

Southcentral Regional Office CLEAN WATER PROGRAM

Application Type
Renewal
NonFacility Type
Municipal
Major / Minor
Minor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

Application No. **PA0088277**APS ID **619241**

Authorization ID 1476115

pplicant Name	Summ	nit Ridge Homeowners Assoc	_ Facility Name	Summit Ridge STP	
Applicant Address	2950 L	_ewisberry Road	_ Facility Address	1235 Abbottstown Pike	
	York, I	PA 17404-8376	_	Hanover, PA 17331-8237	
applicant Contact	Lindse	y Thomas	_ Facility Contact	Lindsey Thomas	
applicant Phone	(717)	848-1579	_ Facility Phone	(717) 848-1579	
Client ID	25753	8	_ Site ID	503328	
Ch 94 Load Status	Not O	verloaded	Municipality	Berwick Township	
Connection Status	No Lin	nitations	County	Adams	
Date Application Rece	eived	March 7, 2024	EPA Waived?	Yes	
Date Application Acce	epted	March 8, 2024	If No, Reason		

Summary of Review

Summit Ridge Homeowners Associates (Authority/Permittee), applied to the Pennsylvania Department of Environmental Protection (DEP) for issuance of the NPDES permit. The permit was reissued on May 21, 2019 and became effective on June 1, 2019. The permit expires on May 31, 2024.

The average annual design flow and hydraulic design capacity is 0.02555 MGD. The treated effluent is discharged to UNT to Beaver Creek. The 2024 application states that there are no industrial users.

WQM Part II Permit No. 0100406 was issued on 2/9/2001, and 0100406 T-1 ownership transfer was issued on 8/16/2007.

Sludge use and disposal description and location(s): N/A because sludge is hauled by Smiths Sanitary Septic Service LLC.

<u>Changes from the previous permit</u>: The E. Coli. monitoring and report requirements will add to the proposed permit. The TRC limits will change to 0.14 mg/L for AML & 0.45 mg/L for IMAX.

Based on the review outlined in this fact sheet, it is recommended that the permit be drafted. A public notice of the draft permit will be published in the *Pennsylvania Bulletin* for public comments for 30 days.

Approve	Deny	Signatures	Date
Х		Hilaryle Hilary H. Le / Environmental Engineering Specialist	May 3, 2024
Х		Maria D. Bebenek for Daniel W. Martin, P.E. / Environmental Engineer Manager	May 22, 2024

Discharge, Receiving W	Discharge, Receiving Waters and Water Supply Information								
Outfall No. 001		Design Flow (MGD)	0.02555						
Latitude 39° 51' 3	88.00"	Longitude	-76º 58' 60.00"						
Quad Name Hanov	ver	Quad Code							
Wastewater Description	Wastewater Description: Sewage Effluent								
	Innamed Tributary to Beaver								
Receiving Waters <u>C</u>	reek	Stream Code	8768						
NHD Com ID 57	7473183	RMI	2.05						
Drainage Area 0.	.69 mi. ²	Yield (cfs/mi²)	0.05						
Q ₇₋₁₀ Flow (cfs) 0.	.035	Q ₇₋₁₀ Basis	USGS StreamStats						
Elevation (ft) 6	645	Slope (ft/ft)							
Watershed No. 7-	-F	Chapter 93 Class.	WWF & MF						
Existing Use		Existing Use Qualifier							
Exceptions to Use		Exceptions to Criteria							
Assessment Status	Attaining Use(s), & asses	ssment ID 18596 is also impaired for recreational purposes.							
Cause(s) of Impairmen	nt Pathogens		_						
Source(s) of Impairmer	nt Unknown source								
TMDL Status	Not applicable	Name							
Nearest Downstream F	Public Water Supply Intake	PP & L Bruner Island							
PWS Waters Susc	quehanna River	Flow at Intake (cfs)							
PWS RMI 54.0) miles	Distance from Outfall (mi)	Approximate 41.0 miles						

Changes Since Last Permit Issuance:

Drainage Area

The discharge is to UNT to beaver Creek at RMI 2.05 miles. A drainage area upstream of the discharge is estimated to be 0.69 mi.², according to USGS PA StreamStats available at https://streamstats.usgs.gov/ss/.

Streamflow

According to StreamStats, the discharge point on Conewago Creek has a Q_{7-10} of 0.035 cfs and a drainage area of 0.69 mi.², which results in a Q_{7-10} low flow yield of 0.05 cfs/mi.². This information is used to obtain a chronic or 30-day (Q_{30-10}), and an acute or 1-day (Q_{1-10}) exposure stream flow for the discharge point as follows (Guidance No. 391-2000-023):

 $Q_{7\text{-}10} = 0.035 \text{ cfs}$ Low Flow Yield = 0.035 cfs / 0.69 mi.² = 0.05 cfs/mi.² $Q_{30\text{-}10} = 1.36 * 0.035 \text{ cfs} = 0.048 \text{ cfs}$ $Q_{1\text{-}10} = 0.64 * 0.035 \text{ cfs} = 0.022 \text{ cfs}$

Receiving Water Characteristics

Under 25 Pa Code §93.9o, UNT to Beaver Creek is designated as Warm Water Fishes and Migratory Fishes (WWF & MF). The discharge is located within a stream segment listed as attaining uses.

303d Listed Streams

Based on the 2024 Integrated Report, Beaver Creek, assessment unit IDs 11748 is not impaired, & 18596 is impaired for pathogens from an unknown source. A TMDL currently does not exist for this stream segment, therefore, no TMDL has been taken into consideration during this review.

Public Water Supply

The nearest downstream public water supply intake is for PPL Brunner Island on Susquehanna River, approximately 41.0 miles downstream of this discharge. Considering distance and dilution, the discharge is not expected to impact the water supply.

	Tre	atment Facility Summa	ary	
Treatment Facility Na	me: Summit Ridge STP			
WQM Permit No.	Issuance Date			
0100406	2/9/2001			
0100406 T-1	8/16/2007			
Waste Type	Degree of Treatment	Process Type	Disinfection	Avg Annual Flow (MGD)
Sewage			Hypochlorite	0.0255
Hydraulic Capacity	Organic Capacity			Biosolids
(MGD)	(lbs/day)	Load Status	Biosolids Treatment	Use/Disposal
0.0256		Not Overloaded		·

Changes Since Last Permit Issuance: none

Other Comments:

The WWTP train is as follows:

Bar Screen (1) \Rightarrow Equalization Tank (2) \Rightarrow Aeration tank (4) \Rightarrow Clarifier Tank (1) \Rightarrow Polishing Clarifier Tank (1) \Rightarrow Chlorine disinfection contact Tank (1) \Rightarrow Sludge Holding Tank (1) \Rightarrow Discharge to UNT to Beaver Creek

Chemical used:

Calcium hypochlorite is used for disinfection at a rate of 4 tablets/day. Sodium sulfite is used for dechlorination at a rate of 10 tablets/day. Sodium carbonate is used for pH control at a rated 5 bls/day. Aluminum sulfate is used for settling at a 5 bls/day.

Industrial/Commercial Users:

The permit application indicated there are no commercial or industrial contributors to the treatment plant.

Rinsolids

The total sewage sludge/biosolids production within the facility for the previous year was 2.902 dry tons.

	Compliance History							
Summary of DMRs:	A summary of past 12-month DMRs is presented on the pages 4-5.							
Summary of Inspections:	 2/02/23: Mr. Hoy, DEP WQS, conducted a compliance evaluation inspection. There were violations noted during inspection. The field test results were within permit limits. Recommendations were evaluating the influent screening process, since failure to properly screen out rags and debris contributes to pump malfunction and having a dumpster present at the facility to dispose of screenings and other facility wastes. 4/30/21: Mr. Bettinger, DEP WQS, conducted an administrative inspection to follow up with the facility regarding reported effluent violations. There were no violations noted during inspection. The cause of the TSS exceedance is unclear at this time, but the facility is closely monitoring the effluent. 							
Other Comments:	There are 3 violations against the permittee or applicant. - 2/2/2023: two violations such as 1. Failure to retain records required by the permit. 2. Failure to properly operate and maintain all facilities which are installed or used by the permittee to achieve compliance. - 1/5/2024: one violation: failure to submit NPDES renewal application at least 180 days prior to expiration or later approved date.							

Compliance History

DMR Data for Outfall 001 (from April 1, 2023 to March 31, 2024)

Parameter	MAR-24	FEB-24	JAN-24	DEC-23	NOV-23	OCT-23	SEP-23	AUG-23	JUL-23	JUN-23	MAY-23	APR-23
Flow (MGD)												
Average Monthly	0.0099	0.0093	0.0124	0.0113	0.0095	0.0089	0.0096	0.0080	0.0089	0.0102	0.0118	0.0088
Flow (MGD)												
Daily Maximum	0.0186	0.0286	0.0229	0.0210	0.0165	0.0181	0.0161	0.0127	0.0125	0.0172	0.0300	0.0116
pH (S.U.)												
Instantaneous												
Minimum	8.09	8.11	7.78	7.80	7.89	7.85	7.91	7.57	7.46	7.28	7.31	7.68
pH (S.U.)												
Instantaneous												
Maximum	8.61	8.56	8.55	8.59	8.49	8.40	8.31	8.37	8.39	8.57	8.27	8.51
DO (mg/L)												
Instantaneous												
Minimum	10.1	10.4	10.2	10.1	9.8	8.5	8.7	8.1	8.1	8.7	9.5	9.1
TRC (mg/L)												
Average Monthly	0.02	0.01	0.01	0.01	0.01	0.01	0.01	0.003	0.02	0.02	0.01	0.03
CBOD5 (mg/L)												
Average Monthly	< 3.10	< 2.4	3.1	< 2.4	4.3	< 2.4	< 2.4	< 4.10	< 3.0	< 4.65	4.1	< 2.65
TSS (mg/L)												
Average Monthly	11.0	6.0	10.5	4.0	3.0	2.5	4.0	4.0	11	10.0	< 7.0	< 3.5
Fecal Coliform												
(No./100 ml)												
Average Monthly	74	8	333	3	< 4	< 2	51	7	16	< 8	18	15
Fecal Coliform												
(No./100 ml)												
Instantaneous					4.0	_			4.0			
Maximum	104	29	517	11	16	5	57	28	18	62	23	52.9
Nitrate-Nitrite (lbs/day)												
Annual Average				< 3.45								
Nitrate-Nitrite (mg/L)				-0.40								
Annual Average				< 50.40								
Total Nitrogen												
(lbs/day)				0.40								
Annual Average				< 3.48								
Total Nitrogen (mg/L)				50.00								
Annual Average				< 50.90								
Ammonia (mg/L)	0.05	4.00	0.44	0.17	0.40	0.44	0.40	0.40	0.40	0.00	0.00	0.00
Average Monthly	0.35	1.66	< 0.14	< 0.17	< 0.40	< 0.11	< 0.10	< 0.10	< 0.10	< 0.22	0.29	< 0.22
TKN (lbs/day)				0.00								
Annual Average				< 0.03								

NPDES Permit No. PA0088277

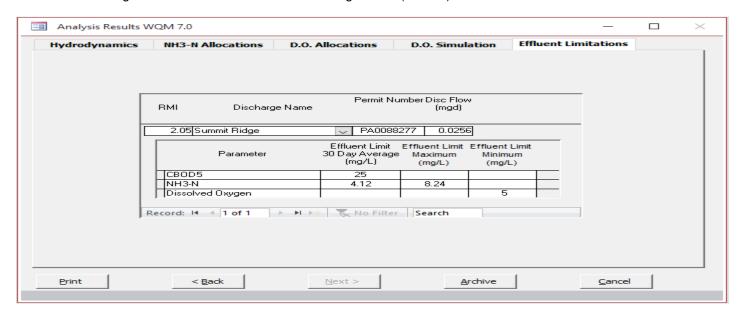
Jannin Rage On					
TKN (mg/L)					
Annual Average	< 0.50				
Total Phosphorus (lbs/day)					
Annual Average	0.16				
Total Phosphorus (mg/L)					
Annual Average	2.30				

	Development of Effluent Limitations									
Outfall No.	001	Design Flow (MGD)	0.02555							
Latitude	39º 51' 38.00"	Longitude	-76° 58' 60.00"							
Wastewater D	Description: Sewage Effluent	_								

Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Pollutant	Limit (mg/l)	SBC	Federal Regulation	State Regulation
CBOD ₅	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
CBOD5	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
Total Suspended	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Solids	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
pН	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform				
(5/1 – 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform				
(5/1 – 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform				
(10/1 – 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform				
(10/1 – 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)


Comments:

Water Quality-Based Limitations

Ammonia (NH₃-N):

 NH_3N calculations are based on the Department's Implementation Guidance of Section 93.7 Ammonia Criteria, dated 11/4/97 (ID No. 391-2000-013). The following data is necessary to determine the in-stream NH_3-N criteria used in the attached WQM 7.0 computer model of the stream:

*	Discharge pH	=	7.0	(Default)
*	Discharge Temperature	=	20°C	(Default)
*	Stream pH	=	7.0	(Default)
*	Stream Temperature	=	20°C	(Default)
*	Background NH ₃ -N	=	0 ma/L	(Default)

Regarding NH₃-N limits, the attached computer printout of the WQM 7.0 stream model (version 1.1) indicates that a limit of 4.12 mg/L as a monthly average and 8.24 mg/L instantaneous maximum (IMAX) are necessary to protect the aquatic life from toxicity effects at the point of discharge. However, the existing limits of 2.5 mg/L monthly average & 5.0 mg/L IMAX are more stringent and will remain in the proposed permit. Per anti-backsliding policy, the existing winter average monthly limit of 75 mg/L & IMAX limit of 15.0 mg/L will remain in place. Recent DMRs and inspection reports show that the facility has been consistently achieving these limits.

Carbonaceous Biochemical Oxygen Demand (CBOD₅):

The attached computer printout of the WQM 7.0 stream model (ver. 1.1) indicates that a monthly average limit of 25.0 mg/L, or secondary treatment, is adequate to protect the water quality of the stream. However, the existing permit 20.0 mg/L as AML, & 50.0 mg/L as IMAX will remain in the proposed permit. Recent DMRs and inspection reports show that the facility has typically been achieving concentrations below this limit.

Dissolved Oxygen (D.O.):

The D.O. goal is 6.0 mg/L. However, a minimum D.O. of 5.0 mg/L is required per 25 Pa. Code § 93.7. It is recommended that this limit be replaced in the proposed permit to ensure the protection of water quality standards. This approach is consistent with DEP's current Standard Operating Procedure (SOP) No. BCW-PMT-033, version 2.0 revised February 5, 2024, and has been applied to other point source dischargers throughout the state.

pH:

The effluent discharge pH should remain above 6.0 and below 9.0 standard units according to 25 Pa. Code § 95.2(1).

Total Suspended Solids (TSS):

The existing technology-based limits of 30.0 mg/L average monthly, and 60.0 mg/L IMAX will remain in the proposed permit based on the minimum level of effluent quality attainable by secondary treatment based on 25 Pa. Code § 92a.47. Recent DMRs and inspection reports show that the facility has been consistently achieving these limits.

Fecal Coliform:

The recent coliform guidance in 25 Pa. Code § 92a.47.(a)(4) requires a summer technology limit of 200/100 ml as a geometric mean and an instantaneous maximum not greater than 1,000/100ml and § 92a.47.(a)(5) requires a winter limit of 2,000/100ml as a geometric mean and an instantaneous maximum not greater than 10,000/100ml.

E. Coli:

As recommended by DEP's SOP No. BCW-PMT-033, version 2.0 revised February 5, 2024, a routine monitoring for E. Coli will be included in the proposed permit under 25 Pa. Code § 92a.61. This requirement applies to all sewage dischargers greater than 0.002 MGD in their new and reissued permits. A monitoring frequency of 1/year will be included in the permit to be consistent with the recommendation from this SOP.

Total Phosphorus:

The existing permit reporting the average monthly TP concentration & mass will remain in the proposed permit.

Stormwater:

There is no known stormwater outfall associated with this facility

Chesapeake Bay Strategy:

Phase 2 WIP identifies Cassville WWTP as a non-significant Phase 5 facility. DEP's SOP mentioned that for facilities with design flows >0.002 MGD and <0.2 MGD will include monitoring, at a minimum, for Total Nitrogen and Total Phosphorus, with a monitoring frequency specified in DEP's technical guidance. Therefore, 1/year TN species (such as Nitrate-Nitrite as N, Total Kjeldahl Nitrogen, and Total Nitrogen). The yearly calculation "report" for Nitrate-Nitrite, TKN, & TN will remain in the proposed permit.

Toxics

This is a minor sewage facility receiving domestic wastewater only and the current application does not require sampling of toxic pollutants (or heavy metals) for those facilities with design flows less than 0.1 MGD. Therefore, no reasonable potential analysis for toxic pollutants has been performed for this permit renewal.

Total Residual Chlorine (TRC):

Based on the attached TRC Excel spreadsheet calculator, which uses the equations and calculations from the Department's May 1, 2003 Implementation Guidance for Total Residual Chlorine (ID No. 391-2000-015), the facility's

discharge must meet a monthly average limit of 0.138 mg/L and an instantaneous maximum limit of 0.45 mg/L. These limits are more stringent and will be replaced in the proposed permit.

TRC EVALUATION				
Input appropriate values in	A3:A9 and D3:D9			
0.035 = Q stream	(cfs)	0.5	= CV Daily	
0.0256 = Q dischar	ge (MGD)	0.5	= CV Hourly	
30 = no. sampl	les	1	= AFC Partis	al Mix Factor
0.3 = Chlorine D	Demand of Stream	1	= CFC Parti	al Mix Factor
0 = Chlorine [Demand of Discharge	15	= AFC Crite	ria Compliance Time (min)
0.5 = BAT/BPJ	Value	720	= CFC Crite	ria Compliance Time (min)
0 = % Factor	of Safety (FOS)		=Decay Coe	fficient (K)
Source Reference	AFC Calculations		Reference	CFC Calculations
TRC 1.3.2.iii	WLA afc =	0.301	1.3.2.iii	WLA cfc = 0.286
PENTOXSD TRG 5.1a	LTAMULT afc =	0.373	5.1c	LTAMULT cfc = 0.581
PENTOXSD TRG 5.1b	LTA_afc=	0.112	5.1d	LTA_cfc = 0.166
Source	Effluer	nt Limit Calcu	lations	
PENTOXSD TRG 5.1f		AML MULT =	1.231	
PENTOXSD TRG 5.1g	AVG MON L	IMIT (mg/l) =	0.138	AFC
	INST MAX L	IMIT (mg/l) =	0.451	
	AFC_tc)) + [(AFC_Yc*Q		e(-k*AFC_tc))
The state of the s	FC_Yc*Qs*Xs/Qd)]*(1-			
	cvh^2+1))-2.326*LN(cvh^2	(+1)^0.5)		
LTA_afc wla_afc*LTAN	WULI_atc			
WLA cfc (.011/e(-k*0	FC tc) + [(CFC Yc*Qs	* 044/Od*o	(-k*CEC +a)	
	FC_Yc*Qs*Xs/Qd)]*(1-		(-k Ci C_tc)	
_	cvd^2/no samples+1))-2.3		2/no samples+	1)^0.5)
LTA_cfc wla_cfc*LTAM		20 214(040 2	o_sampics	1, 0.0,
ma_oie ETAI				
AML MULT EXP(2.326*LN	N((cvd^2/no_samples+1)^0	0.5)-0.5*LN(c	vd^2/no_samp	les+1))
	J,MIN(LTA_afc,LTA_cfc)*			
INST MAX LIMIT 1.5*((av_mo	on_limit/AML_MULT)/L1	AMULT afe	e)	
			-,	the state of the s

WETT:

Minor facilities and facilities without a formal EPA approved pretreatment program are exempted from WETT.

Anti-Backsliding:

The proposed limits are at least as stringent as are in existing permit; therefore, anti-backsliding is not applicable

Antidegradation (93.4):

The effluent limits for this discharge have been developed to ensure that existing in-stream water uses and the level of water quality necessary to protect the existing uses are maintained and protected. No High-Quality Waters are impacted by this discharge. No Exceptional Value Waters are impacted by this discharge.

Class A Wild Trout Fisheries:

No Class A Wild Trout Fisheries are impacted by this discharge.

NPDES Permit Fact Sheet Summit Ridge STP WQM 7.0:

The following data were used in the attached computer model (WQM 7.0) of the stream:

* Discharge pH = 7.0 (Default)

* Discharge Temperature = 25°C (Default)

* Stream pH = 7.0 (Default)

* Stream Temperature = 20°C (Default)

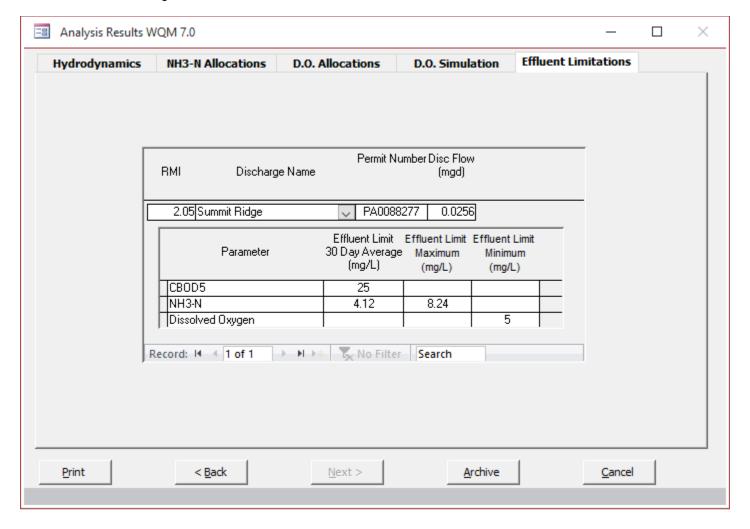
* Background NH₃-N = 0 mg/L (Default)

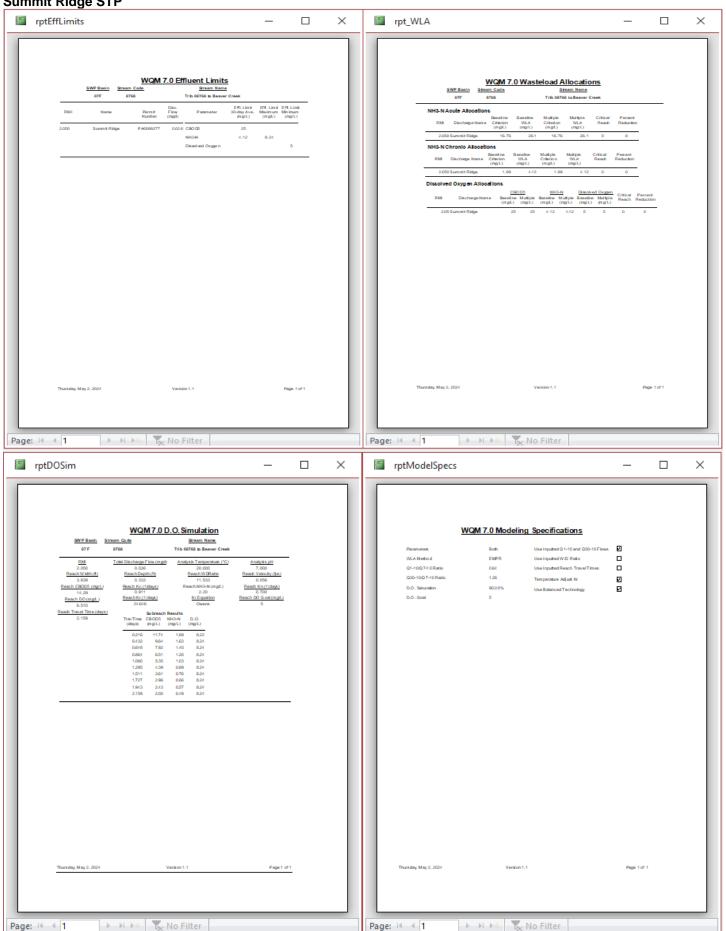
Node 1: Outfall 001 UNT to Beaver Creek (08768)

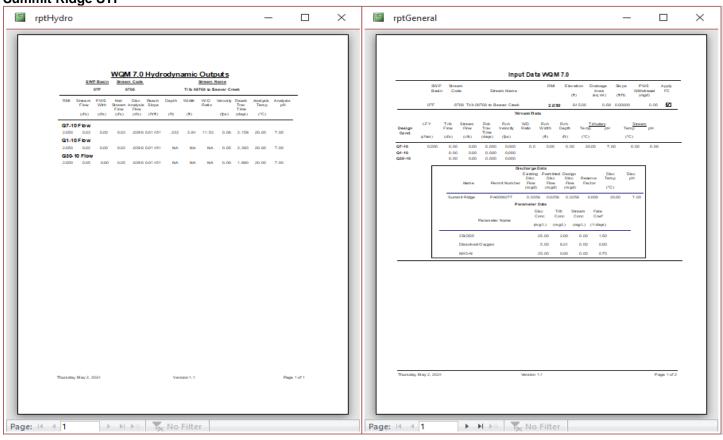
Elevation: 645 ft (USGS National Map Viewer)
Drainage Area: 0.69 mi² (USGS PA StreamStats)

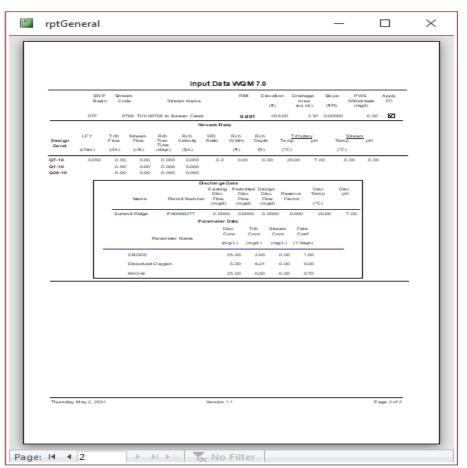
River Mile Index: 2.05 (PA DEP eMapPA)

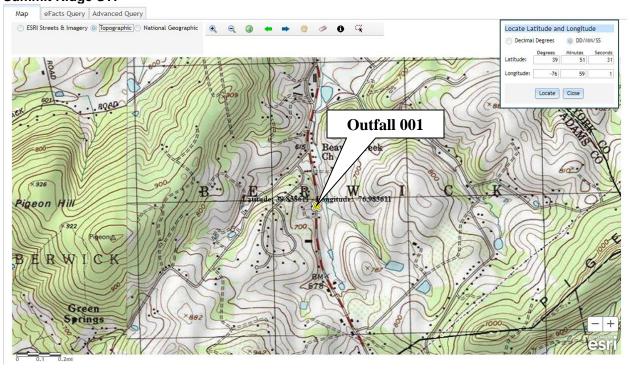
Low Flow Yield: 0.05 cfs/mi²

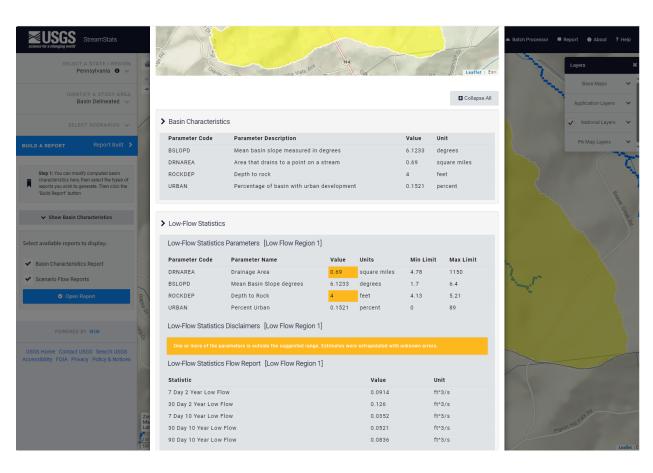

Discharge Flow: 0.0256 MGD (NPDES PA0088277 Application)

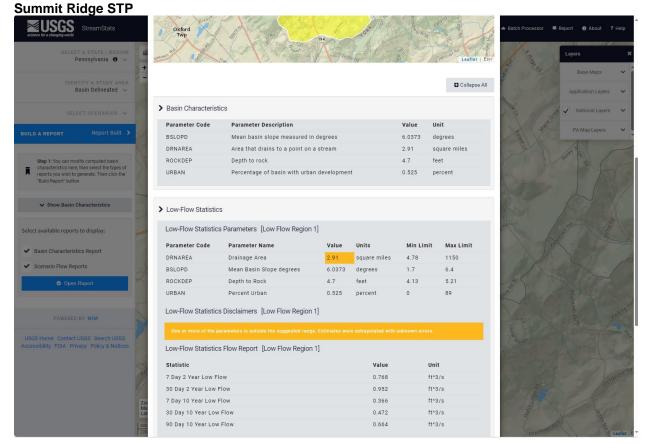

Node 2: Just after confluence of Beaver Creek (08760)


Elevation: 488 ft (USGS National Map Viewer)
Drainage Area: 2.91 mi² (USGS PA StreamStats)


River Mile Index: 0.001 (PA DEP eMapPA)


Low Flow Yield: 0.05 cfs/mi² Discharge Flow: 0.000 MGD





NPDES Permit Fact Sheet

Existing Effluent Limitations and Monitoring Requirements

Outfall 001,

			Effluent L	imitations			Monitoring Re	quirements
Parameter	Mass Units	(lbs/day) ⁽¹⁾		Concentrat	ions (mg/L)		Minimum (2)	Required
Farameter	Average Monthly	Average Weekly	Minimum	Average Monthly	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report Daily Max	XXX	XXX	XXX	XXX	Continuous	Measured
pH (S.U.)	XXX	XXX	6.0	XXX	XXX	9.0	1/day	Grab
DO	XXX	XXX	5.0	XXX	XXX	XXX	1/day	Grab
TRC	XXX	XXX	XXX	0.2	XXX	0.7	1/day	Grab
CBOD5	XXX	XXX	XXX	25.0	XXX	50	2/month	24-Hr Composite
TSS	XXX	XXX	XXX	30.0	XXX	60	2/month	24-Hr Composite
Fecal Coliform (No./100 ml) May 1 - Sep 30	XXX	XXX	XXX	200 Geo Mean	XXX	1,000	2/month	Grab
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	2,000 Geo Mean	XXX	10,000	2/month	Grab
Ammonia May 1 - Oct 31	XXX	XXX	XXX	2.5	XXX	5.0	2/month	24-Hr Composite
Ammonia Nov 1 - Apr 30	XXX	XXX	XXX	7.5	XXX	15.0	2/month	24-Hr Composite
Nitrate-Nitrite	Report Annl Avg	XXX	XXX	Report Annl Avg	XXX	XXX	1/year	24-Hr Composite
TKN	Report Annl Avg	XXX	XXX	Report Annl Avg	XXX	XXX	1/year	24-Hr Composite
	Report			Report				
Total Nitrogen	Annl Avg Report	XXX	XXX	Annl Avg Report	XXX	XXX	1/year	Calculation 24-Hr
Total Phosphorus	Annl Avg	XXX	XXX	Annl Avg	XXX	XXX	1/year	Composite

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (386-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

Parameter	Effluent Limitations						Monitoring Requirements	
	Mass Units (lbs/day) (1)		Concentrations (mg/L)				Minimum (2)	Required
	Average Monthly	Average Weekly	Minimum	Average Monthly	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report Daily Max	XXX	XXX	XXX	XXX	Continuous	Measured
pH (S.U.)	XXX	XXX	6.0	XXX	XXX	9.0	1/day	Grab
DO	XXX	XXX	5.0	XXX	XXX	XXX	1/day	Grab
TRC	XXX	XXX	XXX	0.14	XXX	0.45	1/day	Grab
CBOD5	XXX	XXX	XXX	25.0	XXX	50.0	2/month	24-Hr Composite
TSS	XXX	XXX	XXX	30.0	XXX	60.0	2/month	24-Hr Composite
Fecal Coliform (No./100 ml) May 1 - Sep 30	XXX	XXX	XXX	200 Geo Mean	XXX	1,000	2/month	Grab
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	2,000 Geo Mean	XXX	10,000	2/month	Grab
E. Coli (No./100 ml)	XXX	XXX	XXX	XXX	XXX	Report	1/year	Grab
Ammonia May 1 - Oct 31	XXX	XXX	XXX	2.5	XXX	5.0	2/month	24-Hr Composite
Ammonia Nov 1 - Apr 30	XXX	XXX	XXX	7.5	XXX	15.0	2/month	24-Hr Composite
Nitrate-Nitrite	Report Annl Avg	XXX	XXX	Report Annl Avg	XXX	XXX	1/year	24-Hr Composite
TKN	Report Annl Avg	XXX	XXX	Report Annl Avg	XXX	XXX	1/year	24-Hr Composite
Total Nitrogen	Report Annl Avg	XXX	XXX	Report Annl Avg	XXX	XXX	1/year	Calculation
Total Phosphorus	Report Annl Avg	XXX	XXX	Report Annl Avg	XXX	XXX	1/year	24-Hr Composite

Compliance Sampling Location:

Tools and References Used to Develop Permit					
\square	MOM ME I M				
	WQM for Windows Model (see Attachment)				
	Toxics Management Spreadsheet (see Attachment)				
	TRC Model Spreadsheet (see Attachment)				
	Temperature Model Spreadsheet (see Attachment)				
	Water Quality Toxics Management Strategy, 361-0100-003, 4/06.				
	Technical Guidance for the Development and Specification of Effluent Limitations, 386-0400-001, 10/97.				
	Policy for Permitting Surface Water Diversions, 386-2000-019, 3/98.				
	Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 386-2000-018, 11/96.				
	Technology-Based Control Requirements for Water Treatment Plant Wastes, 386-2183-001, 10/97.				
	Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 386-2183-002, 12/97.				
	Pennsylvania CSO Policy, 386-2000-002, 9/08.				
	Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.				
	Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 386-2000-008, 4/97.				
	Determining Water Quality-Based Effluent Limits, 386-2000-004, 12/97.				
	Implementation Guidance Design Conditions, 386-2000-007, 9/97.				
	Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 386-2000-016, 6/2004.				
	Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 386-2000-012, 10/1997.				
	Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 386-2000-009, 3/99.				
	Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 386-2000-015, 5/2004.				
\boxtimes	Implementation Guidance for Section 93.7 Ammonia Criteria, 386-2000-022, 11/97.				
	Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 386-2000-013, 4/2008.				
\boxtimes	Implementation Guidance Total Residual Chlorine (TRC) Regulation, 386-2000-011, 11/1994.				
	Implementation Guidance for Temperature Criteria, 386-2000-001, 4/09.				
$\overline{\boxtimes}$	Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 386-2000-021, 10/97.				
	Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 386-2000-020, 10/97.				
	Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 386-2000-005, 3/99.				
	Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 386-2000-010, 3/1999.				
	Design Stream Flows, 386-2000-003, 9/98.				
	Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 386-2000-006, 10/98.				
	Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 386-3200-001, 6/97.				
	Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.				
	SOP: BCW-PMT-033				
	Other:				