17522-2411 Jay Snyder (717) 738-9282 66907 Not Overloaded No Limitations ved July 30, 2018	CountyFacility Name124 S State StreetFacility AddressEphrata, PA 17522-2411Facility ContactJay SnyderFacility Phone(717) 738-9282Facility Phone66907Site IDNot OverloadedMunicipalityNo LimitationsCountyvedJuly 30, 2018EPA Waived?		

Approve	Deny	Signatures	Date
		Nicholas Hong, P.E. / Environmental Engineer	
Х		Nick Hong (via electronic signature)	June 3, 2021
		Daniel W. Martin, P.E. / Environmental Engineer Manager	
x		Maria D. Bebenek for Daniel W. Martin	
			June 7, 2021
		Maria Bebenek, P.E. / Environmental Program Manager	
х			
^		Maria D. Bahanak	luna 7, 2024
		I Maria D. Bebenek	June 7, 2021

Summary of Review

The application submitted by the applicant requests a NPDES renewal permit for the Ephrata Borough Authority STP (Plant #2) located at 43 Springhouse Road, Ephrata, PA 17522 in Lancaster County, municipality of Ephrata Township. The existing permit became effective on February 1, 2014 and expired on January 31, 2019. The application for renewal was received by DEP Southcentral Regional Office (SCRO) on July 30, 2018.

The purpose of this Fact Sheet is to present the basis of information used for establishing the proposed NPDES permit effluent limitations. The Fact Sheet includes a description of the facility, a description of the facility's receiving waters, a description of the facility's receiving waters attainment/non-attainment assessment status, and a description of any changes to the proposed monitoring/sampling frequency. Section 6 provides the justification for the proposed NPDES effluent limits derived from technology based effluent limits (TBEL), water quality based effluent limits (WQBEL), total maximum daily loading (TMDL), antidegradation, anti-backsliding, and/or whole effluent toxicity (WET). A brief summary of the outlined descriptions has been included in the Summary of Review section.

The subject facility is a 2.3 MGD (annual average design flow) treatment facility. The hydraulic design capacity treatment of the facility is 3.5 MGD. The applicant anticipates the following proposed upgrades to the treatment facility in the next five years.

Adjust aeration phases to enhance biological nutrient removal.

The NPDES application has been processed as a Major Sewage Facility due to the type of sewage and the design flow rate for the facility. The applicant disclosed the Act 14 requirement to Lancaster County and the Borough of Ephrata and the notice was received by the parties on June 29, 2018 and June 14, 2018. A planning approval letter was not necessary as the facility is neither new or expanding.

Utilizing the DEP's web-based Emap-PA information system, the receiving waters has been determined to be Cocalico Creek. The sequence of receiving streams that Cocalico Creek discharges into are the Conestoga Creek and the Susquehanna River which eventually drains into the Chesapeake Bay. The subject site is subject to the Chesapeake Bay implementation requirements. The receiving water has protected water usage for warm water fishes (WWF) and migratory fishes (MF). No Class A Wild Trout fisheries are impacted by this discharge. The absence of high quality and/or exceptional value surface waters removes the need for an additional evaluation of anti-degradation requirements.

The Cocalico Creek is a Category 5 stream listed in the 2020 Integrated List of All Waters (formerly 303d Listed Streams).

This stream is a non-attaining stream that is impaired for aquatic life for the following reasons. Impaired for aquatic life from (a) crop related agriculture due to nutrients; (b) urban runoff/storm sewers due to an unknown cause; and (c) life grazing related agriculture due to siltation.

The receiving waters is not subject to a total maximum daily load (TMDL) plan to improve water quality in the subject facility's watershed.

The existing permit and proposed permit differ as follows:

- Due to the EPA Triennial review, monitoring for E. Coli shall be 1x/month
- Monitoring for total copper and total zinc shall be 2x/month
- Monitoring and limits shall apply for free cyanide and bis(2-ethylhexyl) phthalate

Sludge use and disposal description and location(s): Sewage Sludge were disposed at WWTP #2 farm fields, Memory Gardens farm fields, Cocalico Commons Farm Fields which were all located in Lancaster County.

The proposed permit will expire five (5) years from the effective date.

Summary of Review

Based on the review in this report, it is recommended that the permit be drafted. DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Any additional information or public review of documents associated with the discharge or facility may be available at PA DEP Southcentral Regional Office (SCRO), 909 Elmerton Avenue, Harrisburg, PA 17110. To make an appointment for file review, contact the SCRO File Review Coordinator at 717.705.4700.

1.0 Applicant

1.1 General Information

This fact sheet summarizes PA Department of Environmental Protection's review for the NPDES renewal for the following subject facility.

Facility Name: Ephrata Borough Authority STP (Plant #2)

NPDES Permit # PA0087181

Physical Address: 43 Springhouse Road

Ephrata, PA 17522

Mailing Address: 124 South State Street

Ephrata, PA 17522

Contact: jsnyder@ephrataboro.org

Consultant: There was not a consultant utilized for this NPDES renewal.

1.2 Permit History

Description of Facility

The NPDES permit covering the period from February 1, 2014 and expired on January 31, 2019 utilized two site specific studies to develop permit limits. *Travel Time Study Propane Gas Survey on Cocalico Creek for Ephrata Borough* recommended travel times and aeration rates for reaches on the receiving stream (last revised in 1995). *Borough of Ephrata Total Residual Chlorine Site-Specific Study* dated in 1997 recommended chlorine demand for the stream.

Permit submittal included the following information.

- NPDES Application
- Flow Diagrams
- Influent Sample Data
- Effluent Sample Data
- WET Testing Data

2.0 Treatment Facility Summary

2.1.1 Site location

The physical address for the facility is 43 Springhouse Road, Ephrata, PA 17522. A topographical and an aerial photograph of the facility are depicted as Figure 1 and Figure 2.

Figure 1: Topographical map of the subject facility

Figure 2: Aerial Photograph of the subject facility

2.1.2 Sources of Wastewater/Stormwater

The facility receives wastewater contributions from the following municipalities:

Denver Borough 29%
Ephrata Borough 1%
Ephrata Township 6%
East Cocalico Township 64%

The facility reported the following industrial users.

Industrial User Name	Address	Description of Industry	Wastewater Flow (GPD)	
ACME	500 S. Muddy Creek Road, Denver, PA 17517	Receiving and Shipping Groceries	18,900	
Pepperidge Farm	2195 N. Reading Road, Denver, PA 17517	Bakery of Bread, Cookies, Crackers, and Other Products	40,000	

Ephrata initiated a pretreatment local administered program in 1983. On November 16, 2001, EPA approved the Ephrata pretreatment program. Modifications were made to the pretreatment programs on October 14, 2008. On February 12, 2014, both the Ephrata Borough Authority Plant #1 and #2 had their local limits re-evaluated. The facilities engaged in the pretreatment are summarized in the table.

Ephrata Area Wastewater- Industrial Waste 2017						
Customer	Per	mit				
Customer	Issue Date	Expire Date				
F & M Hat Co.	Exe	mpt				
Kalas Manufacturing Co.	6/16/2017	10/28/2021				
Boose Aluminum Foundary Co.	10/28/2016	10/28/2021				
Kyma Seafood Grill, Silk City Diner	10/28/2016	10/28/2021				
Pepperidge Farm	10/28/2016	10/28/2021				
Reamstown Athletic Association	10/28/2016	10/28/2021				
Weaver Markets, Inc.	10/28/2016	10/28/2021				
Park Place Diner	10/28/2016	10/28/2021				
Supervalu Acme	10/28/2016	10/28/2021				
Four Seasons Produce, Inc.	10/28/2016	10/28/2021				
Union Barrol Works	1/10/2008	1/9/2012				

Hauled-In Wastes

In the NPDES applications, the facility reported that they did not receive any hauled-in wastes in the last three years. The applicant does not anticipate any hauled in wastes the next five years.

Stormwater Outfalls

The facility does not have any stormwater outfalls.

2.2 Description of Wastewater Treatment Process

The subject facility is a 2.3 MGD design flow facility. The subject facility treats wastewater using a bar screen, a three stage anaerobic selector and BioDenipho mode Phased isolation Ditch (PID) Technology, a clarifier(s), and a chlorine contact tank(s), and a chlorination/dechlorination system prior to discharge through the outfall.

A schematic of the process flow diagram is shown.

The plant is designed to remove BOD5, suspended solids, ammonia nitrogen, nitrite/nitrates, and phosphorus biologically. There is a backup phosphorus removal system which utilizes ferrous chloride.

The facility is being evaluated for flow, pH, dissolved oxygen, total residual chlorine, CBOD5, TSS, fecal coliform, nitrogen species, and total phosphorus. The existing permits limits for the facility is summarized in Section 2.4.

The treatment process is summarized in the table.

	Trea	atment Facility Summa	ary	
reatment Facility Nar	ne: Ephrata Region STP Pla	ant #2		
Waste Type	Degree of Treatment	Process Type	Disinfection	Avg Annual Flow (MGD)
Sewage	Secondary	Oxidation Ditch	Gas Chlorine	2.3
Hydraulic Capacity	Organic Capacity			Biosolids
(MGD)	(lbs/day)	Load Status	Biosolids Treatment	Use/Disposal
3.5	7300	Not Overloaded		

2.3 Facility Outfall Information

The facility has the following outfall information for wastewater.

Outfall No.	001	Design Flow (MGD)	2.3
Latitude	40° 11' 36.00"	Longitude	-76° 9' 55.00"
Wastewater D	escription: Sewage Effluent		

The subject facility outfall is within the vicinity of another sewage/wastewater outfall. Ephrata Borough Authority Plant #1 (PA0027405) outfall is about 3.7 miles downstream from the subject facility. The map shows the location of the two Ephrata WWTPs.

Map Location #1:

Ephrata Borough Authority- Plant #1 (PA0027405) 405 South Reading Road Ephrata, PA 17522

Map Location #2:

Ephrata Borough Authority- Plant #2 (PA0087181) 43 Springhouse Road Ephrata, PA 17522

2.3.1.1 Operational Considerations- Chemical Additives

Chemical additives are chemical products introduced into a waste stream that is used for cleaning, disinfecting, or maintenance and which may be detected in effluent discharged to waters of the Commonwealth. Chemicals excluded are those used for neutralization of waste streams, the production of goods, and treatment of wastewater.

The subject facility utilizes the following chemicals as part of their treatment process.

- Chlorine for disinfection
- · Ferrous chloride for phosphorus removal

2.3.1.1 Operational Considerations- Managing Peak Flows

In anticipation of managing peak flows, the facility has prepared a SOP. The SOP includes the following:

- (a) Check vital equipment for operation readiness prior to and during the event
- (b) Adjust RAS rates upward as needed to control final clarifier blanket level.

2.4 Existing NPDES Permits Limits

The existing NPDES permit limits are summarized in the table.

PAR	ART A - EFFLUENT LIMITATIONS, MONITORING, RECORDKEEPING AND REPORTING REQUIREMENTS									
I. A.	For Outfall	001	, Latitude	40° 11' 39.9"	_, Longitude	_76° 09' 51.5",	River Mile Index	11.90,	Stream Code	07656
	Receiving Water	rs:	Cocalico Cre	ek						
	Type of Effluent	t:	Sewage							

- The permittee is authorized to discharge during the period from <u>February 1, 2014</u> through <u>January 31, 2019</u>.
- Based on the anticipated wastewater characteristics and flows described in the permit application and its supporting documents and/or amendments, the following effluent limitations and monitoring requirements apply (see also Additional Requirements and Footnotes).

	Effluent Limitations						Monitoring Re	quirements
Parameter	Mass Units	(lbs/day) (1)		Concentrations (mg/L)				Required
Farameter	Average Monthly	Daily Maximum	Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report	XXX	XXX	XXX	XXX	Continuous	Measured
pH (S.U.)	XXX	XXX	6.0	XXX	XXX	9.0	1/day	Grab
Dissolved Oxygen	XXX	XXX	5.0	XXX	XXX	XXX	1/day	Grab
Total Residual Chlorine	XXX	XXX	XXX	0.42	XXX	1.38	1/day	Grab
CBOD5	480	767 Wkly Avg	XXX	25	40	50	2/week	24-Hr Composite
BOD5 Raw Sewage Influent	Report	Report	XXX	Report	XXX	xxx	2/week	24-Hr Composite
Total Suspended Solids Raw Sewage Influent	Report	Report	XXX	Report	XXX	xxx	2/week	24-Hr Composite
Total Suspended Solids	575	863 Wkly Avg	XXX	30	45	60	2/week	24-Hr Composite
Fecal Coliform (CFU/100 ml) May 1 - Sep 30	XXX	XXX	XXX	200 Geo Mean	XXX	1,000	2/week	Grab
Fecal Coliform (CFU/100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	2,000 Geo Mean	XXX	10,000	2/week	Grab

Outfall 001, Continued (from February 1, 2014 through January 31, 2019)

	Effluent Limitations						Monitoring Requirements	
Parameter	Mass Units	(lbs/day) (1)	Concentrations (mg/L)				Minimum (2)	Required
Farameter	Average	Daily		Average	Weekly	Instant.	Measurement	Sample
	Monthly	Maximum	Minimum	Monthly	Average	Maximum	Frequency	Type
Ammonia-Nitrogen								24-Hr
May 1 - Oct 31	48	XXX	XXX	2.5	XXX	5.0	2/week	Composite
Ammonia-Nitrogen								24-Hr
Nov 1 - Apr 30	144	XXX	XXX	7.5	XXX	15	2/week	Composite
								24-Hr
Total Phosphorus	38	XXX	XXX	2.0	XXX	4.0	2/week	Composite

Samples taken in compliance with the monitoring requirements specified above shall be taken at the follow	g location(s)	ĺ
---	---------------	---

at discharge from facility

PART A - EFFLUENT LIMITATIONS, MONITORING, RECORDKEEPING AND REPORTING REQUIREMENTS							
I. B. For Outfall 001	_, Latitude _40° 11' 39.9" _, Longitude _76° 09' 51.5" _, River Mile Index _11.90 _, Stream Code _07656 _						
Receiving Waters:	Cocalico Creek						
Type of Effluent:	Sewage						

^{1.} The permittee is authorized to discharge during the period from February 1, 2014 through January 31, 2019.

Based on the anticipated wastewater characteristics and flows described in the permit application and its supporting documents and/or amendments, the following effluent limitations and monitoring requirements apply (see also Additional Requirements and Footnotes).

		E	Monitoring Requirements				
Parameter (1)	Mass Ur	nits (Ibs)	Cor	centrations (m	Minimum (2)	Required	
raiametei ·	Monthly	Annual	Minimum	Monthly Average	Maximum	Measurement Frequency	Sample Type
AmmoniaN	Report	Report	XXX	Report	XXX	2/week	24-Hr Composite
KieldahlN	Report	XXX	XXX	Report	XXX	2/week	24-Hr Composite
Nitrate-Nitrite as N	Report	XXX	XXX	Report	XXX	2/week	24-Hr Composite
Total Nitrogen	Report	Report	XXX	Report	XXX	1/month	Calculation
Total Phosphorus	Report	Report	XXX	Report	XXX	2/week	24-Hr Composite
Net Total Nitrogen	Report	54,550	XXX	XXX	XXX	1/month	Calculation
Net Total Phosphorus	Report	6,818	XXX	XXX	XXX	1/month	Calculation

Samples taken in compliance with the monitoring requirements specified above shall be taken at the following location(s): at discharge from facility. Footnotes:

(1) See Part C for Chesapeake Bay Requirements.

(2) This is the minimum number of sampling events required. Permittees are encouraged, and it may be advantageous in demonstrating compliance, to perform more than the minimum number of sampling events required.

(3) The permittee is authorized to use 25 lbs/year as Total Nitrogen (TN) Offsets toward compliance with the Annual Net TN mass load limitations (Cap Loads), in accordance with Part C of this permit. These Offsets may be applied throughout the Compliance Year or during the Truing Period. The application of offsets must be reported to DEP as described in Part C. The Offsets are authorized for the following pollutant load reduction activities: Connection of 1 on-lot sewage disposal system to the public sewer system after January 1, 2003, in which 25 lbs/year of TN offsets are granted per connection.

3.0 Facility NPDES Compliance History

3.1 Summary of Inspections

A summary of the most recent inspections during the existing permit review cycle is as follows.

The DEP inspector noted the following during the inspection.

07/14/2014: There was nothing significant to report.

08/05/2015: There was nothing significant to report.

09/20/2018:

- Grit/grease channel was offline due to yearly cleaning.
- The sampler refrigerator is no longer in use and samples were kept on ice during collection.
- The facility was utilizing only one of three ATAD digesters.

07/23/2019: There was nothing significant to report.

05/18/2020: An administrative inspection was conducted to determine the status of the operations.

There was nothing significant to report

02/05/2021: A Chesapeake Bay Cap Load Compliance Evaluation was conducted.

- Monthly eDMR submission, supplemental reports, and annual Chesapeake Bay submissions were reviewed.
- The facility was advised to correct errors on the reporting.
- The facility was advised to us the most current Chesapeake Bay spreadsheet. No credits were purchased or sold during the year.

3.2 Summary of DMR Data

A review of approximately 1-year of DMR data shows that the monthly average flow data for the facility below the design capacity of the treatment system. The maximum average flow data for the DMR reviewed was 1.912 MGD in March 2021. The hydraulic design capacity of the treatment system is 3.5 MGD.

The off-site laboratory used for the analysis of the parameters was Suburban Testing Labs located at 1037 F MacArthur Road, Reading Road, Reading, PA.

The off-site laboratory used for the analysis of the whole effluent toxicity was American Aquatics located at 890 North Gram Street, Allentown, PA.

DMR Data for Outfall 001 (from April 1, 2020 to March 31, 2021)

Parameter	MAR-21	FEB-21	JAN-21	DEC-20	NOV-20	OCT-20	SEP-20	AUG-20	JUL-20	JUN-20	MAY-20	APR-20
Flow (MGD)												
Average Monthly	1.912	1.583	1.380	1.692	1.183	0.966	0.903	1.409	1.066	1.006	1.353	1.782
Flow (MGD)												
Daily Maximum	4.834	4.221	2.713	5.224	2.052	1.616	2.262	4.035	1.925	1.730	3.008	4.902
pH (S.U.)												
Minimum	7.2	7.4	7.4	7.1	7.5	7.5	7.4	7.2	7.5	7.6	7.4	7.5
pH (S.U.)												
Maximum	7.7	7.8	7.9	8.2	7.9	7.9	7.9	7.9	8.0	8.0	7.9	7.8
DO (mg/L)												
Minimum	9.4	9.7	9.6	8.7	8.4	8.2	7.7	7.5	7.5	7.9	8.3	9.0
TRC (mg/L)												
Average Monthly	0.30	0.29	0.32	0.32	0.34	0.31	0.33	0.35	0.33	0.34	0.31	0.31
TRC (mg/L)												
Instantaneous												
Maximum	0.48	0.54	0.56	0.55	0.54	0.50	0.50	0.59	0.53	0.47	0.41	0.49
CBOD5 (lbs/day)												
Average Monthly	51	44	29	28	23	21	20	50	26	27	31	35
CBOD5 (lbs/day)												
Weekly Average	116	84	34	35	28	27	33	109	35	40	42	46
CBOD5 (mg/L)												
Average Monthly	2.9	3.0	2.6	2.1	2.4	2.8	2.4	3.2	2.8	3.3	3.1	2.7
CBOD5 (mg/L)												
Weekly Average	4.2	3.7	3.5	2.4	2.8	3.6	2.7	4.2	3.3	4.5	4.7	3.2
BOD5 (lbs/day)												
Raw Sewage Influent												
 Average	0400	4000	4004	4000	4704	4704	4000	0404	0.400	0000	0004	0047
Monthly	2166	1839	1891	1866	1784	1791	1868	2101	2400	2366	2334	2217
BOD5 (lbs/day)												
Raw Sewage Influent	2896	2417	2493	2376	2196	2078	2994	3053	3042	3082	2502	2760
<pre> </pre>	2896	2417	2493	2376	2196	2078	2994	3053	3042	3082	2502	2760
BOD5 (mg/L) Raw Sewage Influent												
<pre> Average</pre>												
Monthly	150	166	191	172	207	236	224	173	254	267	227	179
TSS (lbs/day)	130	100	191	112	201	230	<u> </u>	173	ZJ4	201	221	113
Average Monthly	45	36	11	31	13	9	9	17	8	12	17	43
TSS (lbs/day)	70	30	11	J1	13	3	3	17	U	14	17	40
Raw Sewage Influent												
 Average												
	1712	1699	1553	1603	1390	1550	1476	1882	2547	2593	2197	1904
Monthly	1712	1699	1553	1603	1390	1550	1476	1882	2547	2593	2197	1904

TSS (lbs/day)												
Raw Sewage Influent												
 br/> Daily Maximum	2804	2585	1816	2110	1926	2056	2118	3088	3596	3743	2627	2274
TSS (lbs/day)												
Weekly Average	116	90	19	62	23	16	19	44	14	15	25	76
TSS (mg/L)												
Average Monthly	2.4	2.2	1.0	2.2	1.3	1.2	1.1	1.0	0.9	1.5	1.7	2.6
TSS (mg/L)												
Raw Sewage Influent												
 br/> Average												
Monthly	122	151	156	149	160	206	178	149	270	292	214	140
TSS (mg/L)												
Weekly Average	4.0	3.8	1.8	4.0	2.4	2.2	1.6	1.6	1.4	2.0	2.0	4.8
Fecal Coliform												
(CFU/100 ml)												
Geometric Mean	3	2	1	1	2	1	2	2	1	2	1	2
Fecal Coliform												
(CFU/100 ml)												
Instantaneous				_		_		_	_		_	
Maximum	80	10	1	2	16	1	80	8	5	37	2	53
Nitrate-Nitrite (mg/L)							0.04			- 40	- 40	
Average Monthly	7.98	8.2	9.22	7.08	7.53	7.47	6.24	4.51	5.58	5.42	5.10	5.21
Nitrate-Nitrite (lbs)	2224			0700	0.400	4=00	4==0		40=4	1010	4004	00.40
Total Monthly	3834	2990	3148	2793	2190	1783	1559	1955	1671	1316	1661	2343
Total Nitrogen (mg/L)	0.00	0.00	40.40	0.50	0.00	0.40	7.54	5 00	7.47	0.05	0.00	0.50
Average Monthly	9.90	9.88	10.40	8.58	9.82	9.10	7.51	5.80	7.17	6.95	6.20	6.58
Total Nitrogen (lbs)												
Effluent Net Tatal Manthly	4744	0074	0505	2202	0070	0470	4000	0570	04.40	4004	2005	20.40
Total Monthly	4711	3674	3565	3383	2870	2173	1899	2578	2142	1681	2005	2948
Total Nitrogen (lbs)	4711	3674	3565	3383	2870	2173	1899	2578	2142	1681	2005	2948
Total Monthly Total Nitrogen (lbs)	4/11	3674	3303	3383	2870	21/3	1899	2578	2142	1001	2005	2948
Effluent Net 												
Total Annual							28577					
Total Nitrogen (lbs)							20311					
Total Annual							28577					
Ammonia (lbs/day)							20077					
Average Monthly	16	15	6	7	2	3	3	6	4	3	3	9
Ammonia (mg/L)	10	10		,								<u> </u>
Average Monthly	1.02	0.95	0.56	0.54	0.21	0.37	0.36	0.31	0.42	0.32	0.27	0.60
Ammonia (lbs)	2	0.00	0.00	0.01	J.2 1	0.07	0.00	0.01	Ų. 1 <u>2</u>	0.02	J.27	3.30
Total Monthly	501	411	197	221	65	90	102	179	128	79	83	264
Ammonia (lbs)	55.				- 55		. 32		0		- 55	
Total Annual							2021					
	1	ı	1	l	1	1					1	ı

NPDES Permit No. PA0087181

TKN (mg/L) Average Monthly	1.92	1.68	1.18	1.50	2.30	1.63	1.27	1.28	1.59	1.53	1.10	1.37
TKN (lbs) Total Monthly	877	684	417	590	679	390	340	624	470	365	344	605
Total Phosphorus (lbs/day) Average Monthly	22	14	13	11	7	6	5	10	9	10	11	15
Total Phosphorus (mg/L) Average Monthly	1.47	1.05	1.10	0.84	0.73	0.79	0.62	0.76	0.98	1.24	1.03	1.07
Total Phosphorus (lbs) Effluent Net Total Monthly	688	392	406	331	209	188	149	319	290	303	335	455
Total Phosphorus (lbs) Total Monthly	688	392	406	331	209	188	149	319	290	303	335	455
Total Phosphorus (lbs) Effluent Net Total Annual							3661					
Total Phosphorus (lbs) Total Annual							3661					

3.2.1 Additional Toxics Present

During the pollutant group sampling, the laboratory reported five (5) additional toxic pollutants. These toxic pollutants are not listed on the standard pollutant group list but were observed during the sampling and laboratory analysis.

The toxic pollutants were

- n-Hexadecanoic acid
- Octadecanoic acid
- Ethanol, 2-butoxy-, phosphate (3:1 (1)
- 2,3,3-Trimethyl-1-hexene 1
- Cyclohexane,1-methyl-2-propyl-1

3.2.2 Chesapeake Bay Truing Compliance

The table summarizes that the facility has been able to meet the Chesapeake Bay truing compliance permit limits.

Che	esapeake Bay Annı	ıal Nutrient Summa	ry								
	Ephrata Plant #2										
PA0087181											
Net Effluent Limits Compliant with Permit Limits (Yes/No)											
Year for Truing Period (Oct 1 - Nov 28)	Nitrogen (lbs) Phosphorus (lbs		Nitrogon	Dhoonhous							
	54,550	6,818	Nitrogen	Phosphorus							
2016	27,365	3,838	Yes	Yes							
2017	29,854	3,777	Yes	Yes							
2018	31,618	4,327	Yes	Yes							
2019 34,832 4,563 Yes Yes											
2020	1,000										

Based upon Chesapeake Bay reporting, there were differences in net effluent limits for nitrogen and phosphorus. This can be seen when comparing net effluent limits from Section 3.2 and 3.2.2. The differences were addressed in a revision by the facility for the Chesapeake Bay reporting.

3.3 Non-Compliance

3.3.1 Non-Compliance- NPDES Effluent

A summary of the non-compliance to the permit limits for the existing permit cycle is as follows.

From the DMR data beginning in February 1, 2014 to May 18, 2021, the table summarizes the effluent non-compliances.

	Summary of Non-Compliance w NPDES Effluent Limits											
	Beginning 2/1/14 and ending 05/18/21											
DATE	NON COMPLIANCE TYPE	PARAMETER	SAMPLE VALUE	CONDITION	PERMIT VALUE	MEASURE	STATISTICAL BASE CODE					
08/17/2018	Violation of permit condition	Fecal Coliform	2100	>	1000	CFU/100 ml	Instantaneous					
08/21/2019	Violation of permit condition	Fecal Coliform	5300	>	1000	CFU/100 ml	Instantaneous					

3.3.2 Non-Compliance- Enforcement Actions

A summary of the non-compliance enforcement actions for the current permit cycle is as follows:

Beginning in February 1, 2014 to May 18, 2021, there were no observed enforcement actions.

3.4 Summary of Biosolids/Sewage Sludge Disposal

The sludge train consists of rotary drum thickening, an automated thermophyllic aerobic digestion system (ATAD) and a 2-meter belt press for dewatering. The exceptional quality biosolids are then applied to area farm fields.

Sewage sludge are managed under DEP permit number PAG-07-3508 which was issued March 20, 2018.

Sewage sludge was disposed at WWTP #2 farm fields, Memory Gardens farm fields, Cocalico Commons Farm Fields which were all located in Lancaster County.

A summary of the sewage sludge disposed of from the facility in 2020 is as follows.

	202	0	
Sewage	Sludge / Biosolids	Production Info	rmation
	Hauled O	ff-Site	
Date (YEAR)	Tons Dewatered	% Solids	Dry Tons
May	310.99	23.4	72.77
Notes:			
Sewage sludge	disposed at U-7-7	East Cocalico Tv	vp, Lancaster,
PA under DEP F	Permit Number PAG	07-3508	

3.5 Open Violations

No open violations existed as of May 2021.

4.0 Receiving Waters and Water Supply Information Detail Summary

4.1 Receiving Waters

The receiving waters has been determined to be Cocalico Creek. The sequence of receiving streams that Cocalico Creek discharges into are the Conestoga Creek and the Susquehanna River which eventually drains into the Chesapeake Bay.

4.2 Public Water Supply (PWS) Intake

The closest PWS to the subject facility is Ephrata Area Joint Authority (PWS ID #7360045) located approximately 1.7 miles downstream of the subject facility on the Cocalico Creek. Based upon the distance and the flow rate of the facility, the PWS should not be impacted.

4.3 Class A Wild Trout Streams

Class A Wild Trout Streams are waters that support a population of naturally produced trout of sufficient size and abundance to support long-term and rewarding sport fishery. DEP classifies these waters as high-quality coldwater fisheries.

The information obtained from EMAP suggests that no Class A Wild Trout Fishery will be impacted by this discharge.

4.4 2020 Integrated List of All Waters (303d Listed Streams)

Section 303(d) of the Clean Water Act requires States to list all impaired surface waters not supporting uses even after appropriate and required water pollution control technologies have been applied. The 303(d) list includes the reason for

impairment which may be one or more point sources (i.e. industrial or sewage discharges) or non-point sources (i.e. abandoned mine lands or agricultural runoff and the pollutant causing the impairment such as metals, pH, mercury or siltation).

States or the U.S. Environmental Protection Agency (EPA) must determine the conditions that would return the water to a condition that meets water quality standards. As a follow-up to listing, the state or EPA must develop a Total Maximum Daily Load (TMDL) for each waterbody on the list. A TMDL identifies allowable pollutant loads to a waterbody from both point and non-point sources that will prevent a violation of water quality standards. A TMDL also includes a margin of safety to ensure protection of the water.

The water quality status of Pennsylvania's waters uses a five-part categorization (lists) of waters per their attainment use status. The categories represent varying levels of attainment, ranging from Category 1, where all designated water uses are met to Category 5 where impairment by pollutants requires a TMDL for water quality protection.

The receiving waters is listed in the 2020 Pennsylvania Integrated Water Quality Monitoring and Assessment Report as a Category 5 waterbody. The surface waters is a non-attaining stream that is impaired for aquatic life for the following reasons:

Impaired for aquatic life from (a) crop related agriculture due to nutrients; (b) urban runoff/storm sewers due to an unknown cause; and (c) grazing related agriculture due to siltation

The designated use has been classified as protected waters for warm water fishes (WWF) and migratory fishes (MF).

4.5 Low Flow Stream Conditions

Water quality modeling estimates are based upon conservative data inputs. The data are typically estimated using either a stream gauge or through USGS web based StreamStats program. The NPDES effluent limits are based upon the combined flows from both the stream and the facility discharge.

A conservative approach to estimate the impact of the facility discharge using values which minimize the total combined volume of the stream and the facility discharge. The volumetric flow rate for the stream is based upon the seven-day, 10-year low flow (Q710) which is the lowest estimated flow rate of the stream during a 7 consecutive day period that occurs once in 10 -year time period. The facility discharge is based upon a known design capacity of the subject facility.

The August 26, 2013 Fact Sheet prepared by DEP included an extensive review comparing low flow stream rates from gauge station and Stream Stats. The Fact Sheet concluded that the gauge stations for the Conestoga and Little Conestoga were from an older set of data (1930 – 1995 and 1983 – 1993, respectively). Further the low flow yield from Stream Stats was slightly larger than the low flow yield from the nearby gauge stations. The low flow yield from Stream Stats was utilized for the previous renewal and shall be used for the proposed NPDES renewal.

The Q710 low flow value of 0.12 ft³/s/mi² was used for the upstream Ephrata Plant #2. The downstream plant Ephrata Plant #1 shall have a Q710 of 0.103 ft³/s/mi². This is slightly less than the Q710 for the Ephrata Plant #2 since it considers a water intake (Ephrata Area Joint Authority) (Abstracted from Fact Sheet dated for August 2013).

The closest WQN station to the subject facility is the Conestoga River station (WQN273). This WQN station is located approximately 43 miles downstream of the subject facility.

For WQM modeling, pH and stream water temperature data from the water quality network station was used. pH was estimated to be 8.2 and the stream water temperature was estimated to be 22.7 C.

The hardness of the stream was estimated by collecting a sample upstream of the facilities on July 10, 2018. For Ephrata Plant #1, the sample result was 198 mg/l. For Ephrata Plant #2, the sample result was 156 mg/l. Since the facilities are within a reasonable vicinity of each other, the sample results were averaged giving a result of 177 mg/l CaCO₃.

Outfall No. 001			_ Design Flow (MGD)	2.3
Latitude 40Â	⁰ 12' 23.	25"	_ Longitude	-76º 7' 57.54"
Quad Name			_ Quad Code	
Wastewater Desc	ription:	Sewage Effluent		
Receiving Waters	Coca	lico Creek (WWF)	Stream Code	7656
NHD Com ID	5746	1655	RMI	11.59
Drainage Area	44.4		Yield (cfs/mi²)	0.12
Q ₇₋₁₀ Flow (cfs)	5.63		Q ₇₋₁₀ Basis	Stream Stats
Elevation (ft)	344		Slope (ft/ft)	
Watershed No.	7-J		Chapter 93 Class.	WWF, MF
Existing Use	Same	e as Chapter 93 class.	Existing Use Qualifier	
Exceptions to Use	:		Exceptions to Criteria	
Assessment Statu	IS	Impaired for aquatic life		
Cause(s) of Impai	rment	CAUSE UNKNOWN, NU		
Source(s) of Impa	irment		CROP LAND OR DRY LAND), GF JRBAN RUNOFF/STORM SEWEF	
TMDL Status	iiiiciit	Not applicable	Name	· · ·
TWDE Clarac		1101 αρριιοασίο		
Background/Ambi	ent Data		Data Source	
pH (SU)		8.2	WQN273; median July to Sep	t
P (OO)		22.7	WQN273; median July to Sep	
• • •		<u></u>	Sample collection on July 10,	
Temperature (°C)				
Temperature (°C) Hardness (mg/L)		_177	app. Sample is average of Ep	nrata #1 and #2 samples.
Temperature (°C)			app. Sample is average of Ep	nrata #1 and #2 samples.
Temperature (°C) Hardness (mg/L) Other:	am Publ	it 177ic Water Supply Intake	app. Sample is average of Ep Ephrata Area Joint Authority	mata #1 and #2 samples.
Temperature (°C) Hardness (mg/L) Other:	am Publ Cocalico	ic Water Supply Intake		mata #1 and #2 samples.

5.0: Overview of Presiding Water Quality Standards

5.1 General

There are at least six (6) different policies which determines the effluent performance limits for the NPDES permit. The policies are technology based effluent limits (TBEL), water quality based effluent limits (WQBEL), antidegradation, total maximum daily loading (TMDL), anti-backsliding, and whole effluent toxicity (WET) The effluent performance limitations enforced are the selected permit limits that is most protective to the designated use of the receiving waters. An overview of each of the policies that are applicable to the subject facility has been presented in Section 6.

5.2.1 Technology-Based Limitations

TBEL treatment requirements under section 301(b) of the Act represent the minimum level of control that must be imposed in a permit issued under section 402 of the Act (40 CFR 125.3). Available TBEL requirements for the state of Pennsylvania are itemized in PA Code 25, Chapter 92a.47.

The presiding sources for the basis for the effluent limitations are governed by either federal or state regulation. The reference sources for each of the parameters is itemized in the tables. The following technology-based limitations apply, subject to water quality analysis and best professional judgement (BPJ) where applicable:

Parameter	Limit (mg/l)	SBC	Federal Regulation	State Regulation
CBOD₅	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
CBOD5	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
Total Suspended	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Solids	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
pН	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform				
(5/1 – 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform				
(5/1 – 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform				
(10/1 – 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform				
(10/1 - 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)

5.2.2 Mass Based Limits

For publicly owned treatment works (POTW), mass loadings are calculated based upon design flow rate of the facility and the permit limit concentration. The generalized calculation for mass loadings is shown below:

Quantity
$$\left(\frac{lb}{day}\right) = (MGD)(Concentration)(8.34)$$

5.3 Water Quality-Based Limitations

WQBEL are based on the need to attain or maintain the water quality criteria and to assure protection of designated and existing uses (PA Code 25, Chapter 92a.2). The subject facility that is typically enforced is the more stringent limit of either the TBEL or the WQBEL.

Determination of WQBEL is calculated by spreadsheet analysis or by a computer modeling program developed by DEP. DEP permit engineers utilize the following computing programs for WQBEL permit limitations: (1) MS Excel worksheet for Total Residual Chorine (TRC); (2) WQM 7.0 for Windows Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen Version 1.1 (WQM Model) and (3) the Toxics Management Spreadsheet for Toxics pollutants.

5.3.1 Water Quality Modeling 7.0

The WQM Model is a computer model that is used to determine NPDES discharge effluent limitations for Carbonaceous BOD (CBOD5), Ammonia Nitrogen (NH3-N), and Dissolved Oxygen (DO) for single and multiple point source discharges scenarios. WQM Model is a complete-mix model which means that the discharge flow and the stream flow are assumed to instantly and completely mixed at the discharge node.

WQM recommends effluent limits for DO, CBOD5, and NH₃-N in mg/l for the discharge(s) in the simulation.

Four types of limits may be recommended. The limits are

- (a) a minimum concentration for DO in the discharge as 30-day average;
- (b) a 30-day average concentration for CBOD5 in the discharge;
- (c) a 30-day average concentration for the NH₃-N in the discharge;
- (d) 24-hour average concentration for NH₃-N in the discharge.

The WQM Model requires several input values for calculating output values. The source of data originates from either EMAP, the National Map, or Stream Stats. Data for stream gauge information, if any, was abstracted from USGS Low-Flow, Base-Flow, and Mean-Flow Regression Equations for Pennsylvania Streams authored by Marla H. Stuckey (Scientific Investigations Report 2006-5130).

The input values utilized for the modeling are summarized in the table which can be found in Attachment B.

The applicable WQM Effluent Limit Type are discussed in Section 6 under the corresponding parameter which is either DO, CBOD, or ammonia-nitrogen.

5.3.2 Toxics Modeling

The Toxics Management Spreadsheet model is a computer model that is used to determine effluent limitations for toxics (and other substances) for single discharge wasteload allocations. This computer model uses a mass-balance water quality analysis that includes consideration for mixing, first-order decay, and other factors used to determine recommended water quality-based effluent limits. Toxics Management Spreadsheet does not assume that all discharges completely mix with the stream. The point of compliance with water quality criteria are established using criteria compliance times (CCTs). The available CCTs are either acute fish criterion (AFC), chronic fish criterion (CFC), or human health criteria (THH & CRL).

Acute Fish Criterion (AFC) measures the criteria compliance time as either the maximum criteria compliance time (i.e.15 minutes travel time downstream of the current discharge) or the complete mix time whichever comes first. AFC is evaluated at Q710 conditions.

Chronic Fish Criterion (CFC) measures the criteria compliance time as either the maximum criteria compliance time (i.e. 12 hours travel time downstream of the current discharge) or the complete mix time whichever comes first. CFC is evaluated at Q710 conditions.

Threshold Human Health (THH) measures the criteria compliance time as either the maximum criteria compliance time (i.e. 12 hours travel time downstream of the current discharge) or the estimated travel time downstream to the nearest potable water supply intake whichever comes first. THH is evaluated at Q710 conditions.

Cancer Risk Level (CRL) measures the criteria compliance time as either the maximum criteria compliance time (i.e. 12 hours travel time downstream of the current discharge) or the complete mix time whichever comes first. CRL is evaluated at Qh (harmonic mean or normal flow) conditions.

The Toxics Model requires several input values for calculating output values. The source of data originates from either EMAP, the National Map, or Stream Stats. Data for stream gauge information, if any, was abstracted from USGS Low-Flow, Base-Flow, and Mean-Flow Regression Equations for Pennsylvania Streams authored by Marla H. Stuckey (Scientific Investigations Report 2006-5130).

The input values utilized for the modeling are summarized in the table which can be found in Attachment B.

5.3.2.1 Determining if NPDES Permit Will Require Monitoring/Limits in the Proposed Permit for Toxic Pollutants

To determine if Toxics modeling is necessary, DEP has developed a Toxics Management Spreadsheet to identify toxics of concern. Toxic pollutants whose maximum concentrations as reported in the permit application or on DMRs are greater than the most stringent applicable water quality criterion are pollutants of concern. A Reasonable Potential Analysis was utilized to determine (a) if the toxic parameters modeled would require monitoring or (b) if permit limitations would be required for the parameters. The toxics reviewed for reasonable potential were the pollutants in Groups 1 through 5.

An extensive group of pollutants were requested to be resampled for the following reasons: (1) The sample result exceeded the DEP recommended QL; and (2) The sample results had sufficient number of samples that had a positive hit result of the pollutant. A table summarizing the resample decision is shown.

			Resamp	le Decision Table	
			Ephrata Borough Au	thority- Plant #2; PA008	7181
Pollutants			NPDES App Data ug/l	DEP Recommended QL (ug/l)	Resample Decision
Total Aluminum	<	100	3 Nondetect results out of 3	10	NPDES application data exceeds DEP Recommended QL
Total Cadmium	<	0.4	8 Nondetect results out of 8	0.2	NPDES application data exceeds DEP Recommended QL
Free Cyanide	<	5	3 Nondetect results out of 3	1	NPDES application data exceeds DEP Recommended QL
Total Mercury		0.1	4 Nondetect results out of 8	0.2	The samples results show 4 positive hit results out of eight samples. Collect additional samples to verify data
Acrolein		3.4	2 Nondetect results out of 3	2	The sample results show 1 postive hit result out of 3 samples. Collec additional samples to verify data
Dichlorobromomethane		1.4	2 Nondetect results out of 3	0.5	The sample results show 1 postive hit result out of 3 samples. Collect additional samples to verify data
Bis(2-Ethylhexyl)Phthalate		5.13	2 Nondetect results out of 3	5	The sample results show 1 postive hit result out of 3 samples. Collec additional samples to verify data
3,3-Dichlorobenzidine	<	10	3 Nondetect results out of 3	5	NPDES application data exceeds DEP Recommended QL
Hexachlorobutadiene	<	1	3 Nondetect results out of 3	0.5	NPDES application data exceeds DEP Recommended QL
Hexachloroethane	<	10	3 Nondetect results out of 3	5	NPDES application data exceeds DEP Recommended QL
1,2,4-Trichlorobenzene	<	1	3 Nondetect results out of 3	0.5	NPDES application data exceeds DEP Recommended QL

In the NPDES application submittal, total copper and total zinc reported each had eight positive hit results out of eight samples. DEP believes that a sufficient number of samples were collected to make a determination that these pollutants were a concern for the proposed NPDES permit. These parameters were not requested to be resampled.

The resample results are summarized in the table.

			Resampling	Labo	atory Results						I
Pollutant	DEP Recommended	NPDES App		4/1/2021 ug/l		4/7/2021 ug/l		20/2021		Max	
	QL (ug/l)			-	1	-	1	-	ug/l		ug/l
Total Aluminum	10	<	100	_	6		5		12		12
Total Cadmium	0.2	<	0.4	<	0.08	<	0.08	<	0.08	<	0.08
Total Copper	4		11						6		11
Free Cyanide	1	٧	5		3	<	0.5	<	5	'	5
Total Mercury	0.2		0.1	<	0.04	<	0.04	<	0.04	<	0.04
Total Zinc	5		45						41		45
Acrolein	2		3.4	<	1	<	1	<	1	<	1
Dichlorobromomethane	0.5		1.4		0.5		0.6		0.6		0.6
Bis(2-Ethylhexyl)Phthalate	5		5.13	<	2.88	<	2.86		8.61		8.61
3,3-Dichlorobenzidine	5	<	10	<	0.134	<	0.132	<	0.132	<	0.134
Hexachlorobutadiene	0.5	<	1	<	0.0788	<	0.0781	<	0.0781	<	0.0788
Hexachloroethane	5	<	10	<	0.0663	<	0.0657	<	0.0657	<	0.0663
1,2,4-Trichlorobenzene	0.5	<	1	<	0.0894	<	0.0886	<	0.0886	<	0.0894
Notes:											

⁻ The NPDES application reported hits of copper and zinc on eight out of eight samples. These parameters were not resampled.

The Toxics Management Spreadsheet indicated modeling had concentrations measured in the effluent sample that were not within the normal range for safe water quality protection.

Based upon the SOP- Establishing Water Quality-Based Effluent Limitations (WQBELs) and Permit Conditions for Toxic Pollutants (Revised January 10, 2019), monitoring and/or limits will be established as follows.

- (a) When reasonable potential is demonstrated, establish limits where the maximum reported concentration equals or exceeds 50% of the WQBEL.
- (b) For non-conservative pollutants, establish monitoring requirements where the maximum reported concentration is between 25% 50% of the WQBEL.
- (c) For conservative pollutants, establish monitoring requirements where the maximum reported concentration is between 10% 50% of the WQBEL.

Applicable monitoring or permit limits for toxics are summarized in Section 6.

The Toxics Management Spreadsheet output has been included in Attachment B.

5.3.3 Whole Effluent Toxicity (WET)

Whole effluent toxicity is the aggregate toxic effect from a facility's wastewater discharge on aquatic organisms. WET measures the effect of wastewater effluent on an organisms' ability to survive, grow, and reproduce. WET testing is either acute or chronic. Acute testing measures lethality, the ability for an organism to survive after no more than 96 hours of exposure to an effluent. Chronic tests measures both lethality, immobility, and sublethal endpoints to exposures ranging longer than 96 hours and up to 8 days.

WET is required if the applicant satisfies any one of the following conditions.

- (a) Major sewage facilities with an average annual design flow greater than or equal to 1.0 MGD (25 Pa. Code § 92a.27(a)(1)(i)).
- (b) Sewage facilities with EPA-approved pretreatment programs or will be required in the permit to develop a program (25 Pa. Code § 92a.27(a)(1)(i)).
- (c) Other facilities that are considered candidates for WET testing by one or more of the factors contained in 25 Pa. Code § 92a.27(a)(2).

5.3.3.1 WET Tests Review

WET analysis was analyzed by American Aquatics at 890 North Gram Street, Allentown, PA.

The in-stream waste concentration and dilution series was estimated using partial mixing factor factors from the Toxics Management Spreadsheet, the design flow rate for the facility, and the Q710.

The proposed NPDES permit shall utilize a chronic instream waste concentration of XX%. The complete dilution series will be 100%, 70%, 39%, 20%, and 10%.

The derivation is shown in the calculations.

			Whole Effluen	t Toxicity (WET)			
F 0.4-II 004	Olamania VVIII Tanti						
For Outrall 001,	Chronic WET Testi	ing was completed:					
Х	For the permit ren	newal application (4 to	ests).				
		out the permit term.	,				
		out the permit term a	nd a TIE/TRE was	conducted.			
	Other:	·					
The dilution series the results is: 39%		was: 100%, 70%, 39	%, 20%, and 10%.	The Target Instrea	am Waste Concen	tration (TIWC) to b	pe used for analysis o
Summary of Fou	r Most Recent Tes	t Populto					
Juninal y Or FOU	I WOSE RECEIL TES	ot ivesuits					
(NOTE – Enter re	esults into one table	e, depending on which	h data analysis m	ethod was used).			
TST Data Analys	is						
(NC	OTE – In lieu of rec	ording information be	elow, the application	on manager may at	tach the DEP WE	T Analysis Spread	Isheet).
	Ceriodaphnia R	Results (Pass/Fail)	Pimephales Re	esults (Pass/Fail)	7		
Test Date	Survival	Reproduction	Survival	Growth			
10/10/2017	Pass	Pass	Pass	Pass			
9/11/2018	Pass	Pass	Pass	Pass			
9/9/2019	Pass	Pass	Pass	Pass			
9/8/2020	Pass	Pass	Pass	Pass			
		eplicate data for the TIV e critical t value. A "faili					e calculated t value ("T- critical t value.
Is there reaso	•	an excursion above was determined anytime				, -	neral, reasonable
Comments:							
		No		1			

Data									
	PMFa =	0.673							
	PMFc =	1							
	Qd =	2.3							
	Q710 =	5.63	cfs						
Step 1: De	termine IWC - <i>i</i>	Acute (IWC	ia)						
			<u></u>						
IWCa =	[(Qd x 1.547)	/ ((Q7-10	x PMFa) +	(Qd x 1.547))] x 100				
IWCa =	48.43								
Is IW	/CA < 1%	No		(Yes- acute	tests requ	ired; No- c	nronic test	required)	
If the disch	narge is to the t	idal portior	n of the Del	aware Rive	r, indicate	how the typ	oe of test w	/as determi	ned.
Type of To	st for Permit R	onowal:							
туре от те	St for Fermit K	enewai.							
			Ck	nronic Tests	roquired				
			CI	ironic rests	required				
Step 2a: D	etermine Targ	et IWCa (If	acute tests	required)					
TIWCa =	IWCA / 0.3								
TIWCa =	161.43								
C+++ 2h - D		-+ !!4/6- /!5	-4		1				
<u> Step 20: D</u>	etermine Targ	et iwcc (ij	cnronic tes	ts requirea	<u>L</u>				
ICCc =	[(Qd x 1.547)	/	PWFc) + (D	esign Flow	MGD x 1 5)		
1000 -	[(Qu x 1.547)]	/ ((Q/ 10 X	WIC) (D	CSIGITTIOW	IVIGD X 1.5	47))] X 100	,		
ICCc =	38.73								
	33113								
Step 3: De	termine Dilutio	n Series							
	Dilution Se	arios –	100%	70%	39%	20%	10%		
	Dilation 30		100%	7070	3970	2070	10/0		
WET Limit	S								
	1. 1	L							
Has reasor	nable potential	been deter	mined ?	No					
\A/:!! \A/ET !		-11:		N					
VVIII VVE I I	imits be establi	snea in the	permit r	No					
If WFT lim	its wil be estab	lished iden	tify the sne	cies and the	e limit valu	es for the n	ermit (TII)		
VV L I IIIII	ILS WII DE ESTAD	nonca, iden	iny the spe	cics and th	c annic valu	cs for the p	Ci i i i i i i i i i i i i i i i i i i		
	I.	I.	I.			I.		1	
			Not	applicable					
If WET lim	its will not be e	stablished,	but reason	able potent	tial was det	termined, ir	dicate the	rationale	
			Not	applicable		24			
			1401	. applicable		24			Ī

5.4 Total Maximum Daily Loading (TMDL)

5.4.1 TMDL

The goal of the Clean Water Act (CWA), which governs water pollution, is to ensure that all of the Nation's waters are clean and healthy enough to support aquatic life and recreation. To achieve this goal, the CWA created programs designed to regulate and reduce the amount of pollution entering United States waters. Section 303(d) of the CWA requires states to assess their waterbodies to identify those not meeting water quality standards. If a waterbody is not meeting standards, it is listed as impaired and reported to the U.S. Environmental Protection Agency. The state then develops a plan to clean up the impaired waterbody. This plan includes the development of a Total Maximum Daily Load (TMDL) for the pollutant(s) that were found to be the cause of the water quality violations. A Total Maximum Daily Load (TMDL) calculates the maximum amount of a specific pollutant that a waterbody can receive and still meet water quality standards.

Pennsylvania has committed to restoring all impaired waters by developing TMDLs and TMDL alternatives for all impaired waterbodies. The TMDL serves as the starting point or planning tool for restoring water quality.

5.4.1.1 Local TMDL

The subject facility does not discharge into a local TMDL.

5.4.1.2 Chesapeake Bay TMDL Requirement

The Chesapeake Bay Watershed is a large ecosystem that encompasses approximately 64,000 square miles in Maryland, Delaware, Virginia, West Virginia, Pennsylvania, New York and the District of Columbia. An ecosystem is composed of interrelated parts that interact with each other to form a whole. All of the plants and animals in an ecosystem depend on each other in some way. Every living thing needs a healthy ecosystem to survive. Human activities affect the Chesapeake Bay ecosystem by adding pollution, using resources and changing the character of the land.

Most of the Chesapeake Bay and many of its tidal tributaries have been listed as impaired under Section 303(d) of the federal Water Pollution Control Act ("Clean Water Act"), 33 U.S.C. § 1313(d). While the Chesapeake Bay is outside the boundaries of Pennsylvania, more than half of the State lies within the watershed. Two major rivers in Pennsylvania are part of the Chesapeake Bay Watershed. They are (a) the Susquehanna River and (b) the Potomac River. These two rivers total 40 percent of the entire Chesapeake Bay watershed.

The overall management approach needed for reducing nitrogen, phosphorus and sediment are provided in the Bay TMDL document and the Phase I, II, and III WIPs which is described in the Bay TMDL document and Executive Order 13508.

The Bay TMDL is a comprehensive pollution reduction effort in the Chesapeake Bay watershed identifying the necessary pollution reductions of nitrogen, phosphorus and sediment across the seven Bay watershed jurisdictions of Delaware, Maryland, New York, Pennsylvania, Virginia, West Virginia and the District of Columbia to meet applicable water quality standards in the Bay and its tidal waters.

The Watershed Implementation Plans (WIPs) provides objectives for how the jurisdictions in partnership with federal and local governments will achieve the Bay TMDL's nutrient and sediment allocations.

Phase 3 WIP provides an update on Chesapeake Bay TMDL implementation activities for point sources and DEP's current implementation strategy for wastewater. The latest revision of the supplement was December 17, 2019.

The Chesapeake Bay TMDL (Appendix Q) categorizes point sources into four sectors:

- Sector A- significant sewage dischargers;
- Sector B- significant industrial waste (IW) dischargers;
- Sector C- non-significant dischargers (both sewage and IW facilities); and
- Sector D- combined sewer overflows (CSOs).

All sectors contain a listing of individual facilities with NPDES permits that were believed to be discharging at the time the TMDL was published (2010). All sectors with the exception of the non-significant dischargers have individual wasteload allocations (WLAs) for TN and TP assigned to specific facilities. Non-significant dischargers have a bulk or aggregate

allocation for TN and TP based on the facilities in that sector that were believed to be discharging at that time and their estimated nutrient loads.

Based upon the supplement the subject facility has been categorized as a Sector A discharger. The supplement defines Sector A as a sewage facility that is considered significant if it has a design flow of at least 0.4 MGD. For rollout of its permitting strategy, DEP classified these facilities into three phases. Thirty IW facilities have individual WLAs in the TMDL.

Table 5 presents all NPDES permits for Significant Sewage dischargers with Cap Loads. The NPDES Permit No., phase, facility name, latest permit issuance date, expiration date, Cap Load compliance start date, TN and TP Cap Loads, and TN and TP Delivery Ratios are presented. In addition, if TN Offsets were incorporated into the TN Cap Loads when the permit was issued, the amount is shown; these Offsets will be removed from Cap Loads upon issuance of renewed permits to implement Section IV of the WIP document (i.e., a facility may use Offsets for compliance but may not register them as credits).

The total nitrogen (TN) and total phosphorus (TP) cap loads itemized by Table 5 for the subject facility are as follows:

TN Cap Load (lbs/yr)	54,550
TN Delivery Ratio	0.891
TP Cap Load (lbs/yr)	6,818
TP Delivery Ratio	0.436

Expansions by any Significant Sewage discharger will not result in any increase in Cap Loads. Where non-significant facilities expand to a design flow of 0.4 MGD or greater, the lesser of baseline Cap Loads of 7,306 lbs/yr TN and 974 lbs/yr TP or existing performance will be used for permits, and the load will be moved from the Non-Significant sector load to the Significant Sewage sector load. If considered necessary for environmental protection, DEP may decide to move load from the Point Source Reserve to the Significant Sewage sector in the future.

The minimum monitoring frequency for TN species and TP in new or renewed NPDES permits for Significant Sewage dischargers is 2/week.

This facility is subject to Sector A monitoring requirements. Monitoring shall be required at least 2x/wk.

Reporting

Cap Loads will be established in permits as Net Annual TN and TP loads (lbs/yr) that apply during the period of October 1 – September 30.

An Annual DMR must be submitted by the end of the Truing Period, November 28. As attachments to the Annual DMR a facility must submit a completed Annual Chesapeake Bay Spreadsheet, available through DEP's Supplemental Reports website, which contains an Annual Nutrient Monitoring worksheet and an Annual Nutrient Budget worksheet. This Spreadsheet will be submitted once per Compliance Year only, and reflect all nutrient sample results (for the period October 1 – September 30), Credit transactions (including the Truing Period) and Offsets applied during the Compliance Year.

5.5 Anti-Degradation Requirement

Chapter 93.4a of the PA regulations requires that surface water of the Commonwealth of Pennsylvania may not be degraded below levels that protect the existing uses. The regulations specifically state that *Existing instream water uses and the level of water quality necessary to protect the existing uses shall be maintained and protected.* Antidegradation requirements are implemented through DEP's guidance manual entitled Water Quality Antidegradation Implementation Guidance (Document #391-0300-02).

The policy requires DEP to protect the existing uses of all surface waters and the existing quality of High Quality (HQ) and Exceptional Value (EV) Waters. Existing uses are protected when DEP makes a final decision on any permit or approval for an activity that may affect a protected use. Existing uses are protected based upon DEP's evaluation of the best available information (which satisfies DEP protocols and Quality Assurance/Quality Control (QA/QC) procedures) that indicates the protected use of the waterbody.

For a new, additional, or increased point source discharge to an HQ or EV water, the person proposing the discharge is required to utilize a nondischarge alternative that is cost-effective and environmentally sound when compared with the cost

of the proposed discharge. If a nondischarge alternative is not cost-effective and environmentally sound, the person must use the best available combination of treatment, pollution prevention, and wastewater reuse technologies and assure that any discharge is nondegrading. In the case of HQ waters, DEP may find that after satisfaction of intergovernmental coordination and public participation requirements lower water quality is necessary to accommodate important economic or social development in the area in which the waters are located. In addition, DEP will assure that cost-effective and reasonable best management practices for nonpoint source control in HQ and EV waters are achieved.

The subject facility's discharge will be to a non-special protection waters and the permit conditions are imposed to protect existing instream water quality and uses. Neither HQ waters or EV waters is impacted by this discharge.

5.6 Anti-Backsliding

Anti-backsliding is a federal regulation which prohibits a permit from being renewed, reissued, or modified containing effluent limitations which are less stringent than the comparable effluent limitations in the previous permit (40 CFR 122.I.1 and 40 CFR 122.I.2). A review of the existing permit limitations with the proposed permit limitations confirm that the facility is consistent with anti-backsliding requirements. The facility has proposed effluent limitations that are as stringent as the existing permit.

6.0 NPDES Parameter Details

The basis for the proposed sampling and their monitoring frequency that will appear in the permit for each individual parameter are itemized in this Section. The final limits are the more stringent of technology based effluent treatment (TBEL) requirements, water quality based (WQBEL) limits, TMDL, antidegradation, anti-degradation, or WET.

The reader will find in this section:

- a justification of recommended permit monitoring requirements and limitations for each parameter in the proposed NPDES permit;
- b) a summary of changes from the existing NPDES permit to the proposed permit; and
- c) a summary of the proposed NPDES effluent limits.

Projected data without reaeration rates

Discussion on Reaeration Rates for CBOD/Ammonia-Nitrogen Effluent Limits

In 1995, a report was prepared by James D. Miller entitled *Travel Time Study / Propane Gas Survey on Cocalico Creek for Ephrata Borough* (Attached in Appendix). The purpose of the study was to conduct field studies to establish more accurate stream velocities and reaeration rates for the Ephrata Plant #2 NPDES (Springhouse Road) permit and the Ephrata Plant #1 (South Reading Road) NPDES permit.

Travel times/reaeration rate studies occurred in 1979, 1989, 1994, and 1995. The 1995 study utilized propane gas stream survey on Reaches #1, #2, and #3 to determine the stream reaeration rates in a more direct manner using propane gas as the compound for stream measurement. The reaeration rates from the study resulted in Reach #1 as 5.3/day, Reach #2 as 15.6/day, and Reach #3 as 3.5/day.

The Fact Sheet from August 2013 utilized these reaeration rates for WQM modeling.

The propane study was conducted in 1995 which is over 26 years ago (2021 - 1995 = 26 years). While the propane study may be considered outdated, the reaeration rates were utilized to recommend effluent limits for the proposed NPDES permit.

For the NPDES renewal in 2021, WQM was run with and without the reaeration rates for comparison purposes. The permit limits that shall apply to the proposed permit shall utilize the reaeration rates from the 1995 study. CBOD and ammonia nitrogen limits shall continue at the same permit limits for the proposed permit.

The CBOD and ammonia nitrogen limits are summarized in the Table called Summary of WQM Results for CBOD and Ammonia for both the Ephrata Borough Authority Plant 1 (PA0027405) and Plant #2 (PA0087181). The table summarizes three sets of data: Data Set #1 is for current limits using reaeration rates; Data Set #2 is for proposed limits with reaeration rates; Data Set #3 is for proposed limits in the Year 2026 without reaeration rates.

	Summary of WQM results for CBOD/Ammonia-N												
	PA0027405	PA0087181	PA0027405	PA0087181	PA0027405	PA0087181							
	(Plant #1)	(Plant #2)	(Plant #1)	(Plant #2)	(Plant #1)	(Plant #2)							
Facility / Parameter	With Reaera	ation Rates ^A	With Reaera	ation Rates ^A	Without Reaeration Rates ^C								
	Current Li	mit (mg/l)	Propose	d (mg/l)	Proposed Alternate (mg/l)								
CBOD	21	25	21	25	7	11							
Ammonia-Nitrogen ^B	2	2.5	3.5	4.0	2	3							
Notes:													
^A Travel Time Study / Propane	Gas Survey on	Cocalico Creek	for Ephrata Bord	ugh by James D	. Miller (last dat	ed for Aug -							
Nov 1995)						_							
B Data is output from WQM Model. Permit limit may be more stringent than output from WQM Model due to													
antibacksliding		•	-	-									
- Data represents mathemat	ically rounded d	ata											
C													

Differences in concentration for ammonia may be attributed to whether default values (i.e. pH, temperature) or WQN values were utilized when modeling. Additionally, the WQM model was revised consistent with the EPA Triennial review. Ammonia-Nitrogen appears to be less stringent for the proposed permit compared to the current permit. Based upon anti-backsliding, the more stringent limits shall apply.

The DMRs for CBOD for both plants are summarized in Table Summary of CBOD for Ephrata Authority Plant #1 and #2.

	Summary of CBOD for Ephrata Authority Plant #1 and #2													
Plant Location / Date	Parameter	21-Mar	21-Feb	21-Jan	20-Dec	20-Nov	20-Oct	20-Sep	20-Aug	20-Jul	20-Jun	20-May	20-Apr	
Ephrata Plant #1; PA0027405	CBOD5 (mg/L)	4.6	4.8	3.8	3.5	4.2	5.1	3.2	4.2	3.2	3.4	2.6	3.0	
Ephrata Plant #2; PA0087181	CBOD5 (mg/L)	2.9	3.0	2.6	2.1	2.4	2.8	2.4	3.2	2.8	3.3	3.1	2.7	

Again, the propane study was conducted in 1995 which is over 26 years ago.

In future renewals, the facility may have two options:

- Option 1- Model CBOD and ammonia nitrogen without the reaeration rates. The projected limits would be reduced.
 The preliminary projected limits are summarized under Proposed Alternate. Based upon the DMR from the last 12 months, both facilities should be able to meet the reduced permit limits.
- Option 2- The facility should conduct a reaeration rate study in preparation for the next renewal which will occur 5
 years from this renewal (i.e. at the expiration of this renewal). The reaeration results from the study will be utilized
 for WQM modeling. The permit limits using those reaeration rates from the study may differ from the current permit
 limits.

Discussion on TRC Site Specific Study

In February 1997, a report was prepared by Gannett Fleming entitled *Borough of Ephrata TRC Site-Specific Study* (Attached in Appendix). The purpose of the study was to conduct field studies to develop site-specific data to determine appropriate NPDES limits for TRC. The report stated that the site-specific study was not complete but had enough information to utilize data for the site specific study.

The raw data consisted of 26 different points collected from September 1995 to November 1996. The more stringent summertime fecal coliform limit is 200 cfu/100 mL. To attain the fecal coliform limit, a TRC residual must be maintained in the effluent. The summer chlorine demand ranged from 0.55 mg/l to 0.74 mg/l. The report concluded that a conservative chlorine demand would be 0.55 mg/l.

The Fact Sheet from August 2013 utilized the TRC site specific data.

The TRC study was conducted in 1996 which is over 25 years ago (2021 – 1996 = 25 years). While the TRC study may be considered outdated, the use of the data for this TRC modeling was utilized to recommend TRC effluent limits for the proposed NPDES permit. Using the site specific TRC data, both facilities should be able to meet the TRC effluent limit.

The TRC limits with and without the site specific TRC data is summarized in the Table called Comparison of Proposed TRC With and Without Site Specific Chlorine Demand.

Comparison of Proposed TRC with/without Site Specific Chlorine Demand										
Facility	Without Site Specific Cl ₂ Data	With Site Specific Cl₂ Data								
	Average Monthly (mg/l)	Average Monthly (mg/l)								
Plant #1	0.16	0.29								
Plant #2	0.24	0.42								
Notes:										

The site specific data was abstracted from the Febraury 1997 report. The site specific summertime chlorine demand is 0.55 mg/l.

The reader should note that based upon the DMR data for both plants for the last 12 months, both Plants #1 and #2 would not be able to consistently meet the TRC limits without the site-specific TRC chlorine demand factor. The DMRs for TRC for both plants are summarized below.

Summary of TRC for Ephrata Authority Plant #1 and #2													
Plant Location / Date	Parameter	21-Mar	21-Feb	21-Jan	20-Dec	20-Nov	20-Oct	20-Sep	20-Aug	20-Jul	20-Jun	20-May	20-Apr
Ephrata Plant #1; PA0027405	TRC (mg/L)	0.21	0.18	0.17	0.19	0.17	0.18	0.17	0.24	0.17	0.2	0.22	0.23
Ephrata Plant #2; PA0087181	TRC (mg/L)	0.30	0.29	0.32	0.32	0.34	0.31	0.33	0.35	0.33	0.34	0.31	0.31

The TRC study was conducted in 1996 which is over 25 years

In future renewals, the facility may have two options:

- Option A- Model TRC without the site specific TRC data. The facility may be required to upgrade the facility to meet the TRC effluent limits using dechlorination or uv dinfection.
- Option B- Conduct a TRC study in preparation for the next renewal which will occur 5 years from this renewal (i.e.
 at the expiration of this renewal). The TRC study results from the study will be utilized for a TRC evaluation. The
 permit limits using those TRC study results may differ from the current TRC permit limits.

6.1 Recommended Monitoring Requirements and Effluent Limitations

A summary of the recommended monitoring requirements and effluent limitations are itemized in the tables. The tables are categorized by (a) Conventional Pollutants and Disinfection, (b) Nitrogen Species and Phosphorus, and (c) Toxics.

6.1.1 Conventional Pollutants and Disinfection

Due to the EPA Triennial Review, E. Coli shall be monitored on a 1x/month basis.

	-	E	IPDES Parameter Details for Conventional Pollutants and Disinfection phrata Borough Authority- Plant #2; PA0087181
Parameter	Permit Limitation Required by ¹ :		Recommendation
		Monitoring:	The monitoring frequency shall be daily as a grab sample (Table 6-3).
!! (C !!)	TBEL	Effluent Limit:	Effluent limits may range from pH = 6.0 to 9.0
pH (S.U.)	IDEL	Rationale:	The monitoring frequency has been assigned in accordance with Table 6-3 and the effluent limit assigned by Chapter 95.2(1).
		Monitoring:	The monitoring frequency shall be daily as a grab sample (Table 6-3).
Dissolved	DD.1	Effluent Limit:	Effluent limits shall be greater than 5.0 mg/l.
Oxygen	BPJ	Rationale:	The monitoring frequency has been assigned in accordance with Table 6-3 and the effluent limit assigned by best professional judgement.
		Monitoring:	The monitoring frequency shall be 2x/wk as a 24-hr composite sample (Table 6-3).
		Effluent Limit:	Effluent limits shall not exceed 480 lbs/day and 25 mg/l as an average monthly.
CBOD	TBEL	Rationale:	The monitoring frequency has been assigned in accordance with Table 6-3 and the effluent limit assigned by Chapter 92a.47(a)(1). WQM modeling indicates that the TBEL is more stringent that the WQBEL. Thus, the permit limit is confined to TBEL.
	TBEL	Monitoring:	The monitoring frequency shall be 2x/wk as a 24-hr composite sample (Table 6-3).
TSS		Effluent Limit:	Effluent limits shall not exceed 575 lbs/day and 30 mg/l as an average monthly.
		Rationale:	The monitoring frequency has been assigned in accordance with Table 6-3 and the effluent limit assigned by Chapter 92a.47(a)(1). While there is no WQM modeling for this parameter, the permit limit for TSS is generally assigned similar effluent limits as CBOD or BOD. Since the TBE is more stringent than TBEL, TBEL will apply.
		Monitoring:	The monitoring frequency shall be on a daily basis as a grab sample (Table 6-3).
		Effluent Limit:	The average monthly limit should not exceed 0.42 mg/l and/or 1.38 mg/l as an instantaneous maximum.
TRC	WQBEL	forms of aqua imposed on a expressed in t (Implementation Based on the calculated by	lorine in both combined (chloramine) and free form is extremely toxic to freshwater fish and other ticle (Implementation Guidance Total Residual Chlorine 1). The TRC effluent limitations to be discharger shall be the more stringent of either the WQBEL or TBEL requirements and shall be the NPDES permit as an average monthly and instantaneous maximum effluent concentration on Guidance Total Residual Chlorine 4). Stream flow rate (lowest 7-day flow rate in 10 years) and the design flow rate of the subject facility the TRC Evaluation worksheet, the WQBEL is more stringent than the TBEL. If frequency has been assigned in accordance with Table 6-3 and the effluent limits assigned by the table of the subject facility of the table of the subject facility that the subject facility
		Monitoring:	The monitoring frequency shall be 2x/wk as a grab sample (Table 6-3).
Fecal	TBEL	Effluent Limit:	Summer effluent limits shall not exceed 200 No./100 mL as a geometric mean. Winter effluent limits shall not exceed 2000 No./100 mL as a geometric mean.
Coliform		Rationale:	The monitoring frequency has been assigned in accordance with Table 6-3 and the effluent limit assigned by Chapter 92a.47(a)(4) and 92a.47(a)(5).
		Monitoring:	The monitoring frequency shall be required on a 1x/mo basis as a grab sample (SOP).
E Coli	SOP; EPA	Effluent Limit:	No effluent requirements.
E. Coli	Triennial Directive	Rationale:	Due to directive from EPA in the 2017 Triennial Review, monitoring for this parameter shall be required on a 1x/month basis

¹ The NPDES permit was limited by (a) anti-Backsliding, (b) Anti-Degradation, (c) SOP, (d) TBEL, (e) TMDL, (f) WQBEL, (g) WET, or (h) Other 2 Monitoring frequency based on flow rate of 2.3 MGD.

³ Table 6-3 (Self Monitoring Requirements for Sewage Discharges) in Technical Guidance for the Development and Specification of Effluent Limitations and Other Permit Conditions in NPDES Permits) (Document # 362-0400-001) Revised 10/97

⁴ Water Quality Antidegradation Implementation Guidance (Document # 391-0300-002)

⁵ Phase 2 Watershed Implementation Plan Wastewater Supplement, Revised September 6, 2017

Total

Nitrogen

Net Total

Nitrogen

Notes:

6.1.2 Nitrogen Species and Phosphorus

Chesapeake Bay TMDL

Chesapeake Bay

TMDL

Summary of Proposed NPDES Parameter Details for Nitrogen Species and Phosphorus

Ephrata Borough Authority- Plant #2; PA0087181

Permit Limitation Parameter Recommendation Required by1: Monitoring: The monitoring frequency shall be 2x/wk as a 24-hr composite sample During the months of May 1 to Oct 31, the effluent limit shall be 48 lbs/day and 2.5 mg/l as an Ammonia-Anti-backsliding Effluent Limit: average monthly. During the months of Nov 1 to Apr 31, the effluent limit shall be 144 lbs/day and Nitrogen 7.5 mg/l as an average monthly. Rationale: Due to anti-backsliding, the curent permit limits shall continue to the proposed permit. The monitoring frequency shall be 2x/wk as a 24-hr composite sample Monitoring: Nitrate-Chesapeake Bay Effluent Limit: No effluent requirements. Nitrite as N **TMDL** Due to the Chesapeake Bay Implementation Plan, the facility is required to be monitored on a Rationale: frequency at least 2x/wk.

Due to the Chesapeake Bay Implementation Plan, the facility is required to be monitored on a

Due to the Chesapeake Bay Implementation Plan, the facility is required to be monitored on a

			frequency at least 1x/mo.
		Monitoring:	The monitoring frequency shall be 2x/wk as a 24-hr composite sample
TKN Total	Chesapeake Bay TMDL	Effluent Limit:	No effluent requirements.
IKN		Rationale:	Due to the Chesapeake Bay Implementation Plan, the facility is required to be monitored on a frequency at least 2x/wk.
		Monitoring:	The monitoring frequency shall be 2x/wk as a 24-hr composite sample
Total	Anti-backsliding	Effluent Limit:	Effluent limits shall not exceed 38 lbs/day and 2.0 mg/l as an average monthly.
Phosphorus	3	Rationale:	Due to antibacksliding regulations, the current limit shall contnue to the proposed permit.

The monitoring frequency shall be 1x/mo as a 24-hr composite sample

The monitoring frequency shall be 1x/mo as a 24-hr composite sample

The monitoring frequency shall be 1x/mo.

Effluent Limit: Effluent limits shall not exceed 54,550 lbs annually.

frequency at least 1x/mo.

Monitoring:

Rationale:

Monitoring:

Rationale:

Monitoring:

Effluent Limit: No effluent requirements.

Net Total
PhosphorusChesapeake Bay
TMDLEffluent Limit:Effluent limits shall not exceed 6,818 lbs annually.PhosphorusTMDLDue to the Chesapeake Bay Implementation Plan, the facility is required to be monitored on a frequency at least 1x/mo.

¹ The NPDES permit was limited by (a) anti-Backsliding, (b) Anti-Degradation, (c) SOP, (d) TBEL, (e) TMDL, (f) WQBEL, (g) WET, or (h) Other

² Monitoring frequency based on flow rate of 2.3 MGD.

³ Table 6-3 (Self Monitoring Requirements for Sewage Discharges) in Technical Guidance for the Development and Specification of Effluent Limitations and Other Permit Conditions in NPDES Permits) (Document # 362-0400-001) Revised 10/97

⁴ Water Quality Antidegradation Implementaton Guidance (Document # 391-0300-002)

⁵ Phase 2 Watershed Implementation Plan Wastewater Supplement, Revised September 6, 2017

6.1.3 Toxics

Summary of Proposed NPDES Parameter Details for Toxics

Ephrata Borough Authority- Plant #2; PA0087181

Parameter	Permit Limitation Required by ¹ :		Recommendation							
Total		Monitoring:	The monitoring frequency shall be 2x/month as a 24-hr composite sample (Table 6-3).							
Total Copper	WQBEL	Effluent Limit:	No effluent requirements.							
		Rationale:	The Toxics Management Spreadsheet recommends monitoring.							
F		Monitoring:	The monitoring frequency shall be 2x/month as a grab sample (Table 6-3).							
Free Cyanide	WQBEL	Effluent Limit:	Effluent limits shall not exceed 0.19 lbs/day and 0.009 mg/l as an average monthly.							
Cyanide		Rationale:	The Toxics Management Spreadsheet recommends effluent limits.							
		Monitoring:	The monitoring frequency shall be 2x/month as a 24-hr composite sample (Table 6-3).							
Total Zinc	WQBEL	Effluent Limit:	No effluent requirements.							
		Rationale:	The Toxics Management Spreadsheet recommends monitoring.							
Bis(2-		Monitoring:	The monitoring frequency shall be 2x/month as a 24-hr composite sample (Table 6-3).							
Ethylhexyl)	WQBEL	Effluent Limit:	Effluent limits shall not exceed 0.06 lbs/day and 0.003 mg/l as an average monthly.							
Phthlate		Rationale:	The Toxics Management Spreadsheet recommends effluent limits.							
Notes:										

¹ The NPDES permit was limited by (a) anti-Backsliding, (b) Anti-Degradation, (c) SOP, (d) TBEL, (e) TMDL, (f) WQBEL, (g) WET, or (h) Other 2 Monitoring frequency based on flow rate of 2.3 MGD.

³ Table 6-3 (Self Monitoring Requirements for Sewage Discharges) in Technical Guidance for the Development and Specification of Effluent Limitations and Other Permit Conditions in NPDES Permits) (Document # 362-0400-001) Revised 10/97

⁴ Water Quality Antidegradation Implementation Guidance (Document # 391-0300-002)

⁵ Phase 2 Watershed Implementation Plan Wastewater Supplement, Revised September 6, 2017

6.2 Summary of Changes From Existing Permit to Proposed Permit

A summary of how the proposed NPDES permit differs from the existing NPDES permit is summarized as follows.

	Changes in Permit Monitoring or Effluent Quality								
Parameter	Existing Permit	Draft Permit							
E. Coli	No monitoring or effluent limits.	Due to the EPA Triennial Review, monitoring shall be 1x/month.							
Total Copper	No monitoring or effluent limits.	Toxics Management Spreadsheet recommends monitoring. Monitoring shall be 2x/month							
Free Cyanide	No monitoring or effluent limits.	Toxics Management Spreadsheet recommends limits. Monitoring shall be 2x/month and the effluent limits shal not exceed 0.19 lbs/day and 0.009 mg/l as an average monthly.							
Total Zinc	No monitoring or effluent limits.	Toxics Management Spreadsheet recommends monitoring. Monitoring shall be 2x/month							
Bis(2-Ethylhexyl) Phthlate	No monitoring or effluent limits.	Toxics Management Spreadsheet recommends limits. Monitoring shall be 2x/month and the effluent limits shal not exceed 0.06 lbs/day and 0.003 mg/l as an average monthly.							

6.3.1 Summary of Proposed NPDES Effluent Limits

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

The proposed NPDES effluent limitations are summarized in the table below.

PART	RT A - EFFLUENT LIMITATIONS, MONITORING, RECORDKEEPING AND REPORTING REQUIREMENTS											
I. A.	For Outfall 001	, Latitude 40° 11' 36.00" , Longitude 76° 9' 55.00" , River Mile Index 11.59 , Stream Code 7656										
	Receiving Waters:	Stony Run (WWF)										
	Type of Effluent:	Sewage Effluent										

Based on the anticipated wastewater characteristics and flows described in the permit application and its supporting documents and/or amendments, the following effluent limitations and monitoring requirements apply (see also Additional Requirements and Footnotes).

			Monitoring Requiremen					
Parameter	Mass Units	(lbs(day) (1)		Concentrati	Minimum (2)	Required		
Falailletei	Average Monthly	Weekly Average	Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report Daily Max	XXX	XXX	XXX	XXX	Continuous	Measured
pH (S.U.)	XXX	xxx	6.0 Inst Min	xxx	XXX	9.0	1/day	Grab
Dissolved Oxygen	XXX	XXX	5.0 Inst Min	XXX	XXX	xxx	1/day	Grab
Total Residual Chlorine (TRC)	XXX	XXX	XXX	0.42	XXX	1.38	1/day	Grab
Carbonaceous Biochemical Oxygen Demand (CBOD5)	480	767	XXX	25	40	50	2/week	24-Hr Composite
Biochemical Oxygen Demand (BOD5) Raw Sewage Influent	Report	Report Daily Max	xxx	Report	xxx	XXX	2/week	24-Hr Composite
Total Suspended Solids	575	863	XXX	30	45	60	2/week	24-Hr Composite
Total Suspended Solids Raw Sewage Influent	Report	Report Daily Max	XXX	Report	XXX	XXX	2/week	24-Hr Composite
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	2000 Geo Mean	XXX	10000	2/week	Grab
Fecal Coliform (No./100 ml) May 1 - Sep 30	XXX	XXX	XXX	200 Geo Mean	XXX	1000	2/week	Grab

^{1.} The permittee is authorized to discharge during the period from Permit Effective Date through Permit Expiration Date.

Outfall 001, Continued (from Permit Effective Date through Permit Expiration Date)

			Effluent L	imitations			Monitoring Red	quirements
Parameter	Mass Units	(lbs/day) (1)		Concentrat	ions (mg/L)		Minimum (2)	Required
Farameter	Average Monthly	Weekly Average	Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type
E. Coli (No./100 ml)	XXX	XXX	XXX	XXX	XXX	Report	1/month	Grab
Ammonia-Nitrogen Nov 1 - Apr 30	144	XXX	XXX	7.5	XXX	15	2/week	24-Hr Composite
Ammonia-Nitrogen May 1 - Oct 31	48	XXX	XXX	2.5	XXX	5	2/week	24-Hr Composite
Total Phosphorus	38	XXX	XXX	2.0	XXX	4	2/week	24-Hr Composite
Copper, Total	Report	XXX	XXX	Report	XXX	XXX	2/month	24-Hr Composite
Cyanide, Free	0.19	XXX	XXX	0.009	0.015 Daily Max	0.025	2/month	Grab
Zinc, Total	Report	XXX	XXX	Report	XXX	XXX	2/month	24-Hr Composite
Bis(2-Ethylhexyl)Phthalate	0.06	XXX	XXX	0.003	0.005 Daily Max	0.008	2/month	24-Hr Composite

Samples taken in compliance with the monitoring requirements specified above shall be taken at the following location(s):

at Outfall 001

6.3.2 Summary of Proposed Permit Part C Conditions

The subject facility has the following Part C conditions.

- The travel times and reaeration rates used for this NPDES renewal were developed in 1995, which was more than 25 years ago. In order to use site specific reaeration rates in the next renewal, the permittee shall be required to conduct a comprehensive study providing current travel times and reaeration rates for the receiving waters. In anticipation for the expiration of this permit in 5 years, the facility should have the study completed 4 years from the effective date of this permit. The facility may choose to waive the study in which case DEP will utilize applicable modeling tools without site specific aeration rates.
- The TRC site specific study was used for this NPDES renewal originated in 1997 which was almost 25 years ago. In order to use site specific data in the next renewal, the permittee shall be required to conduct a comprehensive study with a current TRC site specific study for the next NDPES renewal. In anticipation for the expiration of this permit in 5 years, the facility should have the study completed 4 years from the effective date of this permit.

The facility may choose to waive the study in which case DEP will utilize applicable models without the TRC site specific data. In developing the final WQBELs for TRC, DEP would assumed in-stream and discharge chlorine demands of 0.3 mg/l and 0 mg/l, respectively.

Alternatively, other methods of disinfection or dechlorination to meet TRC effluent concentrations may be acceptable.

- Pretreatment Implementation
- Chlorine Minimization
- Peak Flow Management Plan
- Hauled-in Waste Restrictions
- Chesapeake Bay Nutrient Definitions
- Solids Management for Non-Lagoon Treatment Systems
- Whole Effluent Toxicity No Permit Limits
- The Chesapeake Bay nutrient requirements for Total Nitrogen and Total Phosphorus may be exchanged on a pound per pound basis between the Ephrata Borough Plant #1 and Plant #2. The exchange would be considered as offsets used by the same entity and not a transfer by definition between owners, projects, or properties. A reserve requirement shall not be applied in this situation.

	Tools and References Used to Develop Permit
<u> </u>	
	WQM for Windows Model (see Attachment)
	Toxics Management Spreadsheet (see Attachment)
	TRC Model Spreadsheet (see Attachment)
	Temperature Model Spreadsheet (see Attachment)
	Toxics Screening Analysis Spreadsheet (see Attachment)
	Water Quality Toxics Management Strategy, 361-0100-003, 4/06.
	Technical Guidance for the Development and Specification of Effluent Limitations, 362-0400-001, 10/97.
	Policy for Permitting Surface Water Diversions, 362-2000-003, 3/98.
	Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 362-2000-008, 11/96.
	Technology-Based Control Requirements for Water Treatment Plant Wastes, 362-2183-003, 10/97.
	Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 362-2183-004, 12/97.
	Pennsylvania CSO Policy, 385-2000-011, 9/08.
	Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.
	Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 391-2000-002, 4/97.
	Determining Water Quality-Based Effluent Limits, 391-2000-003, 12/97.
	Implementation Guidance Design Conditions, 391-2000-006, 9/97.
	Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 391-2000-007, 6/2004.
	Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 391-2000-008, 10/1997.
	Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 391-2000-010, 3/99.
	Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 391-2000-011, 5/2004.
	Implementation Guidance for Section 93.7 Ammonia Criteria, 391-2000-013, 11/97.
	Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 391-2000-014, 4/2008.
	Implementation Guidance Total Residual Chlorine (TRC) Regulation, 391-2000-015, 11/1994.
	Implementation Guidance for Temperature Criteria, 391-2000-017, 4/09.
	Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 391-2000-018, 10/97.
	Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 391-2000-019, 10/97.
	Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 391-2000-021, 3/99.
	Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 391-2000-022, 3/1999.
	Design Stream Flows, 391-2000-023, 9/98.
	Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 391-2000-024, 10/98.
	Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 391-3200-013, 6/97.
	Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.
	SOP: New and Reissuance Sewage Individual NPDES Permit Applications, October 11, 2013.
	Other:

Attachment A Stream Stats/Gauge Data Available Upon Request

Attachment B

WQM 7.0 Modeling Output Values Toxic Management Spreadsheet

WQM 7.0 Effluent Limits

		m Code 656	Stream Name COCALICO CREEK								
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)		Effl. Limit Minimum (mg/L)				
11.590	Ephrata Plant 2	PA0087181	2.300	CB OD6	25						
				NH3-N	4.07	8.14					
				Dissolved Oxygen			5				
RMI	Name	Permit Number	Disc Flow (mgd)	Parameler	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)				
3.180	Ephrata Plant 1	PA0027405	3.800	CB OD6	21.44						
				NH3-N	3.77	7.54					
				Dissolved Oxygen			5				

WQM 7.0 Wasteload Allocations

SWP Basin	Stream Code	Stream Name
07 J	7656	COCALICO CREEK

NA.

NA.

NH3-N Acute Allocations Percent Baseline Baseline Multiple Multiple Critical Criterion Discharge Name Criterion WLA WĹA Reach Reduction (mg/L) (mg/L) (mg/L) (mg/L) 11.590Ephrata Plant 2 11.37 22.27 11.37 22.27 0 0 9.720 NA. NA 10.37 NA NA. NA. 8.180 Ephrata Plant 1 13.25 11.91 21.54 21.54 0 0 7.580 NA. NA 13.18 NA. NA. NA.

NA

NA

13.12

12.1

NA.

NA.

NA.

NA.

NA.

NA.

NH3-N Chronic Allocations

6.410

5.190

RMI	Discharge Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
11.59	0Ephrata Plant 2	1.26	4.29	1.26	4.07	3	5
9.72	90	NA.	NA	1.17	NA.	NA.	NA.
8.18	0 Ephrata Plant 1	1.32	3.98	1.45	3.77	3	5
7.58	0	NA.	NA	1.44	NA	NA.	NA.
6.41	0	NA.	NA	1.44	NA.	NA.	NA.
5.19	0	NA.	NA	1.34	NA	NA.	NA.

Dissolved Oxygen Allocations

		CBO	DD5	NH	3-N	Dissolve	d Oxygen	Critical	Percent
RMI	Discharge Name	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Reach	Reduction
11.591	Ephrata Plant 2	25	25	4.07	4.07	5	5	0	0
9.72		NA.	NA.	NA.	NA.	NA.	NA	NA	NA.
8.18	Ephrata Plant 1	21.44	21.44	3.77	3.77	5	5	0	0
7.58		NA.	NA	NA.	NA	NA.	NA	NA	NA.
6.41		NA.	NA	NA.	NA.	NA.	NA	NA	NA.
5.19		NA	NA	NA	NA	NA	NA	NA	NA

WQM 7.0 D.O.Simulation

SWP Basin St	ream Code			Stream Name	
07 J	7656		С	OCALICO CREEK	
RMI	Total Discharge	Flow(mgd) Ana	ysis Temperature (°	
11.590	2.30			21.619	7.358
Reach Width (ft)	Reach De			Reach WDRatio	Reach Velocity (fps)
42.489	0.73			57.909	0.285
Reach CBOD5 (mg/L)	Reach Ko		R	each NH3-N (mg/L)	Reach Kn (1/days)
11.21	1.28	_		1.63	0.793 Reach DO Goal (mg/L)
Reach DO (mg/L)	Reach Kr (5.50			Kr Equation User Supplied	5
6.944	0.00			оза зариел	3
Reach Travel Time (days)	T T	Subreach		5.0	
0.401	(days)	CBOD5 (mg/L)	NH3-N (mg/L)	D.O. (mg/L)	
	(days)	(ng/c)	(mg/c)	(iig/c)	
	0.040	10.60	1.58	6.31	
	0.080	10.03	1.53	5.85	
	0.120	9.49	1.48	5.53	
	0.160	8.98	1.43	5.31	
	0.200	8.49	1.39	5.19	
	0.241	8.04	1.35	5.13	
	0.281	7.60	1.30	5.12	
	0.321	7.19	1.26	5.15	
	0.361	6.80	1.22	5.20	
	0.401	6.44	1.18	5.28	
RMI	Total Discharge	Flow(mgd) Ana	ysis Temperature (°	 Analysis pH
9.720	2.30	0		21.807	7.428
Reach Width (ft)	Reach De			Reach WDRatio	Reach Velocity (fps)
48.680	0.76			63.299	0.287
Reach CBOD5 (mg/L)	Reach Ko		R	each NH3-N (mg/L)	Reach Kn (1/days)
5.66	1.08 Reach Kri			0.98 Kr Equation	0.804 Reach DO Goal (mg/L)
Reach DO (mg/L)	5.53			User Supplied	5
5.799	0.00	_		оза одржа	3
Reach Travel Time (days)	T T	Subreach		5.0	
0.327	TravTime (days)	(mg/L)	NH3-N (ma/L)	D.O. (mall.)	
	(ddys)	(mg/c)	(mg/c)	(iiigi c)	
	0.033	5.45	0.95	5.91	
	0.065	5.25	0.93	6.02	
	0.098	5.05	0.90	6.12	
	0.131	4.87	0.88	6.22	
	0.164	4.69	0.86	6.31	
	0.198	4.51	0.84	6.40	
	0.229	4.34	0.81	6.49	
	0.262	4.18	0.79	6.57	
	0.295	4.03	0.77	6.65	
	0.327	3.88	0.75	6.73	

Wednesday, May 26, 2021

Page 2 of 3

WQM 7.0 D.O.Simulation

SWP Basin St 07 J	7656		С	Stream Name OCALICO CREEK	
<u>RMI</u> 8.180	Total Discharge 6.10) Ana	lysis Temperature (°C 21.189	Analysis pH 7.231
Reach Width (ft)	Reach De			Reach WDRatio	Reach Velocity (fps)
57.841	0.81			71,191	0.359
Reach CBOD5 (mg/L)	Reach Kc (1/days)	R	each NH3-N (mg/L)	Reach Kn (1/days)
9.97	1.19	9		1.79	0.767
Reach DO (mg/L)	Reach Kr (Kr Equation	Reach DO Goal (mg/L)
6.145	16.04	6		User Supplied	5
Reach Travel Time (days)		Subreach	Results		
0.102	TravTime		NH3-N	D.O.	
	(days)	(mg/L)	(mg/L)	(mg/L)	
	0.010	9.85	1.78	6.33	
	0.020	9.72	1.76	6.50	
	0.031	9.59	1.75	6.64	
	0.041	9.47	1.74	6.76	
	0.051	9.35	1.72	6.87	
	0.061	9.23	1.71	6.96	
	0.072	9.11	1.70	7.04	
	0.082	8.99	1.68	7.12	
	0.092	8.88	1.67	7.18	
	0.102	8.76	1.66	7.24	
RMI 7.580 Reach Width (ft) 63.240 Reach CBOD5 (mg/L) 8.69 Reach DO (mg/L) 7.247 Reach Travel Time (days) 0.231	Total Discharge 6.100 Reach De 0.87' Reach Kc (1.160 Reach Kr (3.600 TravTime (days) 0.023 0.046 0.069 0.092 0.115 0.138 0.162 0.185	Flow (mgd) pth (ft) 1 1/days) 8 1/days) 2 Subreach CBOD5 (mg/L) 8.44 8.21 7.98 7.75 7.54 7.32 7.12 6.92	Results NH3-N (mg/L) 1.61 1.58 1.55 1.53 1.50 1.47 1.45 1.42	lysis Temperature (°C 21.208 Reach WDRatio 72.639 teach NH3-N (mg/L) 1.64 Kr Equation User Supplied D.O. (mg/L) 6.91 6.61 6.34 6.11 5.90 5.73 5.58 5.45	Analysis pH 7.236 Reach Velocity (fps) 0.310 Reach Kn (1/days) 0.768 Reach DO Goal (mg/L) 5
7.580 Reach Width (ft) 63.240 Reach CBOD5 (mg/L) 8.69 Reach DO (mg/L) 7.247 Reach Travel Time (days)	Total Discharge 6.10 Reach De 0.87' Reach Kc (1.16) Reach Kr (3.60' TravTime (days) 0.023 0.046 0.069 0.092 0.115 0.138 0.162	Flow (mgd) pth (ft) 1 1/days) 8 1/days) 2 Subreach CBOD5 (mg/L) 8.44 8.21 7.98 7.75 7.54 7.32 7.12 6.92 6.73	Results NH3-N (mg/L) 1.61 1.58 1.55 1.53 1.50 1.47 1.45	lysis Temperature (°C 21.206 Reach WDRatio 72.639 teach NH3-N (mg/L) 1.64 Kr Equation User Supplied D.O. (mg/L) 6.91 6.61 6.34 6.11 5.90 5.73 5.58	7.236 Reach Velocity (fps) 0.310 Reach Kn (1/days) 0.768 Reach DO Goal (mg/L)

Version 1.1

WQM 7.0 D.O.Simulation

SWP Basin Str	ream Code			Stream Nam	10	
07 J	7656		C	OCALICO CR	EEK	
RMI 6.410 Reach Width (ft) 56.770 Reach CBOD5 (mg/L) 6.49 Reach DO (mg/L) 5.283	Total Discharge 6.10 Reach De 0.80 Reach Kc (1.11 Reach Kr (3.80) oth (ft) 1 1/days) 4 1/days)		ysis Tempera 21.223 <u>Reach WDR:</u> 70.881 each NH3-N (1.36 <u>Kr Equatio</u> User Suppli	atio img/L)	Analysis pH 7,240 Reach Velocity (fps) 0,379 Reach Kn (1/days) 0,789 Reach DO Goal (mg/L) 5
Reach Travel Time (days) 0.196	TravTime	Subreach	Results NH3-N	D.O.		
0.190	(days)	(mg/L)	(mg/L)	(mg/L)		
	0.020 0.039 0.059	6.34 6.19 6.05	1.34 1.32 1.30	5.23 5.19 5.15		
	0.079	5.91	1.28	5.12		
	0.098 0.118	5.78 5.84	1.26 1.24	5.11 5.09		
	0.138	5.52	1.22	5.09		
	0.157	5.39	1.20	5.09		
	0.177	5.27	1.18	5.10		
	0.196	5.15	1.17	5.11		
RMI 5.190 Reach Width (ft) 68.287 Reach CBOD5 (mg/L) 4.63 Reach DO (mg/L)	Total Discharge 6.10 Reach De 0.88 Reach Kc (0.95 Reach Kr (3.62	0 pith (fit) 0 1/days) 5 1/days)		ysis Tempera 21.465 Reach WDR: 79.404 each NH3-N (0.98 Kr Equatio User Suppli	atio img/L)	Analysis pH 7, 308 Reach Velocity (fps) 0, 351 Reach Kn (1/days) 0, 784 Reach DO Goal (mg/L) 5
5.620 Reach Travel Time (days)	3.02	Subreach	Requite	user suppli	60.0	3
0.308	TravTime (days)		NH3-N (mg/L)	D.O. (mg/L)		
	0.031	4.49	0.95	5.66		
	0.062	4.35	0.93	5.71		
	0.092	4.21	0.91	5.76		
	0.123	4.08	0.89	5.82		
	0.154	3.96	0.86	5.87		
	0.185	3.83	0.84	5.93 5.99		
	0.216 0.246	3.60	0.80	6.05		
	0.277		0.78	6.11		
	0.308	3.38	0.77	6.17		

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	•
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.6	Temperature Adjust Kr	V
D.O. Saturation	90.00%	Use Balanced Technology	₹
D.O. Goal	5		

WQM 7.0 Hydrodynamic Outputs

		P Basin 07J		m Code 656				Stream CALICO	Name CREEK			
RMI	Stream Flow	PWS With	Net Stream Flow	Disc Analysis Flow	Reach Slope	Depth	Width	W/D Ratio	Velocity	Reach Trav Time	Analysis Temp	Analysis pH
	(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	(°C)	
Q7-1	0 Flow											
11.590	5.33	0.00	5.33	3.5581	0.00182	.734	42.49	57.91	0.29	0.401	21.62	7.36
9.720	7.20	0.00	7.20	3.5581	0.00123	.769	48.68	63.3	0.29	0.327	21.81	7.43
8.180	7.43	0.00	7.43	9.4367	0.00095	.812	57.84	71.19	0.36	0.102	21.19	7.23
7.580	7.62	0.00	7.62	9.4367	0.00016	.871	63.24	72.64	0.31	0.231	21.21	7.24
6.410	7.82	0.00	7.82	9.4367	0.00186	.801	56.77	70.88	0.38	0.196	21.22	7.24
5.190	11.20	0.00	11.20	9.4367	0.00064	.86	68.29	79.4	0.35	0.308	21.47	7.31
Q1-1	0 Flow											
11.590	3.41	0.00	3.41	3.5581	0.00182	NA.	NA.	NA	0.25	0.459	21.32	7.27
9.720	4.61	0.00	4.61	3.5581	0.00123	NA.	NA.	NA	0.25	0.382	21.52	7.33
8.180	4.75	0.00	4.75	9.4367	0.00095	NA.	NA.	NA	0.33	0.113	20.90	7.16
7.580	4.88	0.00	4.88	9.4367	0.00016	NA.	NA.	NA	0.28	0.255	20.92	7.17
6.410	5.00	0.00	5.00	9.4367	0.00186	NA.	NA.	NA	0.34	0.217	20.94	7.17
5.190	7.17	0.00	7.17	9.4367	0.00064	NA	NA	NA	0.31	0.348	21.17	7.23
Q30-	10 Flow	,										
11.590	8.52	0.00	8.52	3.5581	0.00182	NA.	NA.	NA	0.34	0.338	21.90	7.47
9.720	11.52	0.00	11.52	3.5581	0.00123	NA.	NA.	NA	0.35	0.271	22.06	7.55
8.180	11.88	0.00	11.88	9.4367	0.00095	NA.	NA.	NA	0.41	0.090	21.50	7.32
7.580	12.20	0.00	12.20	9.4367	0.00016	NA.	NA.	NA	0.35	0.202	21.52	7.33
6.410	12.51	0.00	12.51	9.4367	0.00186	NA.	NA.	NA	0.43	0.172	21.54	7.33
5.190	17.91	0.00	17.91	9.4367	0.00064	NA.	NA.	NA	0.41	0.263	21.77	7.41

	SWP Basin			Stre	am Name		RMI		vation (ft)	Drainage Area (sq mi)		Wit	PWS hdrawal mgd)	Apply FC
	07J	76	56 COCA	LICO CR	EEK		11.59	90	344.00	44.4	40 0.0	0000	0.00	V
					St	ream Da	ta							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Ten	Tributary ip p	н	Stre Temp	sam pH	
COIM.	(cfsm)	(ds)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C)		
Q7-10 Q1-10 Q30-10	0.120	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000 0.000 0.000	0.0	0.00	0.0	0 2	2.70	8.20	0.00	0.00	
					D	scharge	Data						7	
			Name	Per	mit Numbe	Disc	Permitti Disc Flow (mgd)	Dis Flo	c Res w Fa	erve T	Disc emp (°C)	Disc pH		
		Ephra	ta Plant 2	PA	0087181	2.300	0 2.300	0 2.3	000	0.000	20.00	7.00		
					P	arame ter	Data							
				Paramete	r Name			Trib Conc	Stream Conc	Fate Coef				
						(m	ng/L) (n	ng/L)	(mg/L)	(1/days)				
			CBOD5				25.00	2.00	0.00	1.50				
			Dissolved	Oxygen			5.00	8.24	0.00	5.30				
			NH3-N				25.00	0.00	0.00	0.70	1			

					p	ut Dun								
	SWP Basir			Str	eam Name		RM	E	evation (ft)	Drainage Area (sq mi)	Slope (fl/ft)	Withd	/S trawal gd)	Apply FC
	07J	76	56 COCA	LICO CR	EEK		9.7	20	326.00	60.0	0.0000	0	0.00	V
					St	tream Dat	ta							
Dealgn Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Ten	Tributary np ph	I To	Stream emp	n pH	
COIM.	(cfsm)	(ds)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C	;)	(°C)		
Q7-10 Q1-10 Q30-10	0.120	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000	0.0	0.00	0.0	00 2	2.70 8	1.20	0.00	0.00	
					D	i acharge i	Data						1	
			Name	Per	mit Numbe	Disc	Permiti Disc Flow (mgd	Dis Flo	sc Res	serve Te	isc mp C)	Disc pH		
						0.000	0.00	0.0	0000	0.000	0.00	7.00		
					P	arame ter	Data							
				Paramete	r Nama			Trib Canc	Stream Conc	Fate Coef				
				raiailete	r realite	(m	ng/L) (i	mg/L)	(mg/L)	(1/days)				
			CBOD5				25.00	2.00	0.00	1.50		_		
			Dissolved	Oxygen			5.00	8.24	0.00	5.30				
			NH3-N				25.00	0.00	0.00	0.70				

					p	ut Dut	u rragi							
	SWP Basir			Stre	eam Name		RM	Ele	evation (ft)	Drainage Area (sq mi)	Slope (fl/ft)	Witho	VS trawal gd)	Apply FC
	07J	78	56 COCA	LICO CR	EEK		8.1	80	316.00	62.20	0.0000	0	0.00	V
					St	tream Da	ta							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Ten	Tributary np pH	Те	Stream mp	n pH	
COIM.	(cfsm)	(ds)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C	;)	(*	C)		
Q7-10 Q1-10 Q30-10	0.103	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000		0.0	0.00	0.0	00 2	2.70 8	20	0.00	0.00	
					D	scharge	Data						1	
			Name	Per	mit Numbe	Disc	Permit Disc Flow (mgd	Dis Flo	sc Res	Di serve Te sctor (9		Disc pH		
		Ephra	ta Plant 1	PA	0027405	3.800	0 3.80	00 3.8	3000	0.000	20.00	7.00		
					P	arame ter	Data							
				Paramete	r Name	_		Trib Canc	Stream Conc	Fate Coef				
				- aranete	1401162	(m	ng/L) (i	mg/L)	(mg/L)	(1/days)				
			CBOD5				25.00	2.00	0.00	1.50		_		
			Dissolved	Oxygen			5.00	8.24	0.00	15.60				
			NH3-N				25.00	0.00	0.00	0.70				

	SWF Basi			Stre	eam Name		RMI		ation	Drainag Area (sq mi)		ope Vft)	PWS Vithdrawal (mgd)	Apply FC
	07J	76	356 COCA	LICO CR	EEK		7.58	80 :	313.00	64.	.10 0.0	00000	0.00	V
					St	tream Da	ta							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Ten	Tributary p p	Н	Temp	tream pH	
COIM.	(cfsm)	(ds)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C	;)		(°C)		
Q7-10 Q1-10 Q30-10	0.103	0.00 0.00 0.00	0.00	0.000 0.000 0.000	0.000	0.0	0.00	0.00) 2	2.70	8.20	0.0	0.0	0
					D	echarge	Data							
			Name	Per	mit Numbe	Disc	Permitti Disc Flow (mgd)	Disc Flow	Res v Fa	erve	Disc Temp (°C)	Disc pH		
						0.000				0.000	0.00	0 7.	00	
					P	arame ter	Data							
				Paramete	r Name	_			Stream Conc	Fate Coef				
				raancu	r realing	(m	ng/L) (r	ng/L) ((mg/L)	(1/days)			
			CBOD5				25.00	2.00	0.00	1.5	0			
			Dissolved	Oxygen			5.00	8.24	0.00	3.5	0			
			NH3-N				25.00	0.00	0.00	0.7	0			

	SWF Basi			Stre	eam Name		RM	I Bo	evation (ft)	Drainage Area (sq mi)		Witho	VS trawal gd)	Apply FC
	07J	76	56 COCA	LICO CR	EEK		6.4	110	312.00	66.0	0.00	000	0.00	☑
					St	ream Dat	a							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth		Tributary np p		Stream Temp	n pH	
COIM.	(cfsm)	(ds)	(cfs)	(days)	(fps)		(ft)	(ft)	(%0	;)		(°C)		
Q7-10 Q1-10 Q30-10	0.103	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000	0.0	0.00	0.0	00 2	2.70	8.20	0.00	0.00	
					D	scharge l	Data]	
			Name	Per	mit Numbe	Disc	Permit Disc Flow (mgs	: Dis	sc Res	serve T	Disc emp (°C)	Disc pH		
						0.000	0.00	00 0.0	0000	0.000	0.00	7.00		
					P	arame ter	Data							
				Paramete	r Nama		isc onc	Trib Canc	Stream Conc	Fate Coef				
				raianew	realite	(m	ng/L) (mg/L)	(mg/L)	(1/days)				
			CBOD5				25.00	2.00	0.00	1.50		_		
			Dissolved	Oxygen			5.00	8.24	0.00	3.50				
			NH3-N				25.00	0.00	0.00	0.70				

	SWF Basi			Stre	am Name		RMI	Eleva (ft		Drainage Area (sq mi)		Witho	VS trawal gd)	Apply FC
	07J	76	56 COCA	LICO CR	EEK		5.19	90 3	00.00	98.8	80 0.00	0000	0.00	\mathbf{Z}
					St	tream Dat	ta							
Dealgn Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	Tributary p p	н	Stream Temp	n pH	
COIM.	(cfsm)	(ds)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C)		
Q7-10 Q1-10 Q30-10	0.103	0.00 0.00 0.00	0.00	0.000 0.000 0.000	0.000	0.0	0.00	0.00	2	2.70	8.20	0.00	0.00	
					D	scharge	Data						1	
			Name	Per	mit Numbe	Disc	Disc Flow	Flow	Res Fa	erve T	Disc emp (°C)	Disc pH		
						0.000	0.000	0.000	00	0.000	0.00	7.00		
					P	arame ter	Data							
				Paramete	r Nama				ream Conc	Fate Coef				
				raranete	rivarine	(m	ng/L) (r	ng/L) (r	ng/L)	(1/days)				
	'		CBOD5				25.00	2.00	0.00	1.50				
			Dissolved	Oxygen			5.00	8.24	0.00	3.50)			
			NH3-N				25.00	0.00	0.00	0.70				

	SWF Basi			Stre	eam Name		RMI	Е	evation (ft)	Drainage Area (sq mi)	Slo (ft/	With	VS drawal igd)	Apply FC
	07J	76	56 COCA	LICO CR	EEK		3.42	20	294.00	136.0	0.0	0000	0.00	☑
					St	ream Da	ta							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Ten	Tributary p p	н	Strea Temp	m pH	
COIM.	(cfsm)	(ds)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C	()		(°C)		
Q7-10 Q1-10 Q30-10	0.103	0.00 0.00 0.00	0.00	0.000 0.000 0.000	0.000	0.0	0.00	0.0	00 2	2.70	8.20	0.00	0.00	
					D	scharge	Data						1	
			Name	Per	mit Numbe	Disc	Permitte Disc Flow (mgd)	Dis Flo	sc Res	erve T	Disc emp (°C)	Disc pH		
						0.000		0.0	0000	0.000	0.00	7.00		
					P	arame ter								
				Paramete	r Name			Trib Conc	Stream Conc	Fate Coef				
						(m	ng/L) (n	ng/L)	(mg/L)	(1/days)				
			CBOD5				25.00	2.00	0.00	1.50				
			Dissolved	Oxygen			3.00	8.24	0.00	0.00				
			NH3-N				25.00	0.00	0.00	0.70				

Toxics Management Spreadsheet Version 1.3, March 2021

Discharge Information

Facility: Ephrata Borough Authority (Plant #2)

Evaluation Type Major Sewage / Industrial Waste

NPDES Permit No.: PA0087181

Outfall No.: 001

Wastewater Description: Sewage effluent

			Discharge	Characteris	tics			
Design Flow	Hardness (mg/l)*	pH (SU)*	P	artial Mix Fa	actors (PMF	s)	Complete Mix	x Times (min)
(MGD)*	naroness (mg/l)*	pn (50)	AFC	CFC	THH	CRL	Q ₇₋₁₀	Qh
2.3	282	7.65						

					Г	0 If let	t blank	0.5 M le	eft blank	0	If left blan	k	1 If left	t blank
	Discharge Pollutant	Units	Ma	x Discharge Conc		Trib onc	Stream Conc	Daily CV	Hourly CV	Strea m CV	Fate Coeff	FOS	Criteri a Mod	Chem Transl
	Total Dissolved Solids (PWS)	mg/L		640										
2	Chloride (PWS)	mg/L		159										
<u>8</u>	Bromide	mg/L	<	1	Г									
Group	Sulfate (PWS)	mg/L		56										
	Fluoride (PWS)	mg/L												
	Total Aluminum	µg/L		12										
!	Total Antimony	µg/L		0.6										
!	Total Arsenic	µg/L		1										
!	Total Barium	µg/L		37										
!	Total Beryllium	µg/L	<	0.4										
!	Total Boron	µg/L		207										
!	Total Cadmium	µg/L	<	0.08										
!	Total Chromium (III)	µg/L	<	1										
	Hexavalent Chromium	µg/L	<	0.1	Г									
	Total Cobalt	µg/L	<	1										
	Total Copper	µg/L		11										
2	Free Cyanide	µg/L	<	5										
<u>₹</u>	Total Cyanide	µg/L		14	Г									
Group	Dissolved Iron	µg/L		56										
~	Total Iron	µg/L	<	100	Г									
!	Total Lead	µg/L	<	1										
!	Total Manganese	µg/L		44										
!	Total Mercury	µg/L	<	0.04	Г									
!	Total Nickel	µg/L		2	Г									
!	Total Phenols (Phenolics) (PWS)	µg/L	<	5										
!	Total Selenium	µg/L	<	2										
!	Total Silver	µg/L	<	1										
!	Total Thallium	µg/L	<	0.4										
!	Total Zinc	µg/L		45										
!	Total Molybdenum	µg/L		5										
\Box	Acrolein	µg/L	<	1										
!	Acrylamide	µg/L			Г									
	Acrylonitrile	µg/L	<	0.5										
	Benzene	µg/L	<	0.5										
	Bromoform	µg/L	<	0.5										
	Carbon Tetrachloride	µg/L	<	0.5										
	Chlorobenzene	µg/L	<	0.5										
	Chlorodibromomethane	µg/L		0.5										
	Chloroethane	µg/L	<	0.5										
	2-Chloroethyl Vinyl Ether	µg/L	<	0.5										

ı	Chloroform	µg/L		1.5								
	Dichlorobromomethane	µg/L		0.6	\vdash							
	1,1-Dichloroethane	µg/L	<	0.5	\vdash		-					
m	1,2-Dichloroethane	µg/L	<	0.5	\vdash							
å	1,1-Dichloroethylene	µg/L	<	0.5	Е		_					
Group	1,2-Dichloropropane	µg/L	<	0.5	H	+						
ြင်	1,3-Dichloropropylene	µg/L	<	0.5	\vdash							
	1,4-Dioxane	µg/L	<	0.5	F		_					
	Ethylbenzene	µg/L	<	0.5	⊨	\vdash	-					
l	Methyl Bromide		~	0.5	\vdash		_	_				
l		µg/L	~		H		_					
l	Methyl Chloride Methylene Chloride	µg/L	<	0.5 0.5	⊨	\vdash	-		 			
l	1.1.2.2-Tetrachloroethane	µg/L	~	0.5	⊢	\vdash	_			 		
l		µg/L		0.5	⊨	\vdash	_					
l	Tetrachloroethylene	μg/L	٧		┕	ш	_					
l	Toluene	μg/L		0.6	⊢		_					
	1,2-trans-Dichloroethylene	µg/L	<	0.5	⊢	\vdash						
l	1,1,1-Trichloroethane	μg/L	<	0.5	⊢	\vdash						
l	1,1,2-Trichloroethane	µg/L	<	0.5								
	Trichloroethylene	µg/L	<	0.5	┡	Щ.						
╙	Vinyl Chloride	µg/L	<	0.5	╙							
	2-Chlorophenol	μg/L	<	1								
	2,4-Dichlorophenol	µg/L	<	1								
	2,4-Dimethylphenol	µg/L	<	1								
4	4,6-Dinitro-o-Cresol	µg/L	٧	1								
0	2,4-Dinitrophenol	µg/L	٧	3								
Group	2-Nitrophenol	µg/L	٧	1								
ق	4-Nitrophenol	μg/L	٧	5								
_	p-Chloro-m-Cresol	µg/L	٧	5								
l	Pentachlorophenol	µg/L	٧	1								
	Phenol	µg/L	<	5	\vdash		-					
	2,4,6-Trichlorophenol	µg/L	<	1								
П	Acenaphthene	μg/L	<	1								
	Acenaphthylene	µg/L	<	1								
	Anthracene	µg/L	<	1	Т							
	Benzidine	μg/L	<	4.81	\vdash							
	Benzo(a)Anthracene	μg/L	<	1								
l	Benzo(a)Pyrene	µg/L	<	1	\vdash							
	3,4-Benzofluoranthene	µg/L	<	1	H	=						
l	Benzo(ghi)Perylene	µg/L	<	1								
l	Benzo(k)Fluoranthene	µg/L	<	1	Г							
	Bis(2-Chloroethoxy)Methane	µg/L	<	1	H	=						
	Bis(2-Chloroethyl)Ether	µg/L	<	1	\vdash							
	Bis(2-Chloroisopropyl)Ether	µg/L	<	1	Н		_	_				
	Bis(2-Ethylhexyl)Phthalate	µg/L	<	8.61	⊨	\vdash	-					
l	4-Bromophenyl Phenyl Ether		<	1	⊢	-	_	_				
	Butyl Benzyl Phthalate	μg/L μg/L	<	1	H	=	_	_			_	
	2-Chloronaphthalene		<	1			-			 		
	4-Chlorophenyl Phenyl Ether	µg/L	<	- 1	⊢	\vdash	_			 		
	-	µg/L	-	1								
	Chrysene Dibenzo(a,h)Anthrancene	µg/L	<	1								
l		µg/L	-				_				_	
l	1,2-Dichlorobenzene	µg/L	<	0.5	\vdash	\vdash	_		 			
l	1,3-Dichlorobenzene	µg/L	<	0.5	⊢	\vdash	_					
1			_							l	1	
	1,4-Dichlorobenzene	μg/L	<	0.5								
	1,4-Dichlorobenzene	μg/L μg/L	<	0.134								
	1,4-Dichlorobenzene	µg/L µg/L µg/L	<	0.134 1								
	1,4-Dichlorobenzene 3,3-Dichlorobenzidine Diethyl Phthalate Dimethyl Phthalate	µg/L µg/L µg/L µg/L	<	0.134 1 1								
	1,4-Dichlorobenzene 3,3-Dichlorobenzidine Diethyl Phthalate Dimethyl Phthalate Di-n-Butyl Phthalate	h8/r h8/r h8/r	v v v	0.134 1 1 2.88								
	1,4-Dichlorobenzene 3,3-Dichlorobenzidine Diethyl Phthalate Dimethyl Phthalate Di-n-Butyl Phthalate 2,4-Dinitrotoluene	ha\r ha\r ha\r ha\r	v v v	0.134 1 1 2.88 3								
	1,4-Dichlorobenzene 3,3-Dichlorobenzidine Diethyl Phthalate Dimethyl Phthalate Di-n-Butyl Phthalate 2,4-Dinitrotoluene 2,6-Dinitrotoluene	h8/r h8/r h8/r h8/r h8/r h8/r	< < < < < < < < < < < < < < < < < < <	0.134 1 1 2.88 3								
	1,4-Dichlorobenzene 3,3-Dichlorobenzidine Diethyl Phthalate Dimethyl Phthalate Di-n-Butyl Phthalate 2,4-Dinitrotoluene 2,8-Dinitrotoluene Di-n-Octyl Phthalate	µg/L µg/L µg/L µg/L µg/L µg/L µg/L	v v v	0.134 1 1 2.88 3 1								
	1,4-Dichlorobenzene 3,3-Dichlorobenzidine Diethyl Phthalate Dimethyl Phthalate Di-n-Butyl Phthalate 2,4-Dinitrotoluene 2,6-Dinitrotoluene	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	< < <	0.134 1 1 2.88 3								
	1,4-Dichlorobenzene 3,3-Dichlorobenzidine Diethyl Phthalate Dimethyl Phthalate Di-n-Butyl Phthalate 2,4-Dinitrotoluene 2,8-Dinitrotoluene Di-n-Octyl Phthalate	µg/L µg/L µg/L µg/L µg/L µg/L µg/L	v v v	0.134 1 1 2.88 3 1								
	1,4-Dichlorobenzene 3,3-Dichlorobenzidine Diethyl Phthalate Dimethyl Phthalate Di-n-Butyl Phthalate 2,4-Dinitrotoluene 2,8-Dinitrotoluene Di-n-Octyl Phthalate 1,2-Diphenylhydrazine	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	v v v v v v	0.134 1 1 2.88 3 1 1								
	1,4-Dichlorobenzene 3,3-Dichlorobenzidine Diethyl Phthalate Dimethyl Phthalate Di-n-Butyl Phthalate 2,4-Dinitrotoluene 2,6-Dinitrotoluene Di-n-Octyl Phthalate 1,2-Diphenylhydrazine Fluoranthene	19/L 19/L 19/L 19/L 19/L 19/L 19/L 19/L 19/L 19/L 19/L	v v v v v v v v	0.134 1 1 2.88 3 1 1 1								
	1,4-Dichlorobenzene 3,3-Dichlorobenzidine Diethyl Phthalate Dimethyl Phthalate Di-n-Butyl Phthalate 2,4-Dinitrotoluene 2,6-Dinitrotoluene Di-n-Cotyl Phthalate 1,2-Diphenylhydrazine Fluoranthene Fluorene	19/L 19/L 19/L 19/L 19/L 19/L 19/L 19/L 19/L 19/L 19/L 19/L	v v v v v v v v	0.134 1 1 2.88 3 1 1 1 1								
	1,4-Dichlorobenzene 3,3-Dichlorobenzidine Diethyl Phthalate Dimethyl Phthalate Di-n-Butyl Phthalate 2,4-Dinitrotoluene 2,8-Dinitrotoluene Di-n-Octyl Phthalate 1,2-Diphenylhydrazine Fluoranthene Fluorene Hexachlorobenzene	19/L 19/L 19/L 19/L 19/L 19/L 19/L 19/L	<td>0.134 1 1 2.88 3 1 1 1 1 1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	0.134 1 1 2.88 3 1 1 1 1 1								
	1,4-Dichlorobenzene 3,3-Dichlorobenzidine Diethyl Phthalate Dimethyl Phthalate Di-n-Butyl Phthalate 2,4-Dinitrotoluene 2,6-Dinitrotoluene Di-n-Octyl Phthalate 1,2-Diphenylhydrazine Fluoranthene Fluorene Hexachlorobenzene Hexachlorobenzene Hexachlorobutadiene	19/L 19/L 19/L 19/L 19/L 19/L 19/L 19/L 19/L 19/L 19/L 19/L	V V V V V V V V V V V V V V V V V V V	0.134 1 1 2.88 3 1 1 1 1 1 1 0.0788								

ı	Isophorone	µg/L	<	1				I		
1	Naphthalene		*	1		_			_	
l	Nitrobenzene	µg/L µg/L	*	1						
l	n-Nitrosodimethylamine	_	*	1					_	
l		µg/L	-	1					_	
l	n-Nitrosodi-n-Propylamine	µg/L	<	1						
l	n-Nitrosodiphenylamine	µg/L	*	1						
l	Phenanthrene Pyrene	µg/L	*	1						
l	-	µg/L	-							
\vdash	1,2,4-Trichlorobenzene	µg/L	*	0.0894						
l	Aldrin alpha-BHC	µg/L	*							
l		µg/L	-							
l	beta-BHC	µq/L	*			_				
l	gamma-BHC	µg/L	*							
l	delta BHC	µg/L	*							
ı	Chlordane	μg/L	٧							
	4,4-DDT	µg/L	*							
1	4,4-DDE	μg/L	٠							
l	4,4-DDD	µg/L	*							
	Dieldrin	µg/L	*							
l	alpha-Endosulfan	μg/L	*							
9	beta-Endosulfan	μg/L	*							
ď	Endosulfan Sulfate	μg/L	*							
Group	Endrin	μg/L	*							
ত	Endrin Aldehyde	μg/L	*							
	Heptachior	μg/L	٧							
l	Heptachior Epoxide	μg/L	*							
l	PCB-1016	μg/L	*							
l	PCB-1221	μg/L	٧							
l	PCB-1232	μg/L	٧							
l	PCB-1242	μg/L	٧							
l	PCB-1248	μg/L	*							
l	PCB-1254	μg/L	*							
l	PCB-1260	μg/L	٧							
l	PCBs, Total	µg/L	*							
l	Toxaphene	µg/L	*							
l	2,3,7,8-TCDD	ng/L	*							
\Box	Gross Alpha	pCI/L								
-	Total Beta	pCI/L	*							
•	Radium 226/228	pCI/L	<							
Groun	Total Strontium	µg/L	*							
O	Total Uranium	µq/L	٧							
1	Osmotic Pressure	mOs/kg								

Toxics Management Spreadsheet Version 1.3, March 2021

Stream / Surface Water Information

Ephrata Borough Authority (Plant #2), NPDES Permit No. PA0087181, Outfall 001

Toxics Management Spreadsheet Version 1.3, March 2021

Model Results

Ephrata Borough Authority (Plant #2), NPDES Permit No. PA0087181, Outfall 001

Instructions Results	RETURN	TO INPU	TS) (S	SAVE AS	PDF)	PRINT	г 🦳 🖲 🗚	II O Inputs O Results O Limits
☐ Hydrodynamics								
✓ Wasteload Allocations								
☑ AFC CC	T (min):	15	PMF:	0.673	Anal	ysis Hardnes	ss (mg/l):	229.31 Analysis pH: 7.84
Pollutants	Stream Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A	
Chloride (PWS)	0	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
Total Aluminum	0	0		0	750	750	1,505	
Total Antimony	0	0		0	1,100	1,100	2,208	
Total Arsenic	0	0		0	340	340	682	Chem Translator of 1 applied
Total Barium	0	0		0	21,000	21,000	42,153	
Total Boron	0	0		0	8,100	8,100	16,259	
Total Cadmium	0	0		0	4.510	4.96	9.95	Chem Translator of 0.909 applied
Total Chromium (III)	0	0		0	1124.297	3,558	7,142	Chem Translator of 0.316 applied
Hexavalent Chromium	0	0		0	16	16.3	32.7	Chem Translator of 0.982 applied
Total Cobalt	0	0		0	95	95.0	191	
Total Copper	0	0		0	29.374	30.6	61.4	Chem Translator of 0.96 applied
Free Cyanide	0	0		0	22	22.0	44.2	
Dissolved Iron	0	0		0	N/A	N/A	N/A	
Total Iron	0	0		0	N/A	N/A	N/A	
Total Lead	0	0		0	157.352	235	471	Chem Translator of 0.67 applied
Total Manganese	0	0		0	N/A	N/A	N/A	
Total Mercury	0	0		0	1.400	1.65	3.31	Chem Translator of 0.85 applied
Total Nickel	0	0		0	944.893	947	1,900	Chem Translator of 0.998 applied
Total Phenols (Phenolics) (PWS)	0	0		0	N/A	N/A	N/A	
Total Selenium	0	0		0	N/A	N/A	N/A	Chem Translator of 0.922 applied
Total Silver	0	0		0	13.407	15.8	31.7	Chem Translator of 0.85 applied
Total Thallium	0	0		0	65	65.0	130	
Total Zinc	0	0		0	236.724	242	486	Chem Translator of 0.978 applied
Acrolein	0	0		0	3	3.0	6.02	
Acrylonitrile	0	0		0	650	650	1,305	
Benzene	0	0		0	640	640	1,285	

Bromoform	0	0	0	1,800	1,800	3,613	
Carbon Tetrachloride	0	0	0	2,800	2,800	5,620	
Chlorobenzene	0	0	0	1,200	1,200	2,409	
Chlorodibromomethane	0	0	0	N/A	N/A	N/A	
2-Chloroethyl Vinyl Ether	0	0	0	18,000	18,000	36,131	
Chloroform	0	0	0	1,900	1,900	3,814	
Dichlorobromomethane	0	0	0	N/A	N/A	N/A	
1.2-Dichloroethane	0	0	0	15,000	15,000	30,109	
1,1-Dichloroethylene	0	0	0	7,500	7,500	15,054	
1,2-Dichloropropane	0	0	0	11,000	11,000	22,080	
1,3-Dichloropropylene	0	0	0	310	310	622	
Ethylbenzene	0	0	0	2.900	2.900	5,821	
Methyl Bromide	0	0	0	550	550	1,104	
Methyl Chloride	0	0	0	28,000	28,000	56,203	
Methylene Chloride	0	0	0	12,000	12,000	24,087	
1,1,2,2-Tetrachloroethane	0	0	0	1,000	1,000	2,007	
Tetrachloroethylene	0	0	0	700	700	1,405	
Toluene	0	0	0	1,700	1,700	3,412	
1,2-trans-Dichloroethylene	0	0	0	6,800	6.800	13,649	
1,1,1-Trichloroethane	0	0	0	3,000	3,000	6,022	
1,1,2-Trichloroethane	0	0	0	3,400	3,400	6,825	
Trichloroethylene	0	0	0	2,300	2,300	4,617	
Vinyl Chloride	0	0	0	N/A	N/A	N/A	
2-Chlorophenol	0	0	0	560	560	1,124	
2,4-Dichlorophenol	0	0	0	1,700	1,700	3,412	
2,4-Dimethylphenol	0	0	0	660	660	1,325	
4.6-Dinitro-o-Cresol	0	0	0	80	80.0	161	
2,4-Dinitrophenol	0	0	0	660	660	1.325	
2-Nitrophenol	0	0	0	8,000	8,000	16,058	
4-Nitrophenol	0	0	0	2,300	2,300	4,617	
p-Chloro-m-Cresol	0	0	0	160	160	321	
Pentachlorophenol	0	0	0	20.375	20.4	40.9	
Phenol	0	0	0	N/A	N/A	N/A	
2,4,6-Trichlorophenol	0	0	0	460	460	923	
Acenaphthene	0	0	0	83	83.0	167	
Anthracene	0	0	0	N/A	N/A	N/A	
Benzidine	0	0	0	300	300	602	
Benzo(a)Anthracene	0	0	0	0.5	0.5	1.0	
Benzo(a)Pyrene	0	0	0	N/A	N/A	N/A	
3,4-Benzofluoranthene	0	0	0	N/A	N/A	N/A	
Benzo(k)Fluoranthene	0	0	0	N/A	N/A	N/A	
Bis(2-Chloroethyl)Ether	0	0	0	30,000	30,000	60,218	
Bis(2-Chloroisopropyl)Ether	0	0	0	N/A	N/A	N/A	
Bis(2-Ethylhexyl)Phthalate	0	0	0	4,500	4,500	9,033	
4-Bromophenyl Phenyl Ether	0	0	0	270	270	542	
Butyl Benzyl Phthalate	0	0	0	140	140	281	
2-Chloronaphthalene	0	0	0	N/A	N/A	N/A	

Chrysene	0	0	0	N/A	N/A	N/A	
Dibenzo(a,h)Anthrancene	0	0	0	N/A	N/A	N/A	
1,2-Dichlorobenzene	0	0	0	820	820	1,646	
1,3-Dichlorobenzene	0	0	0	350	350	703	
1,4-Dichlorobenzene	0	0	0	730	730	1,465	
3,3-Dichlorobenzidine	0	0	0	N/A	N/A	N/A	
Diethyl Phthalate	0	0	0	4,000	4,000	8,029	
Dimethyl Phthalate	0	0	0	2,500	2,500	5,018	
Di-n-Butyl Phthalate	0	0	0	110	110	221	
2,4-Dinitrotoluene	0	0	0	1,600	1,600	3,212	
2,6-Dinitrotoluene	0	0	0	990	990	1,987	
1,2-Diphenylhydrazine	0	0	0	15	15.0	30.1	
Fluoranthene	0	0	0	200	200	401	
Fluorene	0	0	0	N/A	N/A	N/A	
Hexachlorobenzene	0	0	0	N/A	N/A	N/A	
Hexachlorobutadiene	0	0	0	10	10.0	20.1	
Hexachlorocyclopentadiene	0	0	0	5	5.0	10.0	
Hexachloroethane	0	0	0	60	60.0	120	
Indeno(1,2,3-cd)Pyrene	0	0	0	N/A	N/A	N/A	
Isophorone	0	0	0	10,000	10,000	20,073	
Naphthalene	0	0	0	140	140	281	
Nitrobenzene	0	0	0	4,000	4,000	8,029	
n-Nitrosodimethylamine	0	0	0	17,000	17,000	34,124	
n-Nitrosodi-n-Propylamine	0	0	0	N/A	N/A	N/A	
n-Nitrosodiphenylamine	0	0	0	300	300	602	
Phenanthrene	0	0	0	5	5.0	10.0	
Pyrene	0	0	0	N/A	N/A	N/A	
1,2,4-Trichlorobenzene	0	0	0	130	130	261	

✓ CFC CCT (n)	nin): 33.151	PMF:	1	Analysis Hardness (mg/l):	219.04	Analysis pH:	7.89	Ī
---------------	--------------	------	---	---------------------------	--------	--------------	------	---

	Stream	Stream	Trib Conc	Fate	WQC	WQ Obj		
Pollutants	Conc	CV	(µg/L)	Coef	(µg/L)	(µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A	
Chloride (PWS)	0	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
Total Aluminum	0	0		0	N/A	N/A	N/A	
Total Antimony	0	0		0	220	220	549	
Total Arsenic	0	0		0	150	150	375	Chem Translator of 1 applied
Total Barium	0	0		0	4,100	4,100	10,239	
Total Boron	0	0		0	1,600	1,600	3,996	
Total Cadmium	0	0		0	0.424	0.48	1.21	Chem Translator of 0.876 applied
Total Chromium (III)	0	0		0	140.863	164	409	Chem Translator of 0.86 applied
Hexavalent Chromium	0	0		0	10	10.4	26.0	Chem Translator of 0.962 applied
Total Cobalt	0	0		0	19	19.0	47.5	
Total Copper	0	0		0	17.502	18.2	45.5	Chem Translator of 0.96 applied
Free Cyanide	0	0		0	5.2	5.2	13.0	
Dissolved Iron	0	0		0	N/A	N/A	N/A	

Total Iron	0	0	0	1.500	1.500	3,746	WQC = 30 day average; PMF = 1
Total Lead	0	0	0	5.842	8.63	21.6	Chem Translator of 0.677 applied
Total Manganese	0	0	0	N/A	N/A	N/A	Chair Hallotator of C.O.F. applied
Total Mercury	0	0	0	0.770	0.91	2.26	Chem Translator of 0.85 applied
Total Nickel	0	0	0	100.959	101	253	Chem Translator of 0.997 applied
Total Phenols (Phenolics) (PWS)	0	0	0	N/A	N/A	N/A	Chair Hallotator of C.Cor applied
Total Selenium	0	0	0	4.600	4.99	12.5	Chem Translator of 0.922 applied
Total Silver	0	0	0	N/A	N/A	N/A	Chem Translator of 1 applied
Total Thallium	0	0	0	13	13.0	32.5	
Total Zinc	0	0	0	229.575	233	581	Chem Translator of 0.986 applied
Acrolein	0	0	0	3	3.0	7.49	
Acrylonitrile	0	0	0	130	130	325	
Benzene	0	0	0	130	130	325	
Bromoform	0	0	0	370	370	924	
Carbon Tetrachloride	0	0	0	560	560	1,399	
Chlorobenzene	0	0	0	240	240	599	
Chlorodibromomethane	0	0	0	N/A	N/A	N/A	
2-Chloroethyl Vinyl Ether	0	0	0	3,500	3,500	8,741	
Chloroform	0	0	0	390	390	974	
Dichlorobromomethane	0	0	0	N/A	N/A	N/A	
1.2-Dichloroethane	0	0	0	3,100	3,100	7,742	
1,1-Dichloroethylene	0	0	0	1,500	1,500	3,746	
1,2-Dichloropropane	0	0	0	2,200	2.200	5,494	
1,3-Dichloropropylene	0	0	0	61	61.0	152	
Ethylbenzene	0	0	0	580	580	1,449	
Methyl Bromide	0	0	0	110	110	275	
Methyl Chloride	0	0	0	5,500	5,500	13,736	
Methylene Chloride	0	0	0	2,400	2,400	5,994	
1.1.2.2-Tetrachloroethane	0	0	0	210	210	524	
Tetrachloroethylene	0	0	0	140	140	350	
Toluene	0	0	0	330	330	824	
1,2-trans-Dichloroethylene	0	0	0	1.400	1.400	3,496	
1,1,1-Trichloroethane	0	0	0	610	610	1,523	
1,1,2-Trichloroethane	0	0	0	680	680	1,698	
Trichloroethylene	0	0	0	450	450	1,124	
Vinyl Chloride	0	0	0	N/A	N/A	N/A	
2-Chlorophenol	0	0	0	110	110	275	
2,4-Dichlorophenol	0	0	0	340	340	849	
2,4-Dimethylphenol	0	0	0	130	130	325	
4,6-Dinitro-o-Cresol	0	0	0	16	16.0	40.0	
2,4-Dinitrophenol	0	0	0	130	130	325	
2-Nitrophenol	0	0	0	1,600	1,600	3,996	
4-Nitrophenol	0	0	0	470	470	1,174	
p-Chloro-m-Cresol	0	0	0	500	500	1,249	
Pentachlorophenol	0	0	0	15.632	15.6	39.0	
Phenol	0	0	0	N/A	N/A	N/A	
2,4,6-Trichlorophenol	0	0	0	91	91.0	227	
Acenaphthene	0	0	0	17	17.0	42.5	
Anthracene	0	0	0	N/A	N/A	N/A	

Benzidine	0	0	0	59	59.0	147	
Benzo(a)Anthracene	0	0	0	0.1	0.1	0.25	
Benzo(a)Pyrene	0	0	0	N/A	N/A	N/A	
3,4-Benzofluoranthene	0	0	0	N/A	N/A	N/A	
Benzo(k)Fluoranthene	0	0	0	N/A	N/A	N/A	
Bis(2-Chloroethyl)Ether	0	0	0	6,000	6,000	14,985	
Bis(2-Chloroisopropyl)Ether	0	0	0	N/A	N/A	N/A	
Bis(2-Ethylhexyl)Phthalate	0	0	0	910	910	2,273	
4-Bromophenyl Phenyl Ether	0	0	0	54	54.0	135	
Butyl Benzyl Phthalate	0	0	0	35	35.0	87.4	
2-Chloronaphthalene	0	0	0	N/A	N/A	N/A	
Chrysene	0	0	0	N/A	N/A	N/A	
Dibenzo(a,h)Anthrancene	0	0	0	N/A	N/A	N/A	
1,2-Dichlorobenzene	0	0	0	160	160	400	
1,3-Dichlorobenzene	0	0	0	69	69.0	172	
1,4-Dichlorobenzene	0	0	0	150	150	375	
3,3-Dichlorobenzidine	0	0	0	N/A	N/A	N/A	
Diethyl Phthalate	0	0	0	800	800	1,998	
Dimethyl Phthalate	0	0	0	500	500	1,249	
Di-n-Butyl Phthalate	0	0	0	21	21.0	52.4	
2,4-Dinitrotoluene	0	0	0	320	320	799	
2,6-Dinitrotoluene	0	0	0	200	200	499	
1,2-Diphenylhydrazine	0	0	0	3	3.0	7.49	
Fluoranthene	0	0	0	40	40.0	99.9	
Fluorene	0	0	0	N/A	N/A	N/A	
Hexachlorobenzene	0	0	0	N/A	N/A	N/A	
Hexachlorobutadiene	0	0	0	2	2.0	4.99	
Hexachlorocyclopentadiene	0	0	0	1	1.0	2.5	
Hexachloroethane	0	0	0	12	12.0	30.0	
Indeno(1,2,3-cd)Pyrene	0	0	0	N/A	N/A	N/A	
Isophorone	0	0	0	2,100	2,100	5,245	
Naphthalene	0	0	0	43	43.0	107	
Nitrobenzene	0	0	0	810	810	2,023	
n-Nitrosodimethylamine	0	0	0	3,400	3,400	8,491	
n-Nitrosodi-n-Propylamine	0	0	0	N/A	N/A	N/A	
n-Nitrosodiphenylamine	0	0	0	59	59.0	147	
Phenanthrene	0	0	0	1	1.0	2.5	
Pyrene	0	0	0	N/A	N/A	N/A	
1,2,4-Trichlorobenzene		0		26	26.0	64.9	

✓ THH CCT (min):	33.151	PMF:	1	Analysis Hardness (mg/l):	N/A	Analysis pH:	N/A	
------------------	--------	------	---	---------------------------	-----	--------------	-----	--

Pollutants	Stream Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	500,000	500,000	N/A	
Chloride (PWS)	0	0		0	250,000	250,000	N/A	
Sulfate (PWS)	0	0		0	250,000	250,000	N/A	
Total Aluminum	0	0		0	N/A	N/A	N/A	
Total Antimony	0	0		0	5.6	5.6	14.0	

Total Arsenic	0	0	0	10	10.0	25.0	
Total Barium	0	0	0	2,400	2,400	5,994	
Total Boron	0	0	0	3,100	3,100	7,742	
Total Cadmium	0	0	0	N/A	N/A	N/A	
Total Chromium (III)	0	0	0	N/A	N/A	N/A	
Hexavalent Chromium	0	0	0	N/A	N/A	N/A	
Total Cobalt	0	0	0	N/A	N/A	N/A	
Total Copper	0	0	0	N/A	N/A	N/A	
Free Cyanide	0	0	0	4	4.0	9.99	
Dissolved Iron	0	0	0	300	300	749	
Total Iron	0	0	0	N/A	N/A	N/A	
Total Lead	0	0	0	N/A	N/A	N/A	
Total Manganese	0	0	0	1,000	1,000	2,497	
Total Mercury	0	0	0	0.050	0.05	0.12	
Total Nickel	0	0	0	610	610	1,523	
Total Phenols (Phenolics) (PWS)	0	0	0	5	5.0	N/A	
Total Selenium	0	0	0	N/A	N/A	N/A	
Total Silver	0	0	0	N/A	N/A	N/A	
Total Thallium	0	0	0	0.24	0.24	0.6	
Total Zinc	0	0	0	N/A	N/A	N/A	
Acrolein	0	0	0	3	3.0	7.49	
Acrylonitrile	0	0	0	N/A	N/A	N/A	
Benzene	0	0	0	N/A	N/A	N/A	
Bromoform	0	0	0	N/A	N/A	N/A	
Carbon Tetrachloride	0	0	0	N/A	N/A	N/A	
Chlorobenzene	0	0	0	100	100.0	250	
Chlorodibromomethane	0	0	0	N/A	N/A	N/A	
2-Chloroethyl Vinyl Ether	0	0	0	N/A	N/A	N/A	
Chloroform	0	0	0	N/A	N/A	N/A	
Dichlorobromomethane	0	0	0	N/A	N/A	N/A	
1,2-Dichloroethane	0	0	0	N/A	N/A	N/A	
1,1-Dichloroethylene	0	0	0	33	33.0	82.4	
1,2-Dichloropropane	0	0	0	N/A	N/A	N/A	
1,3-Dichloropropylene	0	0	0	N/A	N/A	N/A	
Ethylbenzene	0	0	0	68	68.0	170	
Methyl Bromide	0	0	0	100	100.0	250	
Methyl Chloride	0	0	0	N/A	N/A	N/A	
Methylene Chloride	0	0	0	N/A	N/A	N/A	
1,1,2,2-Tetrachloroethane	0	0	0	N/A	N/A	N/A	
Tetrachloroethylene	0	0	0	N/A	N/A	N/A	
Toluene	0	0	0	57	57.0	142	
1,2-trans-Dichloroethylene	0	0	0	100	100.0	250	
1.1.1-Trichloroethane	0	0	0	10.000	10.000	24,974	
1,1,2-Trichloroethane	0	0	0	N/A	N/A	N/A	
Trichloroethylene	0	0	0	N/A	N/A	N/A	
Vinyl Chloride	0	0	0	N/A N/A	N/A N/A	N/A N/A	
2-Chlorophenol	0	0	0	30	30.0	74.9	
	0	0	0	10	10.0	25.0	
2,4-Dichlorophenol	0	0	0	100	10.0	25.0	
2,4-Dimethylphenol	U	U	U	100	100.0	250	

4,6-Dinitro-o-Cresol	0	0	0	2	2.0	4.99	
2,4-Dinitrophenol	0	0	0	10	10.0	25.0	
2-Nitrophenol	0	0	0	N/A	N/A	N/A	
4-Nitrophenol	0	0	0	N/A	N/A	N/A	
p-Chloro-m-Cresol	0	0	0	N/A	N/A	N/A	
Pentachlorophenol	0	0	0	N/A	N/A	N/A	
Phenol	0	0	0	4,000	4,000	9,990	
2,4,6-Trichlorophenol	0	0	0	N/A	N/A	N/A	
Acenaphthene	0	0	0	70	70.0	175	
Anthracene	0	0	0	300	300	749	
Benzidine	0	0	0	N/A	N/A	N/A	
Benzo(a)Anthracene	0	0	0	N/A	N/A	N/A	
Benzo(a)Pyrene	0	0	0	N/A	N/A	N/A	
3,4-Benzofluoranthene	0	0	0	N/A	N/A	N/A	
Benzo(k)Fluoranthene	0	0	0	N/A	N/A	N/A	
Bis(2-Chloroethyl)Ether	0	0	0	N/A	N/A	N/A	
Bis(2-Chloroisopropyl)Ether	0	0	0	200	200	499	
Bis(2-Ethylhexyl)Phthalate	0	0	0	N/A	N/A	N/A	
4-Bromophenyl Phenyl Ether	0	0	0	N/A	N/A	N/A	
Butyl Benzyl Phthalate	0	0	0	0.1	0.1	0.25	
2-Chloronaphthalene	0	0	0	800	800	1,998	
Chrysene	0	0	0	N/A	N/A	N/A	
Dibenzo(a,h)Anthrancene	0	0	0	N/A	N/A	N/A	
1,2-Dichlorobenzene	0	0	0	1,000	1,000	2,497	
1,3-Dichlorobenzene	0	0	0	7	7.0	17.5	
1,4-Dichlorobenzene	0	0	0	300	300	749	
3.3-Dichlorobenzidine	0	0	0	N/A	N/A	N/A	
Diethyl Phthalate	0	0	0	600	600	1,498	
Dimethyl Phthalate	0	0	0	2,000	2.000	4,995	
Di-n-Butyl Phthalate	0	0	0	20	20.0	49.9	
2.4-Dinitrotoluene	0	0	0	N/A	N/A	N/A	
2,6-Dinitrotoluene	0	0	0	N/A	N/A	N/A	
1,2-Diphenylhydrazine	0	0	0	N/A	N/A	N/A	
Fluoranthene	0	0	0	20	20.0	49.9	
Fluorene	0	0	0	50	50.0	125	
Hexachlorobenzene	0	0	0	N/A	N/A	N/A	
Hexachlorobutadiene	0	0	0	N/A	N/A	N/A	
Hexachlorocyclopentadiene	0	0	0	4	4.0	9.99	
Hexachloroethane	0	0	0	N/A	N/A	N/A	
Indeno(1,2,3-cd)Pyrene	0	0	0	N/A N/A	N/A	N/A	
Isophorone	0	0	0	34	34.0	84.9	
-	0	0	0	N/A	N/A	04.9 N/A	
Naphthalene Nitrobenzene	0	0	0	10	10.0	25.0	
	0	0	0	N/A	10.0 N/A	25.U N/A	
n-Nitrosodimethylamine		0	0	N/A N/A	N/A N/A	N/A N/A	
n-Nitrosodi-n-Propylamine	0						
n-Nitrosodiphenylamine	0	0	0	N/A N/A	N/A	N/A N/A	
Phenanthrene	_	_	0		N/A		
Pyrene	0	0	0	20	20.0	49.9	
1,2,4-Trichlorobenzene	0	0	0	0.07	0.07	0.17	

✓ CRL CC	T (min): 29	.882	PMF:	1	Ana	alysis Hardne	ess (mg/l):	N/A Analysis pH: N/A
Pollutants	Stream	Stream	Trib Conc	Fate	WQC	WQ Obj	WLA (µg/L)	Comments
	Conc	CV	(µg/L)	Coef	(µg/L)	(µg/L)		
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A	
Chloride (PWS)	0	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
Total Aluminum	0	0		0	N/A	N/A	N/A	
Total Antimony	0	0		0	N/A	N/A	N/A	
Total Arsenic	0	0		0	N/A	N/A	N/A	
Total Barium	0	0		0	N/A	N/A	N/A	
Total Boron	0	0		0	N/A	N/A	N/A	
Total Cadmium	0	0		0	N/A	N/A	N/A	
Total Chromium (III)	0	0		0	N/A	N/A	N/A	
Hexavalent Chromium	0	0		0	N/A	N/A	N/A	
Total Cobalt	0	0		0	N/A	N/A	N/A	
Total Copper	0	0		0	N/A	N/A	N/A	
Free Cyanide	0	0		0	N/A	N/A	N/A	
Dissolved Iron	0	0		0	N/A	N/A	N/A	
Total Iron	0	0		0	N/A	N/A	N/A	
Total Lead	0	0		0	N/A	N/A	N/A	
Total Manganese	0	0		0	N/A	N/A	N/A	
Total Mercury	0	0		0	N/A	N/A	N/A	
Total Nickel	0	0		0	N/A	N/A	N/A	
Total Phenols (Phenolics) (PWS)	0	0		0	N/A	N/A	N/A	
Total Selenium	0	0		0	N/A	N/A	N/A	
Total Silver	0	0		0	N/A	N/A	N/A	
Total Thallium	0	0		0	N/A	N/A	N/A	
Total Zinc	0	0		0	N/A	N/A	N/A	
Acrolein	0	0		0	N/A	N/A	N/A	
Acrylonitrile	0	0		0	0.06	0.06	0.6	
Benzene	0	0		0	0.58	0.58	5.81	
Bromoform	0	0		0	7	7.0	70.1	
Carbon Tetrachloride	0	0		0	0.4	0.4	4.0	
Chlorobenzene	0	0		0	N/A	N/A	N/A	
Chlorodibromomethane	0	0		0	0.8	0.8	8.01	
2-Chloroethyl Vinyl Ether	0	0		0	N/A	N/A	N/A	
Chloroform	0	0		0	5.7	5.7	57.1	
Dichlorobromomethane	0	0		0	0.95	0.95	9.51	
1,2-Dichloroethane	0	0		0	9.9	9.9	99.1	
1,1-Dichloroethylene	0	0		0	N/A	N/A	99.1 N/A	
1,1-Dichloroethylene 1,2-Dichloropropane	0	0		0	0.9	0.9	9.01	
1,3-Dichloropropylene	0	0		0	0.9	0.9	2.7	
Ethylbenzene	0	0		0	N/A	N/A	N/A	
Methyl Bromide	0	0		0	N/A	N/A	N/A	
Methyl Chloride	0	0		0	N/A	N/A	N/A	
Methylene Chloride	0	0		0	20	20.0	200	
1,1,2,2-Tetrachloroethane	0	0		0	0.2	0.2	2.0	

Tetrachloroethylene	0	0	0	10	10.0	100	
Toluene	0	0	0	N/A	N/A	N/A	
1,2-trans-Dichloroethylene	0	0	0	N/A	N/A	N/A	
1,1,1-Trichloroethane	0	0	0	N/A	N/A	N/A	
1,1,2-Trichloroethane	0	0	0	0.55	0.55	5.51	
Trichloroethylene	0	0	0	0.6	0.6	6.01	
Vinyl Chloride	0	0	0	0.02	0.02	0.2	
2-Chlorophenol	0	0	0	N/A	N/A	N/A	
2,4-Dichlorophenol	0	0	0	N/A	N/A	N/A	
2,4-Dimethylphenol	0	0	0	N/A	N/A	N/A	
4,6-Dinitro-o-Cresol	0	0	0	N/A	N/A	N/A	
2,4-Dinitrophenol	0	0	0	N/A	N/A	N/A	
2-Nitrophenol	0	0	0	N/A	N/A	N/A	
4-Nitrophenol	0	0	0	N/A	N/A	N/A	
p-Chloro-m-Cresol	0	0	0	N/A	N/A	N/A	
Pentachlorophenol	0	0	0	0.030	0.03	0.3	
Phenol	0	0	0	N/A	N/A	N/A	
2,4,6-Trichlorophenol	0	0	0	1.5	1.5	15.0	
Acenaphthene	0	0	0	N/A	N/A	N/A	
Anthracene	0	0	0	N/A	N/A	N/A	
Benzidine	0	0	0	0.0001	0.0001	0.001	
Benzo(a)Anthracene	0	0	0	0.001	0.001	0.01	
Benzo(a)Pyrene	0	0	0	0.0001	0.0001	0.001	
3,4-Benzofluoranthene	0	0	0	0.001	0.001	0.01	
Benzo(k)Fluoranthene	0	0	0	0.01	0.01	0.1	
Bis(2-Chloroethyl)Ether	0	0	0	0.03	0.03	0.3	
Bis(2-Chloroisopropyl)Ether	0	0	0	N/A	N/A	N/A	
Bis(2-Ethylhexyl)Phthalate	0	0	0	0.32	0.32	3.2	
4-Bromophenyl Phenyl Ether	0	0	0	N/A	N/A	N/A	
Butyl Benzyl Phthalate	0	0	0	N/A	N/A	N/A	
2-Chloronaphthalene	0	0	0	N/A	N/A	N/A	
Chrysene	0	0	0	0.12	0.12	1.2	
Dibenzo(a,h)Anthrancene	0	0	0	0.0001	0.0001	0.001	
1,2-Dichlorobenzene	0	0	0	N/A	N/A	N/A	
1,3-Dichlorobenzene	0	0	0	N/A	N/A	N/A	
1,4-Dichlorobenzene	0	0	0	N/A	N/A	N/A	
3,3-Dichlorobenzidine	0	0	0	0.05	0.05	0.5	
Diethyl Phthalate	0	0	0	N/A	N/A	N/A	
Dimethyl Phthalate	0	0	0	N/A	N/A	N/A	
Di-n-Butyl Phthalate	0	0	0	N/A	N/A	N/A	
2,4-Dinitrotoluene	0	0	0	0.05	0.05	0.5	
2,6-Dinitrotoluene	0	0	0	0.05	0.05	0.5	
1,2-Diphenylhydrazine	0	0	0	0.03	0.03	0.3	
Fluoranthene	0	0	0	N/A	N/A	N/A	
Fluorene	0	0	0	N/A	N/A	N/A	
Hexachlorobenzene	0	0	0	0.00008	0.00008	0.0008	
Hexachlorobutadiene	0	0	0	0.01	0.01	0.1	
Hexachlorocyclopentadiene	0	0	0	N/A	N/A	N/A	
Hexachloroethane	0	0	0	0.1	0.1	1.0	
		-			$\overline{}$		

Indeno(1,2,3-cd)Pyrene	0	0	0	0.001	0.001	0.01	
Isophorone	0	0	0	N/A	N/A	N/A	
Naphthalene	0	0	0	N/A	N/A	N/A	
Nitrobenzene	0	0	0	N/A	N/A	N/A	
n-Nitrosodimethylamine	0	0	0	0.0007	0.0007	0.007	
n-Nitrosodi-n-Propylamine	0	0	0	0.005	0.005	0.05	
n-Nitrosodiphenylamine	0	0	0	3.3	3.3	33.0	
Phenanthrene	0	0	0	N/A	N/A	N/A	
Pyrene	0	0	0	N/A	N/A	N/A	
1,2,4-Trichlorobenzene	0	0	0	N/A	N/A	N/A	

☑ Recommended WQBELs & Monitoring Requirements

No. Samples/Month: 4

	Mass Limits		Concentration Limits						
Pollutants	AML (lbs/day)	MDL (lbs/day)	AML	MDL	IMAX	Units	Governing WQBEL	WQBEL Basis	Comments
Total Copper	Report	Report	Report	Report	Report	μg/L	39.4	AFC	Discharge Conc > 10% WQBEL (no RP)
Free Cyanide	0.19	0.3	9.99	15.6	25.0	μg/L	9.99	THH	Discharge Conc ≥ 50% WQBEL (RP)
Total Zinc	Report	Report	Report	Report	Report	μg/L	311	AFC	Discharge Conc > 10% WQBEL (no RP)
Bis(2-Ethylhexyl)Phthalate	0.061	0.096	3.2	5.0	8.01	μg/L	3.2	CRL	Discharge Conc ≥ 50% WQBEL (RP)

☐ Other Pollutants without Limits or Monitoring

Attachment C TRC Evaluation

Ephrata Borough Plant #2

May 2021

PA0087181 F C F G 1A. В D 2 TRC EVALUATION Input appropriate values in B4:B8 and E4:E7 5.63 = Qstream (cfs)0.5 = CV Daily 2.3 = Q discharge (MGD) 0.5 = CV Hourly 6 30 = no. samples = AFC_Partial Mix Factor 0.55 = Chlorine Demand of Stream = CFC Partial Mix Factor = Chlorine Demand of Discharge 15 = AFC_Criteria Compliance Time (min) = BAT/BPJ Value 720 = CFC Criteria Compliance Time (min) % Factor of Safety (FOS) 0 =Decay Coefficient (K) Source Hefer ence AFC Calculations Reference CFC Calculations 11 TRC 132 iii WLA afc = 0.919 132iii WLA cfc = 0.899 12 PENTOXSD TRG 51a LTAMULT afc = 0.373 5.1c LTAMULT cfc = 0.581 PENTOXSD TRG 5.1b LTA afc= 0.343 5.1d LTA cfc = 0.522 14 15 Source Effluent Limit Calculations 16 PENTOXSD TRG 5.1f AML MULT = 1.231 17 PENTOXSD TRG 5.1g AFC AVG MON LIMIT (mg/l) = 0.42218 INST MAX LIMIT (mg/l) = 1.379 WLA afc (.019/e(-k*AFC_tc)) + [(AFC_Yc*Qs*.019/Qd*e(-k*AFC_tc))... ...+Xd+(AFC_Yc*Qs*Xs/Qd)]*(1-FOS/100) LTAMULT afc EXP((0.5*LN(cvh^2+1))-2.326*LN(cvh^2+1)^0.5) LTA_afc wla afc*LTAMULT afc WLA cfc (.011/e(-k*CFC_tc) + [(CFC_Yc*Qs*.011/Qd*e(-k*CFC_tc))... ...+Xd+(CFC Yc*Qs*Xs/Qd)]*(1-FOS/100) LTAMULT_cfc EXP((0.5*LN(cvd^2/no_samples+1))-2.326*LN(cvd^2/no_samples+1)^0.5) LTA cfc wla_cfc*LTAMULT_cfc AML MULT EXP(2.326*LN((cvd^2/no_samples+1)^0.5)-0.5*LN(cvd^2/no_samples+1)) AVG MON LIMIT MIN(BAT_BPJ,MIN(LTA_afc,LTA_cfc)*AML_MULT) 1.5*((av_mon_limit/AML_MULT)/LTAMULT_afc) INST MAX LIMIT

Attachment D
WET Results

WET Results: 10/19/2017

	DEP Whole	Effluent Toxic	ity (WET) Analysis	Spreadshee	t
Type of Test	Ch	ronic	\neg	Facility Na	me
Species Test		nephales			
Endpoint		vîval		Ephrata WWT	P#1
TIWC (decim No. Per Repl		9		Permit No	
TST b value	0.7	5		PA008718	
TST alpha va					
_					
		pletion Date		Test Comp	letion Date
Replicate		0/2017	Replicate	L	
No.	Control	TIWC	No.	Control	TIWC
1	10	7	1		
2	9	9	2		
3	8	9	3		
4 5	9	10	4 5		
6			6		
7		 	7		
8		 	8		I
9		 	9		
10		 	10		
11	<u> </u>		11		
12		 	12		
13		1	13		
14			14		
15			15		
Mean	9.000	8.750	Mean	0.000	0.000
Std Dev.	0.816	1.258	Std Dev.		
# Replicates	4	4	# Replicates		
T-Test Result		8819	T-Test Result		
Deg. of Freed		5	Deg. of Freed	tom	
Critical T Val		_	49 447 - 4 20 14 4		
		7267	Critical T Valu	ю	
Pass or Fail		_	Critical T Valu Pass or Fail	ie	
Pass or Fail	P	7267 ASS			oletion Date
	P	7267	Pass or Fail		oletion Date
Pass or Fail Replicate No.	P	7267 ASS			oletion Date
Replicate	Test Com	7267 ASS pletion Date	Pass or Fail Replicate	Test Comp	
Replicate No.	Test Com	7267 ASS pletion Date	Pass or Fail Replicate No.	Test Comp	
Replicate No. 1	Test Com	7267 ASS pletion Date	Pass or Fail Replicate No. 1	Test Comp	
Replicate No. 1 2 3	Test Com	7267 ASS pletion Date	Pass or Fail Replicate No. 1 2 3	Test Comp	
Replicate No. 1 2 3 4 5	Test Com	7267 ASS pletion Date	Replicate No. 1 2 3 4 5	Test Comp	
Replicate No. 1 2 3 4 5	Test Com	7267 ASS pletion Date	Replicate No. 1 2 3 4 5	Test Comp	
Replicate No. 1 2 3 4 5 6 7	Test Com	7267 ASS pletion Date	Replicate No. 1 2 3 4 5 6 7	Test Comp	
Replicate No. 1 2 3 4 5 6 7	Test Com	7267 ASS pletion Date	Replicate No. 1 2 3 4 5 6 7	Test Comp	
Replicate No. 1 2 3 4 5 6 7 8	Test Com	7267 ASS pletion Date	Replicate No. 1 2 3 4 5 6 7 8	Test Comp	
Replicate No. 1 2 3 4 5 6 7 8 9	Test Com	7267 ASS pletion Date	Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10	Test Comp	
Replicate No. 1 2 3 4 5 6 7 8 9 10	Test Com	7267 ASS pletion Date	Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11	Test Comp	
Replicate No. 1 2 3 4 5 6 7 8 9 10 11	Test Com	7267 ASS pletion Date	Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11	Test Comp	
Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12	Test Com	7267 ASS pletion Date	Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13	Test Comp	
Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13	Test Com	7267 ASS pletion Date	Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14	Test Comp	
Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12	Test Com	7267 ASS pletion Date	Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13	Test Comp	
Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13	Test Com	7267 ASS pletion Date TIWC	Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14	Test Comp	
Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14	Test Com Control	7267 ASS pletion Date	Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	Test Comp	
Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	Control Control	7267 ASS pletion Date TIWC	Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	Test Comp	
Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev.	Control Control	7267 ASS pletion Date TIWC	Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev.	Test Comp	
Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result	Control Control	7267 ASS pletion Date TIWC	Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev.	Test Comp	
Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Resul Deg. of Free	Control Control 0.000	7267 ASS pletion Date TIWC	Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Resull	Test Comp Control	
Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result	Control Control 0.000	7267 ASS pletion Date TIWC	Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result	Test Comp Control	

. '	DEP Whole	Effluent Toxic	ity (WET) Analysis	Spreadshee	et
Type of Test	ICI-	ronic	\neg	F	
Species Test		nephales	-	Facility Na	me
Endpoint	Gre	owth		Ephrata WW7	TP#1
TIWC (decim		9			
No. Per Repli TST b value	icate [10 0.7	6		Permit No	
TST alpha va				PA008718	31
1 .0					
l	Test Com	pletion Date		Test Comp	oletion Date
Replicate		0/2017	Replicate		
No.	Control	TIWC	No.	Control	TIWC
1	0.259	0.248	1		
2	0.247	0.263	2		
3	0.236	0.294	3		
4	0.339	0.274	4		
5			5		
6			6		
7			7		
8		 	8		
9			9		
10			10		
11 12			11	ļ	
13		 	12 13		
14		 	14	ļ	
15		 	15		
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		II	10		
Mean	0.270	0.270	Mean	0.000	0.000
Std Dev.	0.047	0.019	Std Dev.	0.000	0.000
# Replicates	4	4	# Replicates		
			·		
T-Test Result	3.3	3467	T-Test Result		
Deg. of Freed	om	5	Deg. of Freed	iom	
Critical T Valu			Cultinat T Make		
		7267	Critical T Valu	HO GEL	
Pass or Fail		7267 ASS	Pass or Fail	10	
Pass or Fail	P/	ASS			
,	P/		Pass or Fall		eletion Date
Replicate	Test Com	ASS pletion Date	Pass or Fail Replicate	Test Comp	
Replicate No.	P/	ASS	Pass or Fall Replicate No.		eletion Date
Replicate [No. 1	Test Com	ASS pletion Date	Pass or Fall Replicate No. 1	Test Comp	
Replicate No.	Test Com	ASS pletion Date	Pass or Fall Replicate No.	Test Comp	
Replicate No.	Test Com	ASS pletion Date	Replicate No. 1	Test Comp	
Replicate No.	Test Com	ASS pletion Date	Pass or Fall Replicate No. 1 2 3	Test Comp	
Replicate No. 1 2 3 4	Test Com	ASS pletion Date	Replicate No. 1 2 3	Test Comp	
Replicate No. 1 2 3 4 5	Test Com	ASS pletion Date	Replicate No. 1 2 3 4 5	Test Comp	
Replicate No. 1 2 3 4 5	Test Com	ASS pletion Date	Replicate No. 1 2 3 4 5	Test Comp	
Replicate No. 1 2 3 4 5 6 7 8	Test Com	ASS pletion Date	Pass or Fall Replicate No. 1 2 3 4 5 6 7 8 9	Test Comp	
Replicate No. 1 2 3 4 5 6 7 8 9	Test Com	ASS pletion Date	Pass or Fall Replicate No. 1 2 3 4 5 6 7 8 9 10	Test Comp	
Replicate No. 1 2 3 4 5 6 7 8 9 10	Test Com	ASS pletion Date	Pass or Fall Replicate No. 1 2 3 4 5 6 7 8 9 10 11	Test Comp	
Replicate No. 1 2 3 4 5 6 7 8 9 10 11	Test Com	ASS pletion Date	Pass or Fall Replicate No. 1 2 3 4 5 6 7 8 9 10 11	Test Comp	
Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13	Test Com	ASS pletion Date	Pass or Fall Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13	Test Comp	
Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13	Test Com	ASS pletion Date	Pass or Fall Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14	Test Comp	
Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13	Test Com	ASS pletion Date	Pass or Fall Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13	Test Comp	
Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14	P/ Test Com Control	ASS pletion Date TIWC	Pass or Fall Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	Test Comp	
Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	Test Com	ASS pletion Date	Pass or Fall Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean	Test Comp	
Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev.	P/ Test Com Control	ASS pletion Date TIWC	Pass or Fall Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev.	Test Comp	
Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean	P/ Test Com Control	ASS pletion Date TIWC	Pass or Fall Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean	Test Comp	
Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev.	P/ Test Com Control	ASS pletion Date TIWC	Pass or Fall Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev.	Test Comp Control	
Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates	P/ Test Com Control	ASS pletion Date TIWC	Pass or Fall Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates	Test Comp Control	
Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result	P/ Test Com Control 0.000	ASS pletion Date TIWC	Pass or Fall Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result	Test Comp Control	

Page 10 of 31

	DEP Whole E	ffluent Toxic	ity (WET) Analysis	Spreadshee	t
Type of Test Species Test	ted Ceri	odaphnia	3	Facility Nar	
Endpoint	Surv			Ephrata WWT	P#1
TIWC (decim No. Per Repl			\dashv	Permit No	
TST b value	0.75			PA008718	
TST alpha va	due 0.2				
		letion Date		Test Comp	letion Date
Replicate	The second second second	2017	Replicate	L	
No.	Control	TWIC	No.	Control	TIWC
1	1	1	1		
2	1	1 1	2		
4	1	1	4		
5	 	1	5		
6	1	1	6		
7	1	1	7		
8	1	1	8		
9	1	1	9		
10	1	1	10		
11			11		
12			12		
13			13		
14			14		
15			15		
Mean	1.000	1.000	Mean	0.000	0.000
Std Dev.	0.000	0.000	Std Dev.		
# Replicates	10	10	# Replicates		
T.T1.D1			T T D		
T-Test Result	_		T-Test Result		
Deg. of Freed Critical T Vali			Deg. of Freed Critical T Valu		
Pass or Fail		SS	Pass or Fail	ю	
Pass Or Pail	10:074-13:55		Pass of Pass		
	Test Comp	letion Date		Test Comp	eletion Date
Replicate			Replicate		
No.					
1	Control	TIWC	No.	Control	TIWC
	Control	TIWC		Control	TIWC
2	Control	TIWC	No. 1 2	Control	TIWC
2	Control	TIWC	No. 1 2 3	Control	TIWC
2 3 4	Control	TIWC	No. 1 2 3 4	Control	TIWC
2 3 4 5	Control	TIWC	No. 1 2 3 4 5	Control	TIWC
2 3 4 5	Control	TIWC	No. 1 2 3 4 5 6	Control	TIWC
2 3 4 5 6 7	Control	TIWC	No. 1 2 3 4 5 6 7	Control	TIWC
2 3 4 5 6 7 8	Control	TIWC	No. 1 2 3 4 5 6 7 8	Control	TIWC
2 3 4 5 6 7 8	Control	TIWC	No. 1 2 3 4 5 6 7 8 9	Control	TIWC
2 3 4 5 6 7 8 9	Control	TIWC	No. 1 2 3 4 5 6 7 8 9	Control	TIWC
2 3 4 5 6 7 8 9 10	Control	TIWC	No. 1 2 3 4 5 6 7 8 9 10	Control	TIWC
2 3 4 5 6 7 8 9 10 11	Control	TIWC	No. 1 2 3 4 5 6 7 8 9 10 11	Control	TIWC
2 3 4 5 6 7 8 9 10 11 12	Control	TIWC	No. 1 2 3 4 5 6 7 8 9 10 11 12	Control	TIWC
2 3 4 5 6 7 8 9 10 11 12 13	Control	TIWC	No. 1 2 3 4 5 6 7 8 9 10 11 12 13	Control	TIWC
2 3 4 5 6 7 8 9 10 11 12	Control	TIWC	No. 1 2 3 4 5 6 7 8 9 10 11 12	Control	TIWC
2 3 4 5 6 7 8 9 10 11 12 13	0.000	0.000	No. 1 2 3 4 5 6 7 8 9 10 11 12 13	Control	TIWC
2 3 4 5 6 7 8 9 10 11 12 13 14			No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14	Control	TIWC
2 3 4 5 6 7 8 9 10 11 12 13 14 15	0.000		No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15		TIWC
2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev.	0.000		No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev.		TIWC
2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates	0.000		No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates		TIWC
2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev.	0.000		No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates		TIWC
2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates	0.000 t		No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates	dom	TIWC

	DEP Whole	Effluent Toxic	ity (WET) Analysis	Spreadshee	t
Type of Test		onic		Facility Na	me
Species Test Endpoint		iodaphnia			
TIWC (decim		roduction		Ephrata WWT	P#1
No. Per Repl			_	Permit No	D.
TST b value	0.75	5		PA008718	
TST alpha va	lue 0.2				
		pletion Date		Test Comp	letion Date
Replicate		/2017	Replicate		
No.	Control	TIWC	No.	Control	TIWC
1	28	31	1		
2	26	34	2		
3	29	28	3		
4	28	31	4		
5	22	31	5		
6	25	24	6		
7. 8	19	29	7		
8	26	30	8		
10	27	36	9		
10	30	33	10 11		
12	<u> </u>				
			12		
13			13		
14 15			14		
15			15		
Mean	26.000	30.700	Mean	0.000	0.000
Std Dev.	3.333	3.335	Std Dev.		
# Replicates	10	10	# Replicates		
T-Test Result Deg. of Freed		975	T-Test Result		
Critical T Valu		16 8647	Deg. of Freed Critical T Valu		
Critical T Valu Pass or Fail	9.0 eu	_	-		
	9.0 eu	647	Critical T Valu		
	ie 0.8 P/	647	Critical T Valu	ie	eletion Date
Pass or Fall	e 0.8 P/ Test Comp	647 ASS Detion Date	Critical T Valu Pass or Fail Replicate	Test Comp	
Pass or Fail	ie 0.8 P/	647 ASS	Critical T Valu Pass or Fail	ie	eletion Date
Pass or Fail Replicate No.	e 0.8 P/ Test Comp	647 ASS Detion Date	Critical T Valu Pass or Fail Replicate No. 1	Test Comp	
Replicate No. 1 2	e 0.8 P/ Test Comp	647 ASS Detion Date	Critical T Value Pass or Fail Replicate No. 1 2	Test Comp	
Replicate No. 1 2 3	e 0.8 P/ Test Comp	647 ASS Detion Date	Critical T Value Pass or Fail Replicate No. 1 2 3	Test Comp	
Replicate No. 1 2 3 4	e 0.8 P/ Test Comp	647 ASS Detion Date	Critical T Value Pass or Fail Replicate No. 1 2 3 4	Test Comp	
Replicate No. 1 2 3 4 5	e 0.8 P/ Test Comp	647 ASS Detion Date	Critical T Value Pass or Fail Replicate No. 1 2 3 4 5	Test Comp	
Replicate No. 1 2 3 4 5	e 0.8 P/ Test Comp	647 ASS Detion Date	Replicate No. 1 2 3 4 5 6	Test Comp	
Replicate No. 1 2 3 4 5 6 7	e 0.8 P/ Test Comp	647 ASS Detion Date	Replicate No. 1 2 3 4 5 6 7	Test Comp	
Replicate No. 1 2 3 4 5 6 7	e 0.8 P/ Test Comp	647 ASS Detion Date	Replicate No. 1 2 3 4 5 6 7	Test Comp	
Replicate No. 1 2 3 4 5 6 7 8 9	e 0.8 P/ Test Comp	647 ASS	Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9	Test Comp	
Replicate No. 1 2 3 4 5 6 7 8 9 10	e 0.8 P/ Test Comp	647 ASS	Replicate No. 1 2 3 4 5 6 7 8 9	Test Comp	
Pass or Fall Replicate No. 1 2 3 4 5 6 7 8 9 10 11	e 0.8 P/ Test Comp	647 ASS	Replicate No. 1 2 3 4 5 6 7 8 9 10	Test Comp	
Pass or Fall Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12	e 0.8 P/ Test Comp	647 ASS	Replicate No. 1 2 3 4 5 6 7 8 9 10 11	Test Comp	
Pass or Fall Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13	e 0.8 P/ Test Comp	647 ASS	Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13	Test Comp	
Pass or Fall Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12	e 0.8 P/ Test Comp	647 ASS	Replicate No. 1 2 3 4 5 6 7 8 9 10 11	Test Comp	
Pass or Fall Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	Test Comp	SS Dietion Date	Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	Test Comp	
Pass or Fall Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean	e 0.8 P/ Test Comp	647 ASS	Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	Test Comp	
Pass or Fall Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev.	Test Comp	SS Dietion Date	Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev.	Test Comp	
Pass or Fall Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean	Test Comp	SS Dietion Date	Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	Test Comp	
Pass or Fall Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev.	Test Comp Control	SS Dietion Date	Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev.	Test Comp	
Pass or Fall Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result Deg. of Freed	Test Comp Control	SS Dietion Date	Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result Deg. of Freed	Test Comp Control	
Pass or Fall Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result	Test Comp Control	SS Dietion Date	Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result	Test Comp Control	

WET Results: 09/11/2018

1	DEP Wh	ole Effluent To	oxicity (WET) Analys	is Spreadeb	neet
Type of To		Chronic			
Species To		Pimephales		Facility N	Vame
Endpoint		Survival		Ephrata WV	A/TD #4
TIWC (dec		0.39		Change As	VIP #1
No. Per Re		10		Permit	No.
TST b valu TST alpha		0.75		PA0087	181
101 alpha	value	0.25			
ı	Teet C	ompletion Date			
Replicate		8/21/2018	_		npletion Date
No.	Contr		Replicate		
1	10	10	No.	Control	TIWC
2	9	9	2	-	-
3	10	10	3		-
4	10	10	1 4		-
5			5	-	-
6.			6	-	
. 7			7		+
8			8		+
9			9		
10			10		
11			11		
12			12		
13			13		
14			14		
15			15		
Mean					
Std Dev.	9.750	2.7 22	Mean	0.000	0.000
# Replicates	0.500	0.000	Std Dev.		
w repreates	4	4	₱ Replicates		
T-Test Resu	H	6.7314	T-Test Resul		
Deg. of Free		0.7014	1-1 (681 H0681)		
	dom	6			
Critical T Val		5 0.7267	Deg. of Free	dom	
Critical T Val Pass or Fail	ue	0.7267	Deg. of Free Critical T Val	dom	
	ue	-	Deg. of Free	dom	
	ue	0.7267	Deg. of Free Critical T Val	dom	Netion Data
	ue	0.7267 PASS	Deg. of Free Critical T Val Pass or Fail	dom	pletion Date
Pass or Fail Replicate No.	ue	0.7267 PASS mpletion Date	Deg. of Free Critical T Val	dom	Dietion Date
Pass or Fail Replicate No.	Test Co	0.7267 PASS mpletion Date	Deg. of Free Critical T Val Pass or Fail	dom ue Test Comp	
Pass or Fail Replicate No. 1 2	Test Co	0.7267 PASS mpletion Date	Deg. of Free Critical T Val Pass or Fail Replicate No.	dom ue Test Comp	
Pass or Fail Replicate No. 1 2 3	Test Co	0.7267 PASS mpletion Date	Dog. of Free Critical T Val Pass or Fail Replicate No. 1 2	dom ue Test Comp	
Pass or Fail Replicate No. 1 2 3 4	Test Co	0.7267 PASS mpletion Date	Dog. of Free Critical T Val Pass or Fail Replicate No. 1 2 3 4	dom ue Test Comp	
Pass or Fail Replicate No. 1 2 3 4 5	Test Co	0.7267 PASS mpletion Date	Dog. of Free Critical T Val Pass or Fail Replicate No. 1 2 3 4 5	dom ue Test Comp	
Pass or Fail Replicate No. 1 2 3 4 5 6	Test Co	0.7267 PASS mpletion Date	Dog. of Free Critical T Val Pass or Fail Replicate No. 1 2 3 4 5	dom ue Test Comp	
Pass or Fail Replicate No. 1 2 3 4 5 6 7	Test Co	0.7267 PASS mpletion Date	Dog. of Free Critical T Val Pass or Fail Replicate No. 1 2 3 4 5 6 7	dom ue Test Comp	
Pass or Fail Replicate No. 1 2 3 4 5 6	Test Co	0.7267 PASS mpletion Date	Dog. of Free Critical T Val Pass or Fail Replicate No. 1 2 3 4 5 6 7	dom ue Test Comp	
Pass or Fail Replicate No. 1 2 3 4 5 6 7 8	Test Co	0.7267 PASS mpletion Date	Dog. of Free Critical T Val Pass or Fail Replicate No. 1 2 3 4 5 6 7 8	dom ue Test Comp	
Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9	Test Co	0.7267 PASS mpletion Date	Deg. of Free Critical T Val Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9	dom ue Test Comp	
Replicate No. 1 2 3 4 5 6 7 8 9	Test Co	0.7267 PASS mpletion Date	Deg. of Free Critical T Val Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9	dom ue Test Comp	
Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13	Test Co	0.7267 PASS mpletion Date	Deg. of Free Critical T Val Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9	dom ue Test Comp	
Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14	Test Co	0.7267 PASS mpletion Date	Deg. of Free Critical T Val Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10	dom ue Test Comp	
Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13	Test Co	0.7267 PASS mpletion Date	Dog. of Free Critical T Val Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12	dom ue Test Comp	
Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	Test Co	0.7267 PASS mpletion Date TIWC	Deg. of Free Critical T Val Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13	dom ue Test Comp	
Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean	Test Co	0.7267 PASS mpletion Date	Deg. of Free Critical T Val Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	dom ue Test Comp	
Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev.	Test Co	0.7267 PASS mpletion Date TIWC	Deg. of Free Critical T Val Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Sid Dev.	dom ue Test Comp	
Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean	Test Co	0.7267 PASS mpletion Date TIWC	Deg. of Free Critical T Val Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	dom ue Test Comp	
Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates	Test Co	0.7267 PASS mpletion Date TIWC	Deg. of Free Critical T Val Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Sid Dev. # Replicates	dom ue Test Comp	
Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result	Test Co Control	0.7267 PASS mpletion Date TIWC	Deg. of Free Critical T Val Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Sid Dev. # Replicates T-Test Result	Test Comp	
Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result	Test Co Control	0.7267 PASS mpletion Date TIWC	Deg. of Freedocritical T Val Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Sid Dev. # Replicates T-Test Result Deg. of Freedo	Test Comp Control	
Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result	Test Co Control	0.7267 PASS mpletion Date TIWC	Deg. of Free Critical T Val Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Sid Dev. # Replicates T-Test Result	Test Comp Control	

Page 5 of 28

	DED IN			_		
1	DEP Wh	iole Effluen	t Toxicity (WET) An	alysis	Spreadshe	eet
Type of Tee	#t	Chronic			Facility N	ame
Species Te	sted	Pimephales			· ucincy re	
Endpoint TIWC (deci-		Growth 0.39		_	Ephrata WW	TP#1
No. Per Res		10			Permit N	
TST b value		0.75			PA00871	
TST alpha v	ralue	0.25				
ı						
Replicate		Sompletion E 8/21/2018			Test Com	pletion Date
No.	Contr		C Repli		Control	TIWC
1	0.44				Control	TIWC
2	0.50	2 0.52	27 2			
3	0.50		58 3	:		
4	0.50	6 0.56				
5 6		_	5			
7	-		- 6			
8			— 's			1
9			°			
10			10	,		
11			11	ا ا		
12			. 12			
13 14		-	13			
15						
,,,] 15	' !		
Mean	0.491	0.55	7 Mea	an	0.000	0.000
Std Dev.	0.029	0.02	7 Std D	lev.		
# Replicates	4	4	# Repli	cates		
T-Test Period		10.7950	T.T11			
T-Test Result		10.7358	T-Test I	Result		
T-Test Result Deg. of Freed Critical T Val	dom	10.7358 5 0.7267	Deg. of	Result Freed	om	
Dog. of Free	dom ue	5		Result Freed T Valu	om	
Deg. of Freed Critical T Val	dom ue	5 0.7267 PASS	Deg. of Critical Pass or	Result Freed T Valu	om e	
Deg. of Freed Critical T Val Pass or Fail	dom ue	5 0.7267	Deg. of Critical Pass or	Result Freed T Valu Fail	om e	eletion Date
Deg. of Freed Critical T Val	form ue Test C	0.7267 PASS ompletion D	Deg. of Critical Pass or ate	Result Freed T Valu Fail	om e Test Comp	
Dog. of Freed Critical T Val Pass or Fail Replicate	dom ue	0.7267 PASS ompletion D	Deg. of Critical Pass or ate	Result Freed T Valu Fail	om e	nietion Date
Dog. of Free Critical T Val Pass or Fall Replicate No. 1	form ue Test C	0.7267 PASS ompletion D	Deg. of Critical Pass or ate Replic	Result Freed T Valu Fail	om e Test Comp	
Dog. of Free Critical T Val Pass or Fall Replicate No. 1 2 3	form ue Test C	0.7267 PASS ompletion D	Deg. of Critical Pass or Replic C No. 1 2 3	Result Freed T Valu Fail	om e Test Comp	
Deg. of Free Critical T Val Pass or Fall Replicate No. 1 2 3	form ue Test C	0.7267 PASS ompletion D	Deg. of Critical Pass or ate Replic C No. 1 2 3 4	Result Freed T Valu Fail	om e Test Comp	
Deg. of Free Critical T Val Pass or Fall Replicate No. 1 2 3	form ue Test C	0.7267 PASS ompletion D	Deg. of Critical Pass or ate Replic C No. 1 2 3 4 5	Result Freed T Valu Fail	om e Test Comp	
Deg. of Free Critical T Val Pass or Fall Replicate No. 1 2 3 4 5	form ue Test C	0.7267 PASS ompletion D	Deg. of Critical Pass or atte Replic No. 1 2 3 4 5 6	Result Freed T Valu Fail	om e Test Comp	
Deg. of Free Critical T Val Pass or Fall Replicate No. 1 2 3 4 5 6 7	form ue Test C	0.7267 PASS ompletion D	Deg. of Critical Pass or ate Replic C No. 1 2 3 4 5	Result Freed T Valu Fail	om e Test Comp	
Deg. of Free Critical T Val Pass or Fall Replicate No. 1 2 3 4 5 6 7 8	form ue Test C	0.7267 PASS ompletion D	Deg. of Critical Pass or atte Replic No. 1 2 3 4 5 6 7 8 9	Result Freed T Valu Fail	om e Test Comp	
Deg. of Free Critical T Val Pass or Fall Replicate No. 1 2 3 4 5 6 7 8 9	form ue Test C	0.7267 PASS ompletion D	Deg. of Critical Pass or atte Replic No. 1 2 3 4 5 6 7 8 9 10	Result Freed T Value Fail	om e Test Comp	
Deg. of Free Critical T Val Pass or Fall Replicate No. 1 2 3 4 5 6 7 8 9	form ue Test C	0.7267 PASS ompletion D	Deg. of Critical Pass or ate Replic No. 1 2 3 4 5 6 7 8 9 10 11	Result Freed T Value Fail	om e Test Comp	
Deg. of Free Critical T Val Pass or Fall Replicate No. 1 2 3 4 5 6 7 8 9 10 11	form ue Test C	0.7267 PASS ompletion D	Deg. of Critical Pass or ate Replic C No. 1 2 3 4 5 6 7 8 9 10 11 12	Result Freed T Valu Fail	om e Test Comp	
Deg. of Free Critical T Val Pass or Fall Replicate No. 1 2 3 4 5 6 7 8 9	form ue Test C	0.7267 PASS ompletion D	Deg. of Critical Pass or ate Replic No. 1 2 3 4 5 6 7 8 9 10 11	Result Freed T Valu Fail	om e Test Comp	
Deg. of Free Critical T Val Pass or Fall Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13	form ue Test C	0.7267 PASS ompletion D	Deg. of Critical Pass or atte Replice C No. 1 2 3 4 5 6 7 8 9 10 11 12 13	Result Freed T Valu Fail	om e Test Comp	
Deg. of Free Critical T Val Pass or Fall Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	Test C	5 0.7267 PASS ompletion D	Deg. of Critical Pass or atte Replic No. 1 2 3 4 4 5 6 7 8 9 10 11 12 13 14 15	Result Freed T Valu Fail	om e Test Comp	
Deg. of Free Critical T Val Pass or Fall Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	form ue Test C	5 0.7267 PASS ompletion D	Deg. of Critical Pass or atte Replic No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 Mean	Result Freed T Value Fail	om e Test Comp	
Deg. of Free Critical T Val Pass or Fall Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev.	Test C	5 0.7267 PASS ompletion D	Deg. of Critical Pass or atte Replic No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 Mean Std De Critical Pass or Architecture Replication No. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Result Freed T Value Fail atte [om e Test Comp	
Deg. of Free Critical T Val Pass or Fall Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	Test C	5 0.7267 PASS ompletion D	Deg. of Critical Pass or atte Replic No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 Mean	Result Freed T Value Fail atte [om e Test Comp	
Deg. of Free Critical T Val Pass or Fall Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev.	Test C Contro	5 0.7267 PASS ompletion D	Deg. of Critical Pass or atte Replic No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 Mean Std De Critical Pass or Architecture Replication No. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Result Freed T Value Fail atte [om e Test Comp	
Deg. of Freed Critical T Val Pass or Fall Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Raplicates T-Test Result Deg. of Freed Critical T Val Pass of Freed Critical T Val	Test C Contro	5 0.7267 PASS ompletion D	Deg. of Critical Pass or Critical Pass or Critical Pass or C No. 1 2 3 4 5 6 6 7 8 9 10 11 11 2 13 14 15 Mea. Std De # Replic T-Test R Deg. of I	Result Freed T Value Fail	om e Test Comp Control	
Deg. of Freet Critical T Val Pass or Fall Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Skd Dev. # Replicates T-Test Result	Test C Contro	5 0.7267 PASS ompletion D	Deg. of Critical Pass or Critical Pass	Result Freed T Value Fail	om e Test Comp Control	

Page 6 of 28

	DEP Wh	ole Effluent To	xicity (WET) Analys	ie Cornadali	
Type of Te		Chronic			
Species Te	sted	Ceriodaphnia		Facility N	ame
Endpoint		Reproduction		Ephrata WW	TD 44
TIWC (deci		0.39		сриван му	112.81
No. Per Re		1		Permit F	lo.
TST b value TST alpha		0.75		PA00871	81
151 aipisa	varue	0.2			
1	Test C	Completion Date		T	
Replicate		8/21/2018	Replicate		pletion Date
No.	Contr		No.	Control	TIWC
1	40	38	1 1	Common	T 11110
2	47	37	2		
3	40	37	. 3		
4	39	38	4		
5	38	31	5		
6	38	34	6		
7 8	40	43	7 7		
9	34	35	- 8		
10	41	39	9		
11			10		
12			11	-	
13		_	13	-	-
. 14			14		
15			15		-
Mean	38.700		Mean	0.000	0.000
Std Dev.	4.448	3.433	Std Dev.		
# Replicates	10	10	# Replicates	1	
T-Test Result		5.4659			
Dog of Eres			T-Test Resul	-	
Deg. of Freed Critical T Val	dom	17	Deg. of Free	dom	
Deg. of Freed Critical T Val Pass or Fail	dom	17 0.8633	Deg. of Free Critical T Val	dom	
Critical T Val	dom ue	17 0.8633 PASS	Deg. of Free	dom	
Critical T Val Pass or Fail	dom ue	17 0.8633	Deg. of Free Critical T Val	dom	letion Date
Critical T Val Pass or Fail Replicate	iom ue Test Co	17 0.8633 PASS mpletion Date	Deg. of Free Critical T Val	dom	letion Date
Critical T Vali Pass or Fail Replicate No.	dom ue	17 0.8633 PASB empletion Date	Deg. of Free Critical T Val Pass or Fall Replicate No.	dom	letion Date
Critical T Val Pass or Fail Replicate No.	iom ue Test Co	17 0.8633 PASS mpletion Date	Deg. of Free Critical T Val Pass or Fall Replicate No.	dom ue Test Comp	
Pass or Fail Replicate No. 1	iom ue Test Co	17 0.8633 PASS mpletion Date	Deg. of Free Critical T Val Pass or Fall Replicate No. 1	dom ue Test Comp	
Critical T Val Pass or Fail Replicate No.	iom ue Test Co	17 0.8633 PASS mpletion Date	Deg. of Free Critical T Val Pass or Fall Replicate No. 1 2 3	dom ue Test Comp	
Pass or Fail Replicate No. 1 2 3	iom ue Test Co	17 0.8633 PASS mpletion Date	Deg. of Free Critical T Val Pass or Fail Replicate No. 1 2 3	dom ue Test Comp	
Replicate No. 1 2 3 4	iom ue Test Co	17 0.8633 PASS mpletion Date	Deg. of Free Critical T Val Pass or Fall Replicate No. 1 2 3	dom ue Test Comp	
Replicate No. 1 2 3 4 5 6 7	iom ue Test Co	17 0.8633 PASS mpletion Date	Deg. of Free Critical T Val Pass or Fall Replicate No. 1 2 3 4 5	dom ue Test Comp	
Replicate No. 1 2 3 4 5 6 7 8	iom ue Test Co	17 0.8633 PASS mpletion Date	Deg. of Free Critical T Val Pass or Fall Replicate No. 1 2 3 4 5	dom ue Test Comp	
Replicate No. 1 2 3 4 5 6 7 8 9	iom ue Test Co	17 0.8633 PASS mpletion Date	Deg. of Free Critical T Val Pass or Fall Replicate No. 1 2 3 4 5 6 7 8	dom ue Test Comp	
Replicate No. 1 2 3 4 5 6 7 8 9 10	iom ue Test Co	17 0.8633 PASS mpletion Date	Deg. of Free Critical T Val Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9	dom ue Test Comp	
Replicate No. 1 2 3 4 5 6 7 8 9 10 11	iom ue Test Co	17 0.8633 PASS mpletion Date	Deg. of Free Critical T Val Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9	dom ue Test Comp	
Replicate No. 1 2 3 4 5 6 7 8 9 10 11	iom ue Test Co	17 0.8633 PASS mpletion Date	Deg. of Free Critical T Val Pass or Fall Replicate No. 1 2 3 4 5 6 7 8 9 10 11	dom ue Test Comp	
Replicate No. 1 2 3 4 5 6 7 8 9 10 11	iom ue Test Co	17 0.8633 PASS mpletion Date	Deg. of Free Critical T Val Pass or Fall Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13	dom ue Test Comp	
Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13	iom ue Test Co	17 0.8633 PASS mpletion Date	Deg. of Free Critical T Val Pass or Fall Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13	dom ue Test Comp	
Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	iom ue Test Co	17 0.8633 PASS mpletion Date	Deg. of Free Critical T Val Pass or Fall Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13	dom ue Test Comp	
Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	iom ue Test Co	17 0.8633 PASS mpletion Date	Deg. of Free Critical T Val Pass or Fall Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13	dom ue Test Comp	
Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev.	Test Co	17 0.8633 PASB impletion Date	Deg. of Free Critical T Val Pass or Fall Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13	dom ue Test Comp	
Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	Test Co	17 0.8633 PASB impletion Date	Deg. of Free Critical T Val Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	dom ue Test Comp	
Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates	Test Co	17 0.8633 PASB impletion Date	Deg. of Free Critical T Val Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev.	dom ue Test Comp	
Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result	Test Co Control	17 0.8633 PASB impletion Date	Deg. of Free Critical T Val Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result	Test Comp	
Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result	Test Co Control	17 0.8633 PASB impletion Date	Deg. of Freedoctrical T Val Pass or Fall Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result Deg. of Freedoc	Test Comp Control	
Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result	Test Co Control	17 0.8633 PASB impletion Date	Deg. of Free Critical T Val Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result	Test Comp Control	

Page 20 of 28

	DED WE	ole Effluent Te	winds described		
1	DEP WIN	ole Emilient To	xicity (WET) Analysi	s Spreadshe	et
Type of Tes		Chronic		Facility N	ame
Species Ter Endpoint	sted	Ceriodaphnia			
TIWC (deck	mall	Survival 0.39		Ephrata WW	TP#1
No. Per Rep		1		Permit N	lo.
TST b value		0.75		PA00871	
TST alpha v	alue	0.2			
ı	Total C	ompletion Date			
Replicate		8/21/2018	Replicate	Test Com	pletion Date
No.	Contr		Replicate No.	Control	TIWC
1	1	1	1		T
2	1	1	2		1
3	1	1	3		
4 5	1.	1	4		
6	1	1	_ 5		
7	1	1	6 7	-	
8	1	1 1	d é		-
9	1	1	9		
10	1	1	10		
11			11		
12			12		
13			13		
14			14		
15			15		
Mean	1.000	1.000	Mean		
Std Dev.	0.000		Std Dev.	0.000	0.000
# Replicates	10	10	# Replicates		
			a copromo		
T-Test Result			T-Test Result	t	
Deg. of Freed	lom		Dog. of Freed	dom	
Deg. of Freed Critical T Valu	lom ie		Deg. of Freed Critical T Valu	dom	
Deg. of Freed	lom ie	PASS	Dog. of Freed	dom	
Deg. of Freed Critical T Valu	lom ie	PASS	Deg. of Freed Critical T Valu	dom	eletion Date
Deg. of Freed Critical T Valu	lom ie		Deg. of Freed Critical T Valu Pass or Fall	dom	eletion Date
Deg. of Freed Critical T Valu Pass or Fall Replicate No.	lom ie	empiction Date	Deg. of Freed Critical T Valu	dom	eletion Date
Deg. of Freed Critical T Valu. Pass or Fall Replicate No.	om ie Test Co	empiction Date	Deg. of Freed Critical T Value Pass or Fall Replicate No.	dom ae Test Comp	
Deg. of Freed Critical T Valu. Pass or Fall Replicate No. 1	om ie Test Co	empiction Date	Deg. of Freed Critical T Value Pass or Fall Replicate No.	dom ae Test Comp	
Deg. of Freed Critical T Valu. Pass or Fall Replicate No. 1 2 3	om ie Test Co	empiction Date	Dog. of Freed Critical T Value Pass or Fall Replicate No. 1	dom ue Test Comp	
Deg. of Freed Critical T Valu. Pass or Fall Replicate No. 1	om ie Test Co	empiction Date	Deg. of Freed Critical T Value Pass or Fall Replicate No. 1 2 3	dom ue Test Comp	
Deg. of Freed Critical T Valu. Pass or Fall Replicate No. 1 2 3 4	om ie Test Co	empiction Date	Deg. of Freet Critical T Value Pass or Fall Replicate No. 1 2 3 4 5	dom ue Test Comp	
Page of Freed Critical T Value Page or Fall Replicate No. 1 2 3 4 5 6 7	om ie Test Co	empiction Date	Deg. of Freed Critical T Value Pass or Fall Replicate No. 1 2 3	dom ue Test Comp	
Deg. of Freed Critical T Valu Pass or Fall Replicate No. 1 2 3 4 5 6 7 8	om ie Test Co	empiction Date	Deg. of Freed Critical T Value Pass or Fall Replicate No. 1 2 3 4 5	dom ue Test Comp	
Page of Freed Critical T Value Page or Fall Replicate No. 1 2 3 4 5 6 6 7 8 9	om ie Test Co	empiction Date	Deg. of Freed Critical T Value Pass or Fall Replicate No. 1 2 3 4 5 6 7 8	dom ue Test Comp	
Deg. of Freed Critical T Valu. Pass or Fall Replicate No. 1 2 3 4 5 6 7 8 9	om ie Test Co	empiction Date	Deg. of Freed Critical T Value Pass or Fall Replicate No. 1 2 3 4 5 6 7 8 9	dom ue Test Comp	
Deg. of Freed Critical T Valu Pass or Fall Replicate No. 1 2 3 4 5 6 7 8 9	om ie Test Co	empiction Date	Deg. of Freed Critical T Value Pass or Fall Replicate No. 1 2 3 4 5 6 7 8 9 10 11	dom ue Test Comp	
Deg. of Freed Critical T Valu. Pass or Fall Replicate No. 1 2 3 4 5 6 7 8 9	om ie Test Co	empiction Date	Deg. of Freed Critical T Value Pass or Fall Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12	dom ue Test Comp	
Deg. of Freed Critical T Valu Pass or Fall Replicate No. 1 2 3 4 5 6 7 8 9 10	om ie Test Co	empiction Date	Deg. of Freet Critical T Value Pass or Fall Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13	dom ue Test Comp	
Dog. of Freed Critical T Valu Pass or Fall Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13	om ie Test Co	empiction Date	Deg. of Freed Critical T Value Pass or Fall Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12	dom ue Test Comp	
Deg. of Freed Critical T Valu Pass or Fall Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14	Test Co	empiction Date	Deg. of Freet Critical T Value Pass or Fall Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14	dom ue Test Comp	
Deg. of Freed Critical T Valu Pass or Fall Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	om ie Test Co	empiction Date	Deg. of Freet Critical T Value Pass or Fall Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean	dom ue Test Comp	
Deg. of Freed Critical T Valu Pass or Fall Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev.	Test Co	I TIWC	Deg. of Freet Critical T Value Pass or Fall Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Sid Dev.	dom ae Test Comp	
Deg. of Freed Critical T Valu Pass or Fall Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	Test Co	I TIWC	Deg. of Freet Critical T Value Pass or Fall Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean	dom ae Test Comp	
Deg. of Freed Critical T Valu Pass or Fall Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev.	Test Co	I TIWC	Deg. of Freet Critical T Value Pass or Fall Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates	dom ae Test Comp	
Deg. of Freed Critical T Valu. Pass or Fall Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev.	Test Co Contro	I TIWC	Deg. of Freet Critical T Value Pass or Fall Replicate No. 1 2 3 4 5 8 7 8 9 10 11 12 13 14 15 Mean Sid Dev. # Replicates T-Test Result	Test Comp	
Deg. of Freed Critical T Valu. Pass or Fall Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result	Test Co Contro 0.000	I TIWC	Deg. of Freet Critical T Value Pass or Fall Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates	Test Comp Control	

Page 21 of 28

WET Results: 09/09/2019

D D	EP Whole I	Effluent Toxici	ty (WET) Analysis	Spreadshee	t
Type of Test Species Tester	Chro	onic ephales		Facility Nar	me
Endpoint	Surv		-	Ephrata WWT	P# a
TIWC (decimal	50-01	A Company of the Comp			
No. Per Replic				Permit No	
TST b value TST alpha valu	0.75 te 0.25			PA008718	1
151 alpha vaic	W 0.23	,			
	Test Comp	letion Date		Test Comp	letion Date
Replicate		2019	Replicate		
No.	Control	TIWC	No.	Control	TIWC
1	10	10	1		
2	10	10	2		
3	10	8	3		
4	10	10	4		
5			5		
6			6		
7			7		
8			8		
9			9		
10			10		
11			11		
12			12		
13			13		
14			14		
15			15		
	40.000				0.000
Mean	10.000	9.500	Mean	0.000	0.000
Std Dev.	0.000	1.000	Std Dev.		
# Replicates	4	4	# Replicates		
T-Test Result	3.6	316	T-Test Result		
Deg. of Freedo		3	Deg. of Freed		
Critical T Value		649	Critical T Valu		
Pass or Fail	subtraction Continue	Delin Delin Deli	Pass or Fail		
		33			
		SS			
	200000000000000000000000000000000000000	letion Date		Test Comp	letion Date
Replicate	200000000000000000000000000000000000000	***************************************	Replicate	Test Comp	letion Date
Replicate No.	200000000000000000000000000000000000000	***************************************	Replicate No.	Test Comp	lietion Date
	Test Comp	eletion Date	No.		
No. 1 2	Test Comp	eletion Date	No. 1 2		
No. 1 2 3	Test Comp	eletion Date	No. 1 2 3		
No. 1 2 3 4	Test Comp	eletion Date	No. 1 2 3 4		
No. 1 2 3 4	Test Comp	eletion Date	No. 1 2 3 4 5		
No. 1 2 3 4 5	Test Comp	eletion Date	No. 1 2 3 4 5		
No. 1 2 3 4 5	Test Comp	eletion Date	No. 1 2 3 4 5 6 7		
No. 1 2 3 4 5 6 7	Test Comp	eletion Date	No. 1 2 3 4 5 6 7 8		
No. 1 2 3 4 5 6 7 8	Test Comp	eletion Date	No. 1 2 3 4 5 6 7 8		
No. 1 2 3 4 5 6 7 8 9	Test Comp	eletion Date	No. 1 2 3 4 5 6 7 8 9		
No. 1 2 3 4 5 6 7 8 9 10	Test Comp	eletion Date	No. 1 2 3 4 5 6 7 8 9 10		
No. 1 2 3 4 5 6 7 8 9 10 11	Test Comp	eletion Date	No. 1 2 3 4 5 6 7 8 9 10 11		
No. 1 2 3 4 5 6 7 8 9 10 11 12 13	Test Comp	eletion Date	No. 1 2 3 4 5 6 7 8 9 10 11 12 13		
No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14	Test Comp	eletion Date	No. 1 2 3 4 5 6 7 8 9 10 11 12 13		
No. 1 2 3 4 5 6 7 8 9 10 11 12 13	Test Comp	eletion Date	No. 1 2 3 4 5 6 7 8 9 10 11 12 13		
No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14	Test Comp	TIWC	No. 1 2 3 4 5 6 7 8 9 10 11 12 13		
No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	Test Comp	eletion Date	No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15		
No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev.	Test Comp	TIWC	No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev.		
No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	Test Comp	TIWC	No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15		
No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev.	Test Comp	TIWC	No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev.	Control	
No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates	Control Control	TIWC	No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates	Control	
No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result	Control 0.000	TIWC	No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result	Control	

Page 8 of 30

		William of Toyloit	y (WET) Analysis	Corcordobac	
,	JEP WHOLE	Muent roxiday	y (WET) Analysis	Spreadshee	τ
Type of Test	Chro	11.70.00		Facility Nar	ne
Species Test		phales			
Endpoint TIWC (decima	Grov all 0.39			Ephrata WWT	P#. 4
No. Per Repli			-	Permit No	L.
TST b value	0.75			PA008718	
TST alpha va					
					_
		letion Date		Test Comp	letion Date
Replicate		2019	Replicate		771740
No.	Control	TIWC	No.	Control	TIWC
1	0.402	0.466	1		
2	0.438	0.355	2		
3	0.442	0.414	3		
4	0.439	0.477	4		
5			5		
6 7			6 7		
7					
8	-		8		
9			9		
10			10		
11			11		
12			12		
13 14		-	13		
			14		\vdash
15			10 [
Mean	0.430	0.428	Mean	0.000	0.000
Mean Std Dev.	0.430	0.428	Std Dev.	0.000	0.000
# Replicates	4	0.056	# Replicates		
# reproses	7	*	* rvapauseus		
T-Test Result	3.6	530	T-Test Result		
Deg. of Freed		4	Deg. of Freed		
Critical T Valu	Liver .	*		0411	
THE PERSON NAMED IN COLUMN	0.7	407	Critical T Valu	en.	
Pass or Fail	18 0.74 PA	Under helper help	Critical T Valu Pass or Fail	e	
	miles, elles i edite	Under helper help		e	
	PA	Under helper help			eletion Date
	PA Test Comp	SS eletion Date	Pass or Fail	Test Comp	
Pass or Fail Replicate No.	PA	ss	Pass or Fail Replicate [letion Date
Replicate No.	PA Test Comp	SS eletion Date	Pass or Fail Replicate No. 1	Test Comp	
Pass or Fail Replicate No. 1 2	PA Test Comp	SS eletion Date	Replicate No.	Test Comp	
Replicate No.	PA Test Comp	SS eletion Date	Replicate [No. 1 2 3	Test Comp	
Replicate No.	PA Test Comp	SS eletion Date	Pass or Fall Replicate [No. 1 2 3 4	Test Comp	
Replicate No. 1 2 3 4 5	PA Test Comp	SS eletion Date	Pass or Fall Replicate [No. 1 2 3 4 5	Test Comp	
Replicate No. 1 2 3 4 5 6	PA Test Comp	SS eletion Date	Pass or Fall Replicate [No. 1 2 3 4 5 6	Test Comp	
Replicate No. 1 2 3 4 5 6 7	PA Test Comp	SS eletion Date	Replicate No. 1 2 3 4 5 6 7	Test Comp	
Replicate No. 1 2 3 4 5 6 7 8	PA Test Comp	SS eletion Date	Replicate No. 1 2 3 4 5 6 7	Test Comp	
Replicate No. 1 2 3 4 5 6 7 8 9	PA Test Comp	SS eletion Date	Pass or Fall Replicate [No. 1 2 3 4 5 6 7 8 9	Test Comp	
Replicate No. 1 2 3 4 5 6 7 8 9 10	PA Test Comp	SS eletion Date	Pass or Fall Replicate [No. 1 2 3 4 5 6 7 8 9	Test Comp	
Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11	PA Test Comp	SS eletion Date	Pass or Fail Replicate [No. 1 2 3 4 5 6 7 8 9 10 11	Test Comp	
Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12	PA Test Comp	SS eletion Date	Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12	Test Comp	
Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13	PA Test Comp	SS eletion Date	Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13	Test Comp	
Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14	PA Test Comp	SS eletion Date	Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14	Test Comp	
Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13	PA Test Comp	SS eletion Date	Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13	Test Comp	
Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	Test Comp Control	SS sletion Date	Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	Test Comp	
Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean	PA Test Comp	SS eletion Date	Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean	Test Comp	
Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev.	Test Comp Control	SS sletion Date	Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev.	Test Comp	
Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean	Test Comp Control	SS sletion Date	Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean	Test Comp	
Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev.	Test Comp Control	SS sletion Date	Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev.	Test Comp Control	
Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result	Test Comp Control	SS sletion Date	Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result	Test Comp Control	
Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates	Test Comp Control	SS sletion Date	Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates	Test Comp Control	
Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Sid Dev. # Replicates T-Test Result Deg. of Freedi	Test Comp Control	SS sletion Date	Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result Deg. of Freeds	Test Comp Control	

Page 9 of 30

l '	DEP Whole	Effluent Toxici	ty (WET) Analysis	Spreadshee	t
Type of Test Species Test		onic iodaphnia	7 —	Facility Nar	me
Endpoint		vival	-	Ephrata WWT	P# 2
TIWC (decim	al) 0.39				
No. Per Repli				Permit No	
TST b value TST alpha va	0.75 lue 0.2)		PA008718	
101 alpha ta	0.2				
}	Test Comp	sletion Date		Test Comp	letion Date
Replicate	8/20	/2019	Replicate		
No.	Control	TWIC	No.	Control	TIWC
1	11	1	1		
2	1	1	2		
3	1	1	3		
. 4	11	1	4		
5	1	1	5		
6	1	1	6		
7	1	1	7		
8	11	1	8		
9	11	1	9		
10	1	1	10		
11			11		
12			12		
13			13 14		
15					
15			15		
Mean	1.000	1.000	Mean	0.000	0.000
Std Dev.	0.000	0.000	Std Dev.	0.000	0.000
# Replicates	10	10	# Replicates		
* repression	10	10	· respectance		
T-Test Result			T-Test Result		
Deg. of Freed			Deg. of Freed		
Critical T Valu			Critical T Valu		
Pass or Fail	PA	SS	Pass or Fail		
l .	Test Comp	letion Date			
Replicate				Test Comp	letion Date
			Replicate		
No.	Control	TIWC	No.	Control	letion Date
1	Control	TIWC	No. 1		
1 2	Control	TIWC	No. 1 2		
1 2 3	Control	TIWC	No. 1 2 3		
1 2 3 4	Control	TIWC	No. 1 2 3 4		
1 2 3 4 5	Control	TIWC	No. 1 2 3 4 5		
1 2 3 4 5	Control	TIWC	No. 1 2 3 4 5		
1 2 3 4 5 6 7	Control	TIWC	No. 1 2 3 4 5 6 7		
1 2 3 4 5 6 7 8	Control	TIWC	No. 1 2 3 4 5 6 7 8		
1 2 3 4 5 6 7 8	Control	TIWC	No. 1 2 3 4 5 6 7 8		
1 2 3 4 5 6 7 8 9	Control	TIWC	No. 1 2 3 4 5 6 7 8 9		
1 2 3 4 5 6 7 8 9	Control	TIWC	No. 1 2 3 4 5 6 7 8 9 10		
1 2 3 4 5 6 7 8 9	Control	TIWC	No. 1 2 3 4 5 6 7 8 9		
1 2 3 4 5 6 7 8 9 10 11	Control	TIWC	No. 1 2 3 4 5 6 7 8 9 10 11		
1 2 3 4 5 6 7 8 9 10 11 12	Control	TIWC	No. 1 2 3 4 5 6 7 8 9 10 11 12		
1 2 3 4 5 6 7 8 9 10 11 12 13	Control	TIWC	No. 1 2 3 4 5 6 7 8 9 10 11 12 13		
1 2 3 4 5 6 7 8 9 10 11 12 13	Control	TIWC	No. 1 2 3 4 5 6 7 8 9 10 11 12 13		
1 2 3 4 5 6 7 8 9 10 11 12 13 14			No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15		
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15			No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15		
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev.			No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev.		
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates	0.000		No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result	Control	
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev, # Replicates T-Test Result Deg. of Freedi	0.00D		No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Sid Dev. # Replicates T-Test Result Deg. of Freedi	Control	
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates	0.00D		No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result	Control	

Page 22 of 30

'	DEP Whole I	Effluent Toxicity	(WET) Analysis	Spreadsheet	t
Type of Test	Chr	onic	7	Facility Nan	ne
Species Test		odaphnia	1		
Endpoint		roduction	1 1 1	Ephrata WWT	P# 2
TIWC (decim					
No. Per Repl]	Permit No	THE RESERVE AND ADDRESS OF THE PARTY.
TST b value	· 0.75	,		PA008718	1
TST alpha va	iide 0.2				
	Test Comp	eletion Date		Test Comp	letion Date
Replicate		2019	Replicate		
No.	Control	TIWC	No.	Control	TIWC
1	34	36	1 [
2	35	35	2		
3	.38	42	3		
4	35	37	4		
5	33	35	5		
6	34	33	6		
7	34	36	7		
8	38	28	8		
9	38	34	9		
10	34	38	10		
11			11		
12			12		
13			13		
14			14		
15			15		
10			10 [
Mean	35,300	35.400	Mean	0.000	0.000
	1.947	3,596	Std Dev.	0.000	0.000
Std Dev.		3,595			
# Replicates	10	10	# Replicates		
T-Test Result	7.0	716	T-Test Result		
		4	Deg. of Freed		
Deg. of Freed Critical T Valu		681	Critical T Valu		
Pass or Fail	PA		Pass or Fall		
Pass or Fail	4,111,111,111	133	Pass Of Fall		
	Test Comr	letion Date		Test Comp	letion Date
Danticata	Test Comp	eletion Date	Reglicate	Test Comp	letion Date
Replicate No.			Replicate No.		letion Date
No.	Test Comp Control	TIWC	No.	Test Comp Control	
No.					
No. 1 2			No. 1		
No. 1 2 3			No. 1 2		
No. 1 2 3 4			No. 1 2 3		
No. 1 2 3 4 5			No. 1 2 3 4		
No. 1 2 3 4 5			No. 1 2 3 4 5		
No. 1 2 3 4 5 6 7			No. 1 2 3 4 5		
No. 1 2 3 4 5 6 7			No. 1 2 3 4 5 6 7		
No. 1 2 3 4 5 6 7 8			No. 1 2 3 4 5 6 7		
No. 1 2 3 4 5 6 7 8 9			No. 1 2 3 4 5 6 7 8 9		
No. 1 2 3 4 5 6 7 8			No. 1 2 3 4 5 6 7 8		
No. 1 2 3 4 5 6 7 8 9 10			No. 1 2 3 4 5 6 7 8 9 10		
No. 1 2 3 4 5 6 7 8 9 10 11 12			No. 1 2 3 4 5 6 7 8 9 10 11 12 13		
No. 1 2 3 4 5 6 7 8 9 10 11 12 13			No. 1 2 3 4 5 6 7 8 9 10 11 12 13		
No. 1 2 3 4 5 6 7 8 9 10 11 12			No. 1 2 3 4 5 6 7 8 9 10 11 12 13		
No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14	Control	TIWC	No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14		
No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15			No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15		
No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev.	Control	TIWC	No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev.		
No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	Control	TIWC	No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15		
No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates	0.000	TIWC	No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates		
No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result	0.000	TIWC	No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result	Control	
No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates	0.000	TIWC	No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates	Control	

Page 23 of 30

WET Results: 09/21/2020

		STREET, LOCKER	v /WFT\ Analysis /	Spreadshee	
			ty (WET) Analysis	-	
Type of Test		ronic		Facility Nar	me
Species Test		rephales] ,		
Endpoint		vival		Ephrata WWT	P#1
TIWC (decima No. Per Repli)	-	Downit N/	
No. Per Repli TST b value	icate [10 0.79		ــــــــــــــــــــــــــــــــــــــ	PA008718	
TST b value TST alpha va				PADOUTE	1
191 aibiie 4	lue v	3			
l	Tool Com	Latina Plate		Total Comm	eletion Date
		pletion Date		Test comp	letion Date
Replicate		2020	Replicate		70300
No.	Control	TIWC	No.	Control	TIWC
1	10	10	1		
2	10	10	2		
3	10	10	3		
4	10	10	4 [
5			5		
6			6		
7			7		
ı i			8		
9		-	9		
10		-	10		
					
11		-	11		
12			12		
13			13		
14			14		
15			15		
-					
Mean	10.000	10.000	Mean	0.000	0.000
Std Dev.	0.000	0.000	Std Dev.	Without	W
# Replicates	4	0.000	# Replicates		
# Nepitales	~	4	# Propriessor		
T Tool Doguit					
T-Test Result			T Tool Beguil		
Econorie			T-Test Result		
Deg. of Freedo	lom		Deg. of Freedo	iom	
Critical T Valu	lom Je		Deg. of Freedo Critical T Valu	iom	
-	lom Je	ASS	Deg. of Freedo	iom	
Critical T Valu	om e P/		Deg. of Freedo Critical T Valu	om e	
Critical T Valu Pass or Fail	om e P/	ASS	Deg. of Freedi Critical T Valu Pass or Fail	om e	letion Date
Critical T Valu Pass or Fail Replicate	om ic P/	pletion Date	Deg. of Freeds Critical T Valu Pass or Fail Replicate	om ie Test Comp	
Critical T Valu Pass or Fail	om e P/		Deg. of Freedi Critical T Valu Pass or Fail	om e	eletion Date
Critical T Valu Pass or Fail Replicate	om ic P/	pletion Date	Deg. of Freeds Critical T Valu Pass or Fail Replicate	om ie Test Comp	
Critical T Valu Pass or Fail Replicate No.	om ic P/	pletion Date	Deg. of Freeds Critical T Valu Pass or Fail Replicate [No.	om ie Test Comp	
Critical T Valu Pass or Fail Replicate [No. 1 [om ic P/	pletion Date	Deg. of Freeds Critical T Valu Pass or Fail Replicate [No. 1 [om ie Test Comp	
Critical T Value Pass or Fail Replicate [No. 1 2	om ic P/	pletion Date	Deg. of Freeds Critical T Valu Pass or Fail Replicate [No. 1 [2]	om ie Test Comp	
Critical T Value Pass or Fail Replicate No. 1 2 3 4	om ic P/	pletion Date	Deg. of Freeds Critical T Valu Pass or Fail Replicate [No. 1 [2] 3] 4	om ie Test Comp	
Critical T Value Pass or Fail Replicate No. 1 2 3 4 5	om ic P/	pletion Date	Deg. of Freedi Critical T Valu Pass or Fail Replicate [No. 1 2 3 4 5	om ie Test Comp	
Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6	om ic P/	pletion Date	Deg. of Freedi Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6	om ie Test Comp	
Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7	om ic P/	pletion Date	Deg. of Freedi Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7	om ie Test Comp	
Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8	om ic P/	pletion Date	Deg. of Freedi Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7	om ie Test Comp	
Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9	om ic P/	pletion Date	Deg. of Freedi Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8	om ie Test Comp	
Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10	om ic P/	pletion Date	Deg. of Freeds Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9	om ie Test Comp	
Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9	om ic P/	pletion Date	Deg. of Freeds Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10	om ie Test Comp	
Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10	om ic P/	pletion Date	Deg. of Freeds Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9	om ie Test Comp	
Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11	om ic P/	pletion Date	Deg. of Freeds Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10	om ie Test Comp	
Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12	om ic P/	pletion Date	Deg. of Freeds Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11	om ie Test Comp	
Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13	om ic P/	pletion Date	Deg. of Freeds Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13	om ie Test Comp	
Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14	om ic P/	pletion Date	Deg. of Freeds Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13	om ie Test Comp	
Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	Test Comp	TIWC	Deg. of Freeds Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14	om ie Test Comp	
Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean	om ic P/	pletion Date	Deg. of Freeds Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 8 7 8 9 10 11 12 13 14 15	om ie Test Comp	
Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev.	Test Comp	TIWC	Deg. of Freeds Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 8 7 8 9 10 11 12 13 14 15 Mean Std Dev.	om ie Test Comp	
Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean	Test Comp	TIWC	Deg. of Freeds Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 8 7 8 9 10 11 12 13 14 15	om ie Test Comp	
Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates	Test Comp Control	TIWC	Deg. of Freedi Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates	Test Comp	
Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 15 Mean Sid Dev. # Replicates T-Test Result	Test Comp Control	TIWC	Deg. of Freedication T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result	Test Comp	
Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 15 Mean Sid Dev. # Replicates T-Test Result Deg. of Freedi	Test Comp Control 0.000	TIWC	Deg. of Freeds Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result Deg. of Freeds	Test Comp Control	
Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 15 Mean Sid Dev. # Replicates T-Test Result	Test Comp Control 0.000	TIWC	Deg. of Freedication T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result	Test Comp Control	

Page 8 of 30

	DEP Wh	ole Effluent Tox	icity (WET) Analysis	Spreadshee	t
Type of Test		Chronic	_	Facility Na	me
Species Test		Pirnephales		r aroung rus	
Endpoint		Growth		Ephrata WWI	TP #1
TIWC (decim		0.39			
No. Per Repl	icate	10		Permit No	
TST b value TST alpha va	-free	0.75		PA008718	51
151 aipna va	iliue	0.25			
	Test C	Completion Date		Test Completion Date	
Replicate		9/8/2020	Replicate		
No.	Contr	ol TIWC	No.	Control	TIWC
1	0.316	5 0.388] 1		
2	0.348	8 0.356	2		
3	0.383	3 0.377	3		
4	0.316	8 0.359	4		
5			5		
6			6		
7			7		
8			8		
9			9		
10			10		
11			11		
12			12		
13			13		
14			14		
15			15		
Mean	0.341	0.370	Mean	0.000	0.000
Std Dev.	0.032	0.015	Std Dev.		
# Replicates	4	4	# Replicates		
T-Test Result		8.0705	T-Test Result		
Deg. of Freed		5	Deg. of Freed		
Critical T Valu		0.7267	Critical T Valu		
Pass or Fail			Pass or Fail	,6	
Fass Or Fall			Fase ULFall		
	40000	PASS			
	Test C			Test Comp	eletion Date
Replicate	Test C	ompletion Date	Replicate	Test Comp	eletion Date
Replicate No.	Test C	ompletion Date	Replicate	Test Comp	eletion Date
		ompletion Date			
No.		ompletion Date	No.		
No.		ompletion Date	No. 1		
No. 1 2		ompletion Date	No. 1 2		
No. 1 2 3		ompletion Date	No. 1 2 3		
No. 1 2 3 4		ompletion Date	No. 1 2 3 4		
No. 1 2 3 4 5		ompletion Date	No. 1 2 3 4 5		
No. 1 2 3 4 5		ompletion Date	No. 1 2 3 4 5		
No. 1 2 3 4 5 6		ompletion Date	No. 1 2 3 4 5 6 7		
No. 1 2 3 4 5 6 7 8		ompletion Date	No. 1 2 3 4 5 6 7		
No. 1 2 3 4 5 6 7 8		ompletion Date	No. 1 2 3 4 5 6 7 8		
No. 1 2 3 4 5 6 7 8 9		ompletion Date	No. 1 2 3 4 5 6 7 8 9		
No. 1 2 3 4 5 6 7 8 9 10		ompletion Date	No. 1 2 3 4 5 6 7 8 9 10		
No. 1 2 3 4 5 6 7 8 9 10 11		ompletion Date	No. 1 2 3 4 5 6 7 8 9 10 11		
No. 1 2 3 4 5 6 7 8 9 10 11 12 13		ompletion Date	No. 1 2 3 4 5 6 7 8 9 10 11 12		
No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14	Contr	ompletion Date	No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14		
No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15		ompletion Date	No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15		
No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Stid Derv.	Contr	ompletion Date	No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean		
No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	Contr	ompletion Date	No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15		
No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates	0.000	ompletion Date	No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates	Control	
No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result	0.000	ompletion Date	No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result	Control	
No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result	0.000	ompletion Date	No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result	Control	
No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result	0.000	ompletion Date	No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result	Control	

Page 9 of 30

I	DEP Who	ole Effluent Tox	icity (WET) Analysis	Spreadshee	et
1					
Type of Test Species Test		Chronic		Facility Na	me
Endpoint		Ceriodaphnia Survival		Ephrata WW	TD #1
TIWC (decim		0.39		Eprirata veve	IP #1
No. Per Repl	licate	1		Permit N	
TST b value		0.75		PA008718	
TST alpha va		0.2		111000111	
l	Test Co	ompletion Date		Test Completion D	
Replicate		9/7/2020	Replicate		
No.	Contro		No.	Control	TIWC
1	1	1	1 1	Control	1140
2	1	1	2		
3	1		_	<u> </u>	
	-	1	3		-
4	1	1	4	-	
5	1	1			
6	1	1	6		
7	1	1	7		
8	1	1	8		
9	1	1	9		
10	1	1	10		
11			11		
12			12		
13			13		
14			14		
15	-	-	15		
			,		
Mean	1.000	1.000	Mean	0.000	0.000
Std Dev.	0.000		Std Dev.	0.000	0.000
# Replicates	10	10	# Replicates		
T.T (D)					
T-Test Result			T-Test Result		
Deg. of Freed			Character of Economic		
			Deg. of Freed		
Critical T Valu			Critical T Valu		
Critical T Valu Pass or Fail		PASS			
	je		Critical T Valu	16	
Pass or Fail	je	PASS empletion Date	Critical T Valu Pass or Fail	16	eletion Date
Pass or Fail	Test Co	ompletion Date	Critical T Valu Pass or Fail	Test Comp	
Pass or Fail Replicate No.	je	ompletion Date	Critical T Valu Pass or Fail Replicate No.	16	oletion Date
Pass or Fail Replicate No.	Test Co	ompletion Date	Critical T Val. Pass or Fail Replicate No. 1	Test Comp	
Replicate No. 1 2	Test Co	ompletion Date	Critical T Valu Pass or Fail Replicate No. 1	Test Comp	
Replicate No. 1 2 3	Test Co	ompletion Date	Critical T Value Pass or Fail Replicate No. 1 2 3	Test Comp	
Replicate No. 1 2 3 4	Test Co	ompletion Date	Critical T Value Pass or Fail Replicate No. 1 2 3 4	Test Comp	
Replicate No. 1 2 3 4 5	Test Co	ompletion Date	Critical T Value Pass or Fail Replicate No. 1 2 3 4 5	Test Comp	
Replicate No. 1 2 3 4 5	Test Co	ompletion Date	Critical T Value Pass or Fail Replicate No. 1 2 3 4	Test Comp	
Replicate No. 1 2 3 4 5	Test Co	ompletion Date	Critical T Value Pass or Fail Replicate No. 1 2 3 4 5	Test Comp	
Replicate No. 1 2 3 4 5	Test Co	ompletion Date	Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6	Test Comp	
Replicate No. 1 2 3 4 5 6 7	Test Co	ompletion Date	Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7	Test Comp	
Replicate No. 1 2 3 4 5 6 7	Test Co	ompletion Date	Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7	Test Comp	
Replicate No. 1 2 3 4 5 6 7	Test Co	ompletion Date	Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8	Test Comp	
Replicate No. 1 2 3 4 5 6 7 8 9 10	Test Co	ompletion Date	Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10	Test Comp	
Replicate No. 1 2 3 4 5 6 7 8 9 10 11	Test Co	ompletion Date	Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11	Test Comp	
Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12	Test Co	ompletion Date	Critical T Valu. Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12	Test Comp	
Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14	Test Co	ompletion Date	Critical T Valu. Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14	Test Comp	
Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13	Test Co	ompletion Date	Critical T Valu. Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13	Test Comp	
Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	Test Co	ompletion Date	Critical T Valu. Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	Test Comp	
Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	Test Co	ompletion Date	Critical T Valu. Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean	Test Comp	
Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev.	Test Co	ompletion Date	Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev.	Test Comp	
Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	Test Co	ompletion Date	Critical T Valu. Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean	Test Comp	
Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates	Test Co	ompletion Date	Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates	Test Comp	
Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result	Test Co	ompletion Date	Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result	Test Comp	
Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result	Test Co	ompletion Date	Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result Deg. of Freed	Test Comp Control	
Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result	Test Co	ompletion Date	Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result	Test Comp Control	

Page 22 of 30

	DED What	Efferent Tour	later CAST Annabasis		
l		e ∈πiuent Tox	icity (WET) Analysis	Spreadshee	et
Type of Test		hronic		Facility Na	me
Species Test Endpoint	_	eriodaphnia		Entrode (ABA)	TD 44
TIWC (decim		eproduction 39		Ephrata WW	TP #1
No. Per Repli		00		Permit N	o.
TST b value		76		PA008718	31
TST alpha va	lue 0.	2			
		npletion Date		Test Completion Date	
Replicate No.	Control	7/2020 TIWC	Replicate No.	Control	TIWC
1 1	33	34	1 1	Control	IIWC
2	17	35	2		
3	32	34	3		
4	31	40	4		1
5	33	40	5		
6	37	19	6		
7	32	27	7		
8	39	30	8		
9	35	36	9		
10	34	43	10		
11			11		
12		-	12		
13		+	13		
14 15		+	14		
15 [15		
Mean	32.300	33.800	Mean	0.000	0.000
Std Dev.	5.908	7.052	Std Dev.	0.000	0.000
# Replicates	10	10	# Replicates		
T-Test Result	3	.6355	T-Test Result		
		.0068	1-Teat result		
Deg. of Freed	om	15	Deg. of Freed	form	
Critical T Valu	om e 0	15 .8662	Deg. of Freed Critical T Valu	form	
	om e 0	15	Deg. of Freed	form	
Critical T Valu	om e O	15 .8662 PASS	Deg. of Freed Critical T Valu	form ue	eletion Date
Critical T Valu Pass or Fall	om e O	15 .8662	Deg. of Freed Critical T Valu Pass or Fail	form ue	eletion Date
Critical T Valu	om e O	15 .8662 PASS	Deg. of Freed Critical T Valu	form ue	oletion Date
Critical T Valu Pass or Fall Replicate [No. 1 [om e 0 F Test Con	15 .8662 PASS expletion Date	Deg. of Freed Critical T Valu Pass or Fail Replicate	forn ac Test Comp	
Critical T Value Pass or Fail Replicate [No. 1 2	om e 0 F Test Con	15 .8662 PASS expletion Date	Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1	forn ac Test Comp	
Critical T Value Pass or Fail Replicate [No. 1 2 3	om e 0 F Test Con	15 .8662 PASS expletion Date	Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3	forn ac Test Comp	
Critical T Value Pass or Fail Replicate [No. 1 2 3 4	om e 0 F Test Con	15 .8662 PASS expletion Date	Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4	forn ac Test Comp	
Critical T Value Pass or Fail Replicate [No. 1	om e 0 F Test Con	15 .8662 PASS expletion Date	Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5	forn ac Test Comp	
Critical T Value Pass or Fail Replicate [No. 1 2 3 4 5 6 6 6	om e 0 F Test Con	15 .8662 PASS expletion Date	Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5	forn ac Test Comp	
Replicate No. 1 2 3 4 5 6 7	om e 0 F Test Con	15 .8662 PASS expletion Date	Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7	forn ac Test Comp	
Replicate No. 1 2 3 4 5 6 7	om e 0 F Test Con	15 .8662 PASS expletion Date	Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8	forn ac Test Comp	
Replicate No. 1 2 3 4 5 6 7	om e 0 F Test Con	15 .8662 PASS expletion Date	Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7	forn ac Test Comp	
Replicate No. 1 2 3 4 5 6 7 8 9	om e 0 F Test Con	15 .8662 PASS expletion Date	Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8	forn ac Test Comp	
Replicate No. 1 2 3 4 5 6 7 8 9 10	om e 0 F Test Con	15 .8662 PASS expletion Date	Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9	forn ac Test Comp	
Replicate No. 1 2 3 4 5 6 7 8 9 10	om e 0 F Test Con	15 .8662 PASS expletion Date	Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9	forn ac Test Comp	
Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14	om e 0 F Test Con	15 .8662 PASS expletion Date	Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10	forn ac Test Comp	
Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13	om e 0 F Test Con	15 .8662 PASS expletion Date	Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10	forn ac Test Comp	
Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	e 0 F Test Control	15 .8662 PASS apletion Date	Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14	forn ac Test Comp	
Replicate No. Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	om e 0 F Test Con	15 .8662 PASS expletion Date	Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	forn ac Test Comp	
Replicate No. Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev.	e 0 F Test Control	15 .8662 PASS apletion Date	Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Day.	forn ac Test Comp	
Replicate No. Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	e 0 F Test Control	15 .8662 PASS apletion Date	Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	forn ac Test Comp	
Replicate No. Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates	e 0 F Test Control	15 .8662 PASS apletion Date	Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev.	Test Comp	
Replicate No. Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev.	Test Control	15 .8662 PASS apletion Date	Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result	Test Comp Control	
Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result	Test Control Control 0.000	15 .8662 PASS apletion Date	Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev.	Test Comp Control	
Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result Deg. of Freedo	Test Control Control 0.000	15 .8662 PASS apletion Date	Deg. of Freed Critical T Valu. Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result Deg. of Freed	Test Comp Control	

Page 23 of 30