



Application Type  
Facility Type  
Major / Minor

Renewal  
Industrial  
Minor

**NPDES PERMIT FACT SHEET  
INDIVIDUAL INDUSTRIAL WASTE (IW)  
AND IW STORMWATER**

Application No. PA0088757  
APS ID 341412  
Authorization ID 1486999

**Applicant and Facility Information**

|                           |                                                              |                  |                                          |
|---------------------------|--------------------------------------------------------------|------------------|------------------------------------------|
| Applicant Name            | <b>Mount Union Municipal Authority<br/>Huntingdon County</b> | Facility Name    | <b>Mt Union Singers Gap WTP</b>          |
| Applicant Address         | 9 W. Market Street<br>Mount Union, PA 17066-1233             | Facility Address | State Route 747<br>Mount Union, PA 17066 |
| Applicant Contact         | William Shives                                               | Facility Contact | J. Phil Stewart                          |
| Applicant Phone           | (814) 542-4051                                               | Facility Phone   | (814) 644-9199                           |
| Client ID                 | 24194                                                        | Site ID          | 544445                                   |
| SIC Code                  | 4941                                                         | Municipality     | Shirley Township                         |
| SIC Description           | Trans. & Utilities - Water Supply                            | County           | Huntingdon                               |
| Date Application Received | <u>May 31, 2024</u>                                          | EPA Waived?      | <u>Yes</u>                               |
| Date Application Accepted | <u>June 3, 2024</u>                                          | If No, Reason    |                                          |
| Purpose of Application    | NPDES for filter backwash treatment plant renewal permit.    |                  |                                          |

**Summary of Review**

Keller Engineers, on behalf of the Mount Union Municipal Authority (MUMA) (Authority/Permittee), applied to the Pennsylvania Department of Environmental Protection (DEP) for issuance of the NPDES permit. The permit was reissued on November 14, 2019 and became effective on December 1, 2019. The permit expires on November 30, 2024.

MUMA operates a wastewater treatment system (WWTP) receiving filter backwash from the water treatment plant located in Shirley Township, Huntingdon County. The facility did not discharge to the stream during the last permit cycle, however, wants to keep this permit active should discharge be required.

Sludge use and disposal description and location(s): N/A because it is hauled to a landfill.

Changes from the previous permit: The TRC limits changed to 0.17 mg/L average month & 0.55 mg/L IMAX in the proposed permit. The monitoring sample type requirements changed to Grab in the proposed permit.

Based on the review outlined in this fact sheet, it is recommended that the permit be drafted. A public notice of the draft permit will be published in the *Pennsylvania Bulletin* for public comments for 30 days.

| Approve | Deny | Signatures                                                                      | Date            |
|---------|------|---------------------------------------------------------------------------------|-----------------|
| X       |      | Hilaryle<br>Hilary H. Le / Environmental Engineering Specialist                 | October 3, 2024 |
| X       |      | Maria D. Bebenek for<br>Daniel W. Martin, P.E. / Environmental Engineer Manager | October 4, 2024 |

| Discharge, Receiving Waters and Water Supply Information          |                          |                              |                        |
|-------------------------------------------------------------------|--------------------------|------------------------------|------------------------|
| Outfall No.                                                       | 001                      | Design Flow (MGD)            | 0.061                  |
| Latitude                                                          | 40° 19' 19.32"           | Longitude                    | -77° 56' 36.08"        |
| Quad Name                                                         | Butler Knob              | Quad Code                    | 1622                   |
| Wastewater Description: Water Treatment Effluent Filter Backwater |                          |                              |                        |
| Receiving Waters                                                  | Singers Gap Run (HQ-CWF) | Stream Code                  | 13247                  |
| NHD Com ID                                                        | 66210735                 | RMI                          | 2.96                   |
| Drainage Area                                                     | 3.27 mi. <sup>2</sup>    | Yield (cfs/mi <sup>2</sup> ) | 0.03                   |
| Q <sub>7-10</sub> Flow (cfs)                                      | 0.103                    | Q <sub>7-10</sub> Basis      | USGS StreamStats       |
| Elevation (ft)                                                    | 1225                     | Slope (ft/ft)                |                        |
| Watershed No.                                                     | 12-C                     | Chapter 93 Class.            | HQ-CWF                 |
| Existing Use                                                      |                          | Existing Use Qualifier       |                        |
| Exceptions to Use                                                 |                          | Exceptions to Criteria       |                        |
| Assessment Status                                                 | Attaining Use(s)         |                              |                        |
| Cause(s) of Impairment                                            |                          |                              |                        |
| Source(s) of Impairment                                           |                          |                              |                        |
| TMDL Status                                                       |                          | Name                         |                        |
| Nearest Downstream Public Water Supply Intake                     |                          | Newport Borough              |                        |
| PWS Waters                                                        | Juniata River            | Flow at Intake (cfs)         |                        |
| PWS RMI                                                           |                          | Distance from Outfall (mi)   | Approximate 75.0 miles |

Changes Since Last Permit Issuance:

*Drainage Area*

The discharge is to Singers Gap Run at RMI 2.96. A drainage area upstream of the point of discharge is estimated to be 3.27 sq.mi. using USGS StreamStats available at <https://streamstats.usgs.gov/ss/>.

*Streamflow*

USGS StreamStats produced a Q<sub>7-10</sub> flow of 0.103 cfs at the point of discharge. (0.103 cfs / 3.27 mi.<sup>2</sup> = 0.03 cfs/mi.<sup>2</sup>)

*Singers Gap Run*

Singers Gap Run is a tributary of Hill Valley Creek. Under 25 Pa Code §93.9n, the basin of Hill Valley Creek is classified as high quality-cold water fishes and supports migratory fishes. No existing use is identified for this basin. The permit requirements will be developed to ensure that the existing water quality will be maintained and protected in accordance with 25 Pa Code §93.4a(c). DEP's latest integrated water quality report indicates that the discharge is located within a stream segment listed as attaining use(s).

*Public Water Supply Intake*

The fact sheet developed during the previous permit renewal indicates that the nearest downstream public water supply intake is Newport Borough located on the Juniata River, approximate 75.0 miles. Given a distance, the discharge is not expected to affect the water supply.

| Treatment Facility Summary                               |                            |               |                     |                        |
|----------------------------------------------------------|----------------------------|---------------|---------------------|------------------------|
| <b>Treatment Facility Name:</b> Mt Union Singers Gap WTP |                            |               |                     |                        |
| Waste Type                                               | Degree of Treatment        | Process Type  | Disinfection        | Avg Annual Flow (MGD)  |
| Industrial                                               | primary                    | Sedimentation | No Disinfection     | See comments           |
|                                                          |                            |               |                     |                        |
| Hydraulic Capacity (MGD)                                 | Organic Capacity (lbs/day) | Load Status   | Biosolids Treatment | Biosolids Use/Disposal |
| See Comments                                             | N/A                        | N/A           | N/A                 | N/A                    |

MUMA operates a wastewater treatment system (WWTP) receiving filter backwash from the water treatment plant located in Shirley Township, Huntingdon County. Water from Singer Gap Reservoir is sent to this water treatment plant and is processed through coagulation/flocculation/sedimentation/filtration/disinfection. Finished water is then stored in a 242,000-gallon water tank for distribution to the community.

The WWTP consists of two (2) lagoons and outfall structure. According to the application, MUMA recycled the discharge water from these lagoons to the headworks of the water treatment plant.

Any solids removed from lagoons will be sent to a landfill. Chlorine is added following the filtration; but some of the treated water is used for filter backwash.

| Compliance History             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Summary of DMRs:</b>        | A summary of past 12-month DMR effluent data is not available as MUMA currently recycles lagoon effluent.                                                                                                                                                                                                                                                                                                                                                                               |
| <b>Summary of Inspections:</b> | October 28, 2021: Frederick Clark, DEP Water Quality Specialist, conducted a routine compliance inspection. The NPDES permit for this facility is for the discharge of treated backwash water. The effluent is currently being recycled through the treatment plant and there is no discharge to the receiving stream. DMRs for this facility are being submitted each month and note that there was no discharge for the month. There was no discharge reported for all 2020 and 2021. |
| <b>Other Comments:</b>         | There is currently no open violation associated with this facility or permittee.                                                                                                                                                                                                                                                                                                                                                                                                        |

Other Comments: 

Compliance History

DMR Data for Outfall 001 (from September 1, 2023 to August 31, 2024)

| Parameter                                          | AUG-24 | JUL-24 | JUN-24 | MAY-24 | APR-24 | MAR-24 | FEB-24 | JAN-24 | DEC-23 | NOV-23 | OCT-23 | SEP-23 |
|----------------------------------------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| Total Hardness (mg/L)<br>Intake Average<br>Monthly | 8.44   | 8.87   | 12.5   | 7.68   | 8.59   | 7.43   |        | 8.26   | 7.85   | 10.59  | 9.25   | 8.77   |
| Total Hardness (mg/L)<br>Intake Daily<br>Maximum   | 8.55   | 8.88   | 12.9   | 7.93   | 9.63   | 7.56   |        | 8.26   | 8.91   | 12.60  | 9.40   | 9.60   |

Existing Effluent Limitations and Monitoring Requirements

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

| Parameter                            | Effluent Limitations                |               |                       |                 |               |                  | Monitoring Requirements                         |                      |
|--------------------------------------|-------------------------------------|---------------|-----------------------|-----------------|---------------|------------------|-------------------------------------------------|----------------------|
|                                      | Mass Units (lbs/day) <sup>(1)</sup> |               | Concentrations (mg/L) |                 |               |                  | Minimum <sup>(2)</sup><br>Measurement Frequency | Required Sample Type |
|                                      | Average Monthly                     | Daily Maximum | Minimum               | Average Monthly | Daily Maximum | Instant. Maximum |                                                 |                      |
| Flow (MGD)                           | Report                              | Report        | XXX                   | XXX             | XXX           | XXX              | Continuous                                      | Measured             |
| pH (S.U.)                            | XXX                                 | XXX           | 6.0                   | XXX             | 9.0           | XXX              | 1/day                                           | Grab                 |
| TRC                                  | XXX                                 | XXX           | XXX                   | 0.27            | XXX           | 0.88             | 1/day                                           | Grab                 |
| TSS                                  | Report                              | Report        | XXX                   | 30              | 60            | 75               | 2/month                                         | 8-Hr Composite       |
| Total Aluminum                       | Report                              | Report        | XXX                   | 1.0             | 2.0           | 2.5              | 2/month                                         | 8-Hr Composite       |
| Total Iron                           | Report                              | Report        | XXX                   | 2.0             | 4.0           | 5                | 2/month                                         | 8-Hr Composite       |
| Total Manganese                      | Report                              | Report        | XXX                   | 1.0             | 2.0           | 2.5              | 2/month                                         | 8-Hr Composite       |
| Total Zinc                           | Report                              | Report        | XXX                   | Report          | Report        | XXX              | 2/month                                         | 8-Hr Composite       |
| Total Hardness                       | XXX                                 | XXX           | XXX                   | Report          | Report        | XXX              | 2/month                                         | 8-Hr Composite       |
| Total Hardness Intake <sup>(3)</sup> | XXX                                 | XXX           | XXX                   | Report          | Report        | XXX              | 2/month                                         | 8-Hr Composite       |

**Development of Effluent Limitations**

**Outfall No.** 001  
**Latitude** 40° 19' 19.32"  
**Wastewater Description:** Water Treatment Effluent

**Design Flow (MGD)** 0.061  
**Longitude** -77° 56' 36.08"

**Technology-Based Limitations**

DEP's technical guidance No. 362-2183-003 addresses technology-based control requirements along with the following recommended Best Practicable Control Technology Currently Available (BPT) effluent requirements for WTP sludge and filter backwash:

| Parameter               | Limit (mg/l) | SBC             |
|-------------------------|--------------|-----------------|
| Suspended Solids        | 30           | Average Monthly |
|                         | 60           | Daily Maximum   |
| Iron, Total             | 2.0          | Average Monthly |
|                         | 4.0          | Daily Maximum   |
| Aluminum, Total         | 4.0          | Average Monthly |
|                         | 8.0          | Daily Maximum   |
| Manganese, Total        | 1.0          | Average Monthly |
|                         | 2.0          | Daily Maximum   |
| Flow                    | Monitor      | Average Monthly |
| pH                      | 6.0          | Minimum         |
|                         | 9.0          | Maximum         |
| Total Residual Chlorine | 0.5          | Average Monthly |
|                         | 1.0          | Daily Maximum   |

The existing permit renewal contains these requirements, assuming that the discharge pre-dates the HQ-CWF classification. This fact sheet dated 7/11/2006 confirmed this. These requirements apply, subject to water quality analysis and/or BPJ.

**Water Quality-Based Limitations**

DEP's SOP No. BPNPSM-PMT-032, version 1.3 revised September 10, 2013, recommends the average monthly flow as a design flow in water quality modeling unless a different flow is determined to be more representative of conditions. The effluent data is not available as no discharge has been occurred during the last permit term. It is therefore reasonable, in the opinion of DEP, to continue to use 0.061 MGD as the design flow to conduct a water quality analysis.

**pH**

Pennsylvania Water Quality Standards required effluent pH limits of 6.0 to 9.0 standard units at all time under PA Code Chapter 95.2(2). Therefore, the draft permit requires pH limits of 6.0 to 9.0 SU. This is consistent with the existing permit.

**Total Suspended Solid (TSS)**

A best professional judgment (BPJ) monthly average limit of 30.0 mg/L, 60.0 mg/L daily max, and 75.0 mg/L IMAX were established in the permit and will be continued in the proposed permit.

**WQM 7.0**

CBOD<sub>5</sub> and NH<sub>3</sub>-N are not pollutants of concern for the water treatment waste as the discharge of these pollutants is not resulting from the water treatment process. Therefore, WQM 7.0 modeling is not necessary and permit requirements for these pollutants are not recommended.

**Total Residual Chlorine**

Although chlorine is injected after filtration, MUMA utilizes finished water to backwash the filter. Any backwash discharged into the existing wastewater treatment lagoons is therefore expected to contain chlorine. DEP's TRC\_CALC worksheet 0.168 (0.17) mg/L of average month and 0.551 (0.55) mg/L of IMAX are more stringent and will be placed in the proposed permit.

**TRC EVALUATION**

| Input appropriate values in A3:A9 and D3:D9 |                                                                                                          |                               |                                      |
|---------------------------------------------|----------------------------------------------------------------------------------------------------------|-------------------------------|--------------------------------------|
| 0.103                                       | = Q stream (cfs)                                                                                         | 0.5                           | = CV Daily                           |
| 0.061                                       | = Q discharge (MGD)                                                                                      | 0.5                           | = CV Hourly                          |
| 30                                          | = no. samples                                                                                            | 1                             | = AFC_Partial Mix Factor             |
| 0.3                                         | = Chlorine Demand of Stream                                                                              | 1                             | = CFC_Partial Mix Factor             |
| 0                                           | = Chlorine Demand of Discharge                                                                           | 15                            | = AFC_Criteria Compliance Time (min) |
| 0.5                                         | = BAT/BPJ Value                                                                                          | 720                           | = CFC_Criteria Compliance Time (min) |
| 0                                           | = % Factor of Safety (FOS)                                                                               |                               | =Decay Coefficient (K)               |
| Source                                      | Reference                                                                                                | AFC Calculations              | Reference                            |
| TRC                                         | 1.3.2.iii                                                                                                | WLA_afc = 0.367               | 1.3.2.iii                            |
| PENTOXSD TRG                                | 5.1a                                                                                                     | LTAMULT_afc = 0.373           | 5.1c                                 |
| PENTOXSD TRG                                | 5.1b                                                                                                     | LTA_afc= 0.137                | 5.1d                                 |
| Source                                      | Effluent Limit Calculations                                                                              |                               |                                      |
| PENTOXSD TRG                                | 5.1f                                                                                                     | AML MULT = 1.231              |                                      |
| PENTOXSD TRG                                | 5.1g                                                                                                     | AVG MON LIMIT (mg/l) = 0.168  | AFC                                  |
|                                             |                                                                                                          | INST MAX LIMIT (mg/l) = 0.551 |                                      |
| WLA_afc                                     | (.019/e(-k* AFC_tc)) + [(AFC_Yc*Qs*.019/Qd*e(-k* AFC_tc))...<br>...+ Xd + (AFC_Yc*Qs*Xs/Qd)]*(1-FOS/100) |                               |                                      |
| LTAMULT_afc                                 | EXP((0.5*LN(cvh^2+1))-2.326*LN(cvh^2+1)^0.5)                                                             |                               |                                      |
| LTA_afc                                     | wla_afc*LTAMULT_afc                                                                                      |                               |                                      |
| WLA_cfc                                     | (.011/e(-k* CFC_tc)) + [(CFC_Yc*Qs*.011/Qd*e(-k* CFC_tc))...<br>...+ Xd + (CFC_Yc*Qs*Xs/Qd)]*(1-FOS/100) |                               |                                      |
| LTAMULT_cfc                                 | EXP((0.5*LN(cvd^2/no_samples+1))-2.326*LN(cvd^2/no_samples+1)^0.5)                                       |                               |                                      |
| LTA_cfc                                     | wla_cfc*LTAMULT_cfc                                                                                      |                               |                                      |
| AML MULT                                    | EXP(2.326*LN((cvd^2/no_samples+1)^0.5)-0.5*LN(cvd^2/no_samples+1))                                       |                               |                                      |
| AVG MON LIMIT                               | MIN(BAT_BPJ,MIN(LTA_afc,LTA_cfc)*AML_MULT)                                                               |                               |                                      |
| INST MAX LIMIT                              | 1.5*((av_mon_limit/AML_MULT)/LTAMULT_afc)                                                                |                               |                                      |

**Toxics**

The data was analyzed based on the guidelines found in DEP's Water Quality Toxics Management Strategy (Document No. 361-0100-003, version 1.4, revised 5/2023) and DEP's SOP No. BPNPSM-PMT-033. Spreadsheet results are attached to this fact sheet. The Toxics Management Spreadsheet uses the following logic:

- Establish average monthly and IMAX limits in the draft permit where the maximum reported concentration exceeds 50% of the WQBEL.
- For non-conservative pollutants, establish monitoring requirements where the maximum reported concentration is between 25% - 50% of the WQBEL.
- For conservative pollutants, establish monitoring requirements where the maximum reported concentration is between 10%-50% of the WQBEL.

Therefore, the results are as follows.

Recommended WQBELs & Monitoring Requirements

No. Samples/Month:  ▼

| Pollutants     | Mass Limits      |                  | Concentration Limits |        |        |       | Governing WQBEL | WQBEL Basis | Comments                           |
|----------------|------------------|------------------|----------------------|--------|--------|-------|-----------------|-------------|------------------------------------|
|                | AML<br>(lbs/day) | MDL<br>(lbs/day) | AML                  | MDL    | IMAX   | Units |                 |             |                                    |
| Total Aluminum | Report           | Report           | Report               | Report | Report | µg/L  | 1.005           | AFC         | Discharge Conc > 10% WQBEL (no RP) |
| Total Cadmium  | Report           | Report           | Report               | Report | Report | µg/L  | 0.37            | CFC         | Discharge Conc > 10% WQBEL (no RP) |
| Total Copper   | Report           | Report           | Report               | Report | Report | µg/L  | 11.0            | AFC         | Discharge Conc > 10% WQBEL (no RP) |
| Total Zinc     | 0.051            | 0.079            | 99.5                 | 155    | 249    | µg/L  | 99.5            | AFC         | Discharge Conc ≥ 50% WQBEL (RP)    |

- There are no monitoring or limitations recommended for Total Iron, & Total Manganese. Therefore, due to anti-backsliding restrictions, the existing technology limitations for Total Iron & Total Manganese will remain in the proposed permit.

- Monitoring is recommended for Total Aluminum, therefore the 2/month monitoring and reporting existing technology limitation for this pollutant will remain in the proposed permit.

- Monitoring is recommended for Total Cadmium, therefore 2/month monitoring and reporting requirements of this pollutant will be included in the proposed permit. During the next permit renewal cycle, the need for Cadmium monitoring in the permit will be re-evaluated.

- Monitoring is recommended for Total Copper, therefore 2/month monitoring and reporting requirements of this pollutant will be included in the proposed permit. During the next permit renewal cycle, the need for Copper monitoring in the permit will be re-evaluated.

- Monitoring and limits are recommended for Total Zinc, therefore the 0.0995 (0.1) mg/L average monthly, 0.155 mg/L maximum daily, and 0.249 mg/L IMAX; and 0.051 lbs/day AML & 0.079 lbs/day MDL. The facility did not discharge and had no data from the past permit cycle. Therefore, the monitoring and reporting existing permit will remain in the proposed permit until the facility is collect enough data to use in the toxic model to support including limits in the factsheet.

### **Additional Considerations**

#### *Flow Monitoring*

Flow monitoring will remain in the permit and is required by 40 CFR § 122.44(i)(1)(ii).

#### *Dissolved Oxygen*

The existing permit renewal contains a minimum dissolved oxygen effluent limit of 5.0 mg/L. This however is unnecessary as D.O. is a parameter of concern for water treatment plant effluent as no depletion of dissolved oxygen is expected. This permitting approach is supported by 40 CFR §122.44(l)(i)(B)(2).

#### *Chesapeake Bay TMDL*

DEP's Supplement to Phase II Watershed Implementation Plan (WIP) indicates that monitoring and reporting of TN and TP are necessary for non-significant IW facilities throughout the permit term anytime the facility has the potential to introduce a net TN or TP increase to the load contained within the intake water used in processing. No nutrient data is available at this time as the discharge has not occurred. In general, the discharge from a water treatment plant does not contain nutrients and even if it does contain nutrients, it is most likely coming from the source (reservoir water). Therefore, there are no monitoring and reporting of TN & TP requirements in the permit.

#### *Total Hardness Monitoring*

The existing permit renewal contains a routine monitoring requirement for Total Hardness (effluent and intake). This requirement was based on the decision made during the 2006 permit renewal that the facility utilizes Zinc phosphate as a softening agent. Upstream hardness data was determined to be necessary to determine if the softening agent is necessary and downstream hardness data was determined to be necessary to determine that a limit for Zinc is necessary. Also, it is not reasonable to collect intake hardness data when no discharge occurs since there is no effluent data to compare with. As a result, the permit will include a footnote indicating that intake samples are to be collected only when the discharge occurs.

#### *Effluent Monitoring*

Monitoring frequencies are based on the nature and effect of the pollutant, as well as a determination of the minimum sampling necessary to adequately monitor the facility's performance. Permittees have the option of taking more frequent samples than are required under the permit. These samples can be used for averaging if they are conducted using EPA-approved test methods (generally found in 40 CFR 136) and if the Method Detection Limits are less than the effluent limits. The sampling location must be after the last treatment unit and prior to discharge to the receiving water. If no discharge occurs during the reporting period, "no discharge" shall be reported on the DMR.

Additionally, the facility did not discharge to the stream during last permit cycle and requested to change to grab samples instead composite samples. Therefore, the monitoring sample type requirements changed to Grab in the proposed permit.

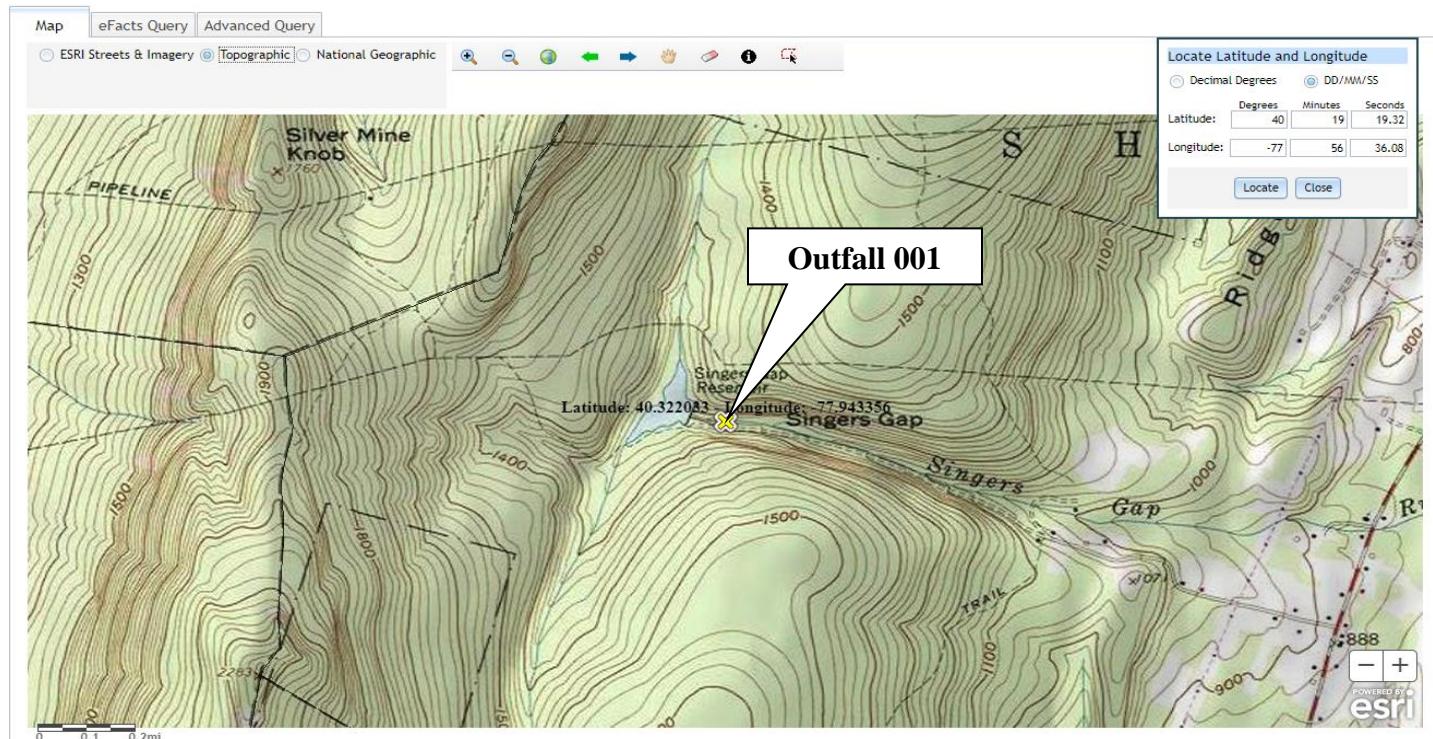
#### *Anti-Degradation Requirements*

The effluent limits for this discharge have been developed to ensure the existing in-stream uses and the level of water quality necessary to protect the existing uses are maintained and protected.

#### *Anti-Backsliding Requirements*

Unless stated otherwise in this fact sheet, permit requirements proposed in this fact sheet are at least as stringent as existing permit requirements.

The following data were used in the attached computer model (WQM 7.0) of the stream:


|   |                               |   |           |                            |
|---|-------------------------------|---|-----------|----------------------------|
| * | Discharge pH                  | = | 6.92      | (2024 renewal application) |
| * | Discharge Temperature         | = | 20°C      | (Default)                  |
| * | Discharge Hardness            | = | 9.63 mg/L | (2024 renewal application) |
| * | Stream pH                     | = | 7.0       | (Default)                  |
| * | Stream Temperature            | = | 20°C      | (Default)                  |
| * | Background NH <sub>3</sub> -N | = | 0 mg/L    | (Default)                  |
| * | Hardness Stream               | = | 100 mg/L  | (Default)                  |

Node 1: Outfall 001 Singers Gap Run (13247)

Elevation: 1225 ft (USGS National Map Viewer)  
Drainage Area: 3.27 mi<sup>2</sup> (USGS PA StreamStats)  
River Mile Index: 2.96 (PA DEP eMapPA)  
Stream flow: 0.103 cfs  
Low Flow Yield: 0.03 cfs/mi<sup>2</sup>  
Discharge Flow: 0.061 mgd (NPDES Application)

Node 2: Just after confluence of Singers Gap Run (13247) with Hill Valley Creek (13243)

Elevation: 689 ft (USGS National Map Viewer)  
Drainage Area: 4.86 mi<sup>2</sup> (USGS PA StreamStats)  
River Mile Index: 0.000 (PA DEP eMapPA)  
Stream flow: 0.19 cfs  
Low Flow Yield: 0.03 cfs/mi<sup>2</sup>  
Discharge Flow: 0.00 mgd



**USGS StreamStats**

IDENTIFY A STUDY AREA  
Basin Delineated

SELECT SCENARIOS

**BUILD A REPORT** Report Built

Step 1: You can modify computed basin characteristics here, then select the types of reports you wish to generate. Then click the "Build Report" button

>Show Basin Characteristics

Select available reports to display:

- Basin Characteristics Report
- Scenario Flow Reports

**Open Report**

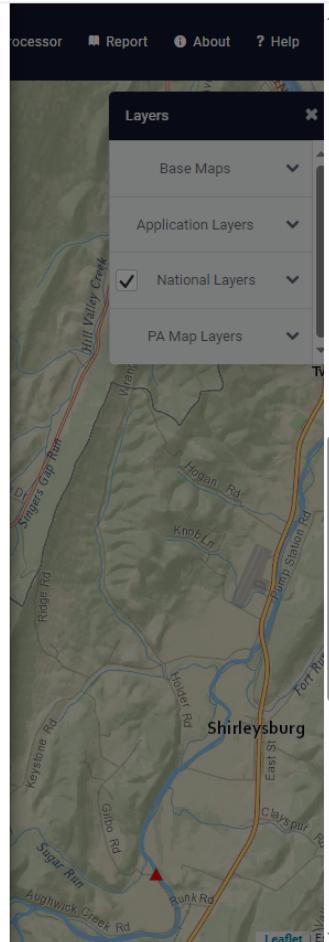
POWERED BY **WIM**

USGS Home Contact USGS Search USGS  
Accessibility FOIA Privacy Policy & Notices

STRDEN Stream Density -- total length of streams divided by drainage area 1.14 miles per square mile

➤ **Low-Flow Statistics**

**Low-Flow Statistics Parameters [Low Flow Region 2]**


| Parameter Code | Parameter Name            | Value | Units                 | Min Limit | Max Limit |
|----------------|---------------------------|-------|-----------------------|-----------|-----------|
| DRNAREA        | Drainage Area             | 3.27  | square miles          | 4.93      | 1280      |
| PRECIP         | Mean Annual Precipitation | 38    | inches                | 35        | 50.4      |
| STRDEN         | Stream Density            | 1.14  | miles per square mile | 0.51      | 3.1       |
| ROCKDEP        | Depth to Rock             | 4     | feet                  | 3.32      | 5.65      |
| CARBON         | Percent Carbonate         | 0     | percent               | 0         | 99        |

**Low-Flow Statistics Disclaimers [Low Flow Region 2]**

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors.

**Low-Flow Statistics Flow Report [Low Flow Region 2]**

| Statistic               | Value | Unit   |
|-------------------------|-------|--------|
| 7 Day 2 Year Low Flow   | 0.27  | ft^3/s |
| 30 Day 2 Year Low Flow  | 0.392 | ft^3/s |
| 7 Day 10 Year Low Flow  | 0.103 | ft^3/s |
| 30 Day 10 Year Low Flow | 0.153 | ft^3/s |
| 90 Day 10 Year Low Flow | 0.287 | ft^3/s |



**USGS StreamStats**

SELECT A STATE / REGION  
Pennsylvania

IDENTIFY A STUDY AREA  
Basin Delineated

SELECT SCENARIOS

**BUILD A REPORT** Report Built

Step 1: You can modify computed basin characteristics here, then select the types of reports you wish to generate. Then click the "Build Report" button

Show Basin Characteristics

Select available reports to display:

- Basin Characteristics Report
- Scenario Flow Reports

**Open Report**

POWERED BY **WIM**

USGS Home Contact USGS Search USGS  
Accessibility FOIA Privacy Policy & Notices

Zoom Map S Lat: 41.500000 Long: -77.500000 1 km

➤ **Basin Characteristics**

| Parameter Code | Parameter Description                                              | Value | Unit                  |
|----------------|--------------------------------------------------------------------|-------|-----------------------|
| CARBON         | Percentage of area of carbonate rock                               | 3.88  | percent               |
| DRNAREA        | Area that drains to a point on a stream                            | 4.86  | square miles          |
| PRECIP         | Mean Annual Precipitation                                          | 38    | inches                |
| ROCKDEP        | Depth to rock                                                      | 4.6   | feet                  |
| STRDEN         | Stream Density -- total length of streams divided by drainage area | 1.61  | miles per square mile |

➤ **Low-Flow Statistics**

**Low-Flow Statistics Parameters [Low Flow Region 2]**

| Parameter Code | Parameter Name            | Value | Units                 | Min Limit | Max Limit |
|----------------|---------------------------|-------|-----------------------|-----------|-----------|
| DRNAREA        | Drainage Area             | 4.86  | square miles          | 4.93      | 1280      |
| PRECIP         | Mean Annual Precipitation | 38    | inches                | 35        | 50.4      |
| STRDEN         | Stream Density            | 1.61  | miles per square mile | 0.51      | 3.1       |
| ROCKDEP        | Depth to Rock             | 4.6   | feet                  | 3.32      | 5.65      |
| CARBON         | Percent Carbonate         | 3.88  | percent               | 0         | 99        |

**Low-Flow Statistics Disclaimers [Low Flow Region 2]**

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors.

**Low-Flow Statistics Flow Report [Low Flow Region 2]**

| Statistic               | Value | Unit   |
|-------------------------|-------|--------|
| 7 Day 2 Year Low Flow   | 0.417 | ft^3/s |
| 30 Day 2 Year Low Flow  | 0.572 | ft^3/s |
| 7 Day 10 Year Low Flow  | 0.19  | ft^3/s |
| 30 Day 10 Year Low Flow | 0.259 | ft^3/s |
| 90 Day 10 Year Low Flow | 0.429 | ft^3/s |





## Discharge Information

Instructions **Discharge** Stream

Facility: Mount Union Municipal Authority

NPDES Permit No.: PA0088757

Outfall No.: 001

Evaluation Type: Major Sewage / Industrial Waste

Wastewater Description: Singers Gap Run

| Design Flow<br>(MGD)* | Hardness (mg/l)* | pH (SU)* | Discharge Characteristics  |     |     |     |                          |                |
|-----------------------|------------------|----------|----------------------------|-----|-----|-----|--------------------------|----------------|
|                       |                  |          | Partial Mix Factors (PMFs) |     |     |     | Complete Mix Times (min) |                |
|                       |                  |          | AFC                        | CFC | THH | CRL | Q <sub>7-10</sub>        | Q <sub>h</sub> |
| 0.061                 | 9.63             | 6.92     |                            |     |     |     |                          |                |

|         | Discharge Pollutant             | Units | Max Discharge Conc | 0 if left blank |             | 0.5 if left blank |           | 0 if left blank |            | 1 if left blank |               |
|---------|---------------------------------|-------|--------------------|-----------------|-------------|-------------------|-----------|-----------------|------------|-----------------|---------------|
|         |                                 |       |                    | Trib Conc       | Stream Conc | Daily CV          | Hourly CV | Stream CV       | Fate Coeff | FOS             | Criteri a Mod |
| Group 1 | Total Dissolved Solids (PWS)    | mg/L  | 38                 |                 |             |                   |           |                 |            |                 |               |
|         | Chloride (PWS)                  | mg/L  | 6                  |                 |             |                   |           |                 |            |                 |               |
|         | Bromide                         | mg/L  | < 0.011            |                 |             |                   |           |                 |            |                 |               |
|         | Sulfate (PWS)                   | mg/L  | 4.02               |                 |             |                   |           |                 |            |                 |               |
|         | Fluoride (PWS)                  | mg/L  | 0.203              |                 |             |                   |           |                 |            |                 |               |
| Group 2 | Total Aluminum                  | µg/L  | 104                |                 |             |                   |           |                 |            |                 |               |
|         | Total Antimony                  | µg/L  | < 0.07             |                 |             |                   |           |                 |            |                 |               |
|         | Total Arsenic                   | µg/L  | < 2.5              |                 |             |                   |           |                 |            |                 |               |
|         | Total Barium                    | µg/L  | 55.9               |                 |             |                   |           |                 |            |                 |               |
|         | Total Beryllium                 | µg/L  | < 0.135            |                 |             |                   |           |                 |            |                 |               |
|         | Total Boron                     | µg/L  | < 0.0565           |                 |             |                   |           |                 |            |                 |               |
|         | Total Cadmium                   | µg/L  | 0.059              |                 |             |                   |           |                 |            |                 |               |
|         | Total Chromium (III)            | µg/L  | < 0.00199          |                 |             |                   |           |                 |            |                 |               |
|         | Hexavalent Chromium             | µg/L  | < 0.00025          |                 |             |                   |           |                 |            |                 |               |
|         | Total Cobalt                    | µg/L  | 0.308              |                 |             |                   |           |                 |            |                 |               |
|         | Total Copper                    | µg/L  | 5.25               |                 |             |                   |           |                 |            |                 |               |
|         | Free Cyanide                    | µg/L  |                    |                 |             |                   |           |                 |            |                 |               |
|         | Total Cyanide                   | µg/L  | < 0.006            |                 |             |                   |           |                 |            |                 |               |
|         | Dissolved Iron                  | µg/L  | 38.7               |                 |             |                   |           |                 |            |                 |               |
|         | Total Iron                      | µg/L  | 40                 |                 |             |                   |           |                 |            |                 |               |
|         | Total Lead                      | µg/L  | 0.134              |                 |             |                   |           |                 |            |                 |               |
|         | Total Manganese                 | µg/L  | 26.8               |                 |             |                   |           |                 |            |                 |               |
|         | Total Mercury                   | µg/L  | < 0.2              |                 |             |                   |           |                 |            |                 |               |
|         | Total Nickel                    | µg/L  | 1.3                |                 |             |                   |           |                 |            |                 |               |
|         | Total Phenols (Phenolics) (PWS) | µg/L  | < 0.005            |                 |             |                   |           |                 |            |                 |               |
|         | Total Selenium                  | µg/L  | < 2.5              |                 |             |                   |           |                 |            |                 |               |
|         | Total Silver                    | µg/L  | < 0.274            |                 |             |                   |           |                 |            |                 |               |
|         | Total Thallium                  | µg/L  | < 0.014            |                 |             |                   |           |                 |            |                 |               |
|         | Total Zinc                      | µg/L  | 695                |                 |             |                   |           |                 |            |                 |               |
|         | Total Molybdenum                | µg/L  | < 0.04             |                 |             |                   |           |                 |            |                 |               |
|         | Acrolein                        | µg/L  | <                  |                 |             |                   |           |                 |            |                 |               |
|         | Acrylamide                      | µg/L  | <                  |                 |             |                   |           |                 |            |                 |               |
|         | Acrylonitrile                   | µg/L  | <                  |                 |             |                   |           |                 |            |                 |               |
|         | Benzene                         | µg/L  | <                  |                 |             |                   |           |                 |            |                 |               |
|         | Bromoform                       | µg/L  | <                  |                 |             |                   |           |                 |            |                 |               |

|                             |      |   |  |  |  |  |  |  |  |  |  |
|-----------------------------|------|---|--|--|--|--|--|--|--|--|--|
| Carbon Tetrachloride        | µg/L | < |  |  |  |  |  |  |  |  |  |
| Chlorobenzene               | µg/L |   |  |  |  |  |  |  |  |  |  |
| Chlorodibromomethane        | µg/L | < |  |  |  |  |  |  |  |  |  |
| Chloroethane                | µg/L | < |  |  |  |  |  |  |  |  |  |
| 2-Chloroethyl Vinyl Ether   | µg/L | < |  |  |  |  |  |  |  |  |  |
| Chloroform                  | µg/L | < |  |  |  |  |  |  |  |  |  |
| Dichlorobromomethane        | µg/L | < |  |  |  |  |  |  |  |  |  |
| 1,1-Dichloroethane          | µg/L | < |  |  |  |  |  |  |  |  |  |
| 1,2-Dichloroethane          | µg/L | < |  |  |  |  |  |  |  |  |  |
| 1,1-Dichloroethylene        | µg/L | < |  |  |  |  |  |  |  |  |  |
| 1,2-Dichloropropane         | µg/L | < |  |  |  |  |  |  |  |  |  |
| 1,3-Dichloropropylene       | µg/L | < |  |  |  |  |  |  |  |  |  |
| 1,4-Dioxane                 | µg/L | < |  |  |  |  |  |  |  |  |  |
| Ethylbenzene                | µg/L | < |  |  |  |  |  |  |  |  |  |
| Methyl Bromide              | µg/L | < |  |  |  |  |  |  |  |  |  |
| Methyl Chloride             | µg/L | < |  |  |  |  |  |  |  |  |  |
| Methylene Chloride          | µg/L | < |  |  |  |  |  |  |  |  |  |
| 1,1,2,2-Tetrachloroethane   | µg/L | < |  |  |  |  |  |  |  |  |  |
| Tetrachloroethylene         | µg/L | < |  |  |  |  |  |  |  |  |  |
| Toluene                     | µg/L | < |  |  |  |  |  |  |  |  |  |
| 1,2-trans-Dichloroethylene  | µg/L | < |  |  |  |  |  |  |  |  |  |
| 1,1,1-Trichloroethane       | µg/L | < |  |  |  |  |  |  |  |  |  |
| 1,1,2-Trichloroethane       | µg/L | < |  |  |  |  |  |  |  |  |  |
| Trichloroethylene           | µg/L | < |  |  |  |  |  |  |  |  |  |
| Vinyl Chloride              | µg/L | < |  |  |  |  |  |  |  |  |  |
| 2-Chlorophenol              | µg/L | < |  |  |  |  |  |  |  |  |  |
| 2,4-Dichlorophenol          | µg/L | < |  |  |  |  |  |  |  |  |  |
| 2,4-Dimethylphenol          | µg/L | < |  |  |  |  |  |  |  |  |  |
| 4,6-Dinitro-o-Cresol        | µg/L | < |  |  |  |  |  |  |  |  |  |
| 2,4-Dinitrophenol           | µg/L | < |  |  |  |  |  |  |  |  |  |
| 2-Nitrophenol               | µg/L | < |  |  |  |  |  |  |  |  |  |
| 4-Nitrophenol               | µg/L | < |  |  |  |  |  |  |  |  |  |
| p-Chloro-m-Cresol           | µg/L | < |  |  |  |  |  |  |  |  |  |
| Pentachlorophenol           | µg/L | < |  |  |  |  |  |  |  |  |  |
| Phenol                      | µg/L | < |  |  |  |  |  |  |  |  |  |
| 2,4,6-Trichlorophenol       | µg/L | < |  |  |  |  |  |  |  |  |  |
| Acenaphthene                | µg/L | < |  |  |  |  |  |  |  |  |  |
| Acenaphthylene              | µg/L | < |  |  |  |  |  |  |  |  |  |
| Anthracene                  | µg/L | < |  |  |  |  |  |  |  |  |  |
| Benzidine                   | µg/L | < |  |  |  |  |  |  |  |  |  |
| Benzo(a)Anthracene          | µg/L | < |  |  |  |  |  |  |  |  |  |
| Benzo(a)Pyrene              | µg/L | < |  |  |  |  |  |  |  |  |  |
| 3,4-Benzoxyfluoranthene     | µg/L | < |  |  |  |  |  |  |  |  |  |
| Benzo(ghi)Perylene          | µg/L | < |  |  |  |  |  |  |  |  |  |
| Benzo(k)Fluoranthene        | µg/L | < |  |  |  |  |  |  |  |  |  |
| Bis(2-Chloroethoxy)Methane  | µg/L | < |  |  |  |  |  |  |  |  |  |
| Bis(2-Chloroethyl)Ether     | µg/L | < |  |  |  |  |  |  |  |  |  |
| Bis(2-Chloroisopropyl)Ether | µg/L | < |  |  |  |  |  |  |  |  |  |
| Bis(2-Ethylhexyl)Phthalate  | µg/L | < |  |  |  |  |  |  |  |  |  |
| 4-Bromophenyl Phenyl Ether  | µg/L | < |  |  |  |  |  |  |  |  |  |
| Butyl Benzyl Phthalate      | µg/L | < |  |  |  |  |  |  |  |  |  |
| 2-Chloronaphthalene         | µg/L | < |  |  |  |  |  |  |  |  |  |
| 4-Chlorophenyl Phenyl Ether | µg/L | < |  |  |  |  |  |  |  |  |  |
| Chrysene                    | µg/L | < |  |  |  |  |  |  |  |  |  |
| Dibenz(a,h)Anthracene       | µg/L | < |  |  |  |  |  |  |  |  |  |
| 1,2-Dichlorobenzene         | µg/L | < |  |  |  |  |  |  |  |  |  |
| 1,3-Dichlorobenzene         | µg/L | < |  |  |  |  |  |  |  |  |  |
| 1,4-Dichlorobenzene         | µg/L | < |  |  |  |  |  |  |  |  |  |
| 3,3-Dichlorobenzidine       | µg/L | < |  |  |  |  |  |  |  |  |  |
| Diethyl Phthalate           | µg/L | < |  |  |  |  |  |  |  |  |  |
| Dimethyl Phthalate          | µg/L | < |  |  |  |  |  |  |  |  |  |
| Di-n-Butyl Phthalate        | µg/L | < |  |  |  |  |  |  |  |  |  |
| 2,4-Dinitrotoluene          | µg/L | < |  |  |  |  |  |  |  |  |  |

|                           |                    |         |   |  |  |  |  |
|---------------------------|--------------------|---------|---|--|--|--|--|
| 2,6-Dinitrotoluene        | µg/L               | <       |   |  |  |  |  |
| Di-n-Octyl Phthalate      | µg/L               | <       |   |  |  |  |  |
| 1,2-Diphenylhydrazine     | µg/L               | <       |   |  |  |  |  |
| Fluoranthene              | µg/L               | <       |   |  |  |  |  |
| Fluorene                  | µg/L               | <       |   |  |  |  |  |
| Hexachlorobenzene         | µg/L               | <       |   |  |  |  |  |
| Hexachlorobutadiene       | µg/L               | <       |   |  |  |  |  |
| Hexachlorocyclopentadiene | µg/L               | <       |   |  |  |  |  |
| Hexachloroethane          | µg/L               | <       |   |  |  |  |  |
| Indeno(1,2,3-cd)Pyrene    | µg/L               | <       |   |  |  |  |  |
| Isophorone                | µg/L               | <       |   |  |  |  |  |
| Naphthalene               | µg/L               | <       |   |  |  |  |  |
| Nitrobenzene              | µg/L               | <       |   |  |  |  |  |
| n-Nitrosodimethylamine    | µg/L               | <       |   |  |  |  |  |
| n-Nitrosodl-n-Propylamine | µg/L               | <       |   |  |  |  |  |
| n-Nitrosodl-phenylamine   | µg/L               | <       |   |  |  |  |  |
| Phenanthrene              | µg/L               | <       |   |  |  |  |  |
| Pyrene                    | µg/L               | <       |   |  |  |  |  |
| 1,2,4-Trichlorobenzene    | µg/L               | <       |   |  |  |  |  |
| Group 6                   | Aldrin             | µg/L    | < |  |  |  |  |
|                           | alpha-BHC          | µg/L    | < |  |  |  |  |
|                           | beta-BHC           | µg/L    | < |  |  |  |  |
|                           | gamma-BHC          | µg/L    | < |  |  |  |  |
|                           | delta BHC          | µg/L    | < |  |  |  |  |
|                           | Chlordane          | µg/L    | < |  |  |  |  |
|                           | 4,4-DDT            | µg/L    | < |  |  |  |  |
|                           | 4,4-DDE            | µg/L    | < |  |  |  |  |
|                           | 4,4-DDD            | µg/L    | < |  |  |  |  |
|                           | Dieldrin           | µg/L    | < |  |  |  |  |
|                           | alpha-Endosulfan   | µg/L    | < |  |  |  |  |
|                           | beta-Endosulfan    | µg/L    | < |  |  |  |  |
|                           | Endosulfan Sulfate | µg/L    | < |  |  |  |  |
|                           | Endrin             | µg/L    | < |  |  |  |  |
|                           | Endrin Aldehyde    | µg/L    | < |  |  |  |  |
| Group 7                   | Heptachlor         | µg/L    | < |  |  |  |  |
|                           | Heptachlor Epoxide | µg/L    | < |  |  |  |  |
|                           | PCB-1016           | µg/L    | < |  |  |  |  |
|                           | PCB-1221           | µg/L    | < |  |  |  |  |
|                           | PCB-1232           | µg/L    | < |  |  |  |  |
|                           | PCB-1242           | µg/L    | < |  |  |  |  |
|                           | PCB-1248           | µg/L    | < |  |  |  |  |
|                           | PCB-1254           | µg/L    | < |  |  |  |  |
|                           | PCB-1260           | µg/L    | < |  |  |  |  |
|                           | PCBs, Total        | µg/L    | < |  |  |  |  |
| Group 8                   | Toxaphene          | µg/L    | < |  |  |  |  |
|                           | 2,3,7,8-TCDD       | ng/L    | < |  |  |  |  |
|                           | Gross Alpha        | pCi/L   |   |  |  |  |  |
|                           | Total Beta         | pCi/L   | < |  |  |  |  |
| Group 9                   | Radium 226/228     | pCi/L   | < |  |  |  |  |
|                           | Total Strontium    | µg/L    | < |  |  |  |  |
|                           | Total Uranium      | µg/L    | < |  |  |  |  |
|                           | Osmotic Pressure   | mOsm/kg |   |  |  |  |  |



Stream / Surface Water Information

Mount Union Municipal Authority, NPDES Permit No. PA0088757, Outfall 001

Instructions Discharge Stream

Receiving Surface Water Name: Singers Gap Run

No. Reaches to Model: 1

- Statewide Criteria
- Great Lakes Criteria
- ORSANCO Criteria

| Location           | Stream Code* | RMI* | Elevation (ft)* | DA (mi <sup>2</sup> )* | Slope (ft/ft) | PWS Withdrawal (MGD) | Apply Fish Criteria* |
|--------------------|--------------|------|-----------------|------------------------|---------------|----------------------|----------------------|
| Point of Discharge | 013247       | 2.96 | 1225            | 3.27                   |               |                      | Yes                  |
| End of Reach 1     | 013247       | 0    | 689             | 4.86                   |               |                      | Yes                  |

Q<sub>7-10</sub>

| Location           | RMI  | LFY (cfs/mi <sup>2</sup> )* | Flow (cfs) |           | W/D Ratio | Width (ft) | Depth (ft) | Velocity (fps) | Travel Time (days) | Tributary |    | Stream   |    | Analysis |    |
|--------------------|------|-----------------------------|------------|-----------|-----------|------------|------------|----------------|--------------------|-----------|----|----------|----|----------|----|
|                    |      |                             | Stream     | Tributary |           |            |            |                |                    | Hardness  | pH | Hardness | pH | Hardness | pH |
| Point of Discharge | 2.96 | 0.03                        | 0.103      |           |           |            |            |                |                    | 100       | 7  |          |    |          |    |
| End of Reach 1     | 0    | 0.03                        | 0.19       |           |           |            |            |                |                    | 100       | 7  |          |    |          |    |

Q<sub>h</sub>

| Location           | RMI  | LFY (cfs/mi <sup>2</sup> )* | Flow (cfs) |           | W/D Ratio | Width (ft) | Depth (ft) | Velocity (fps) | Travel Time (days) | Tributary |    | Stream   |    | Analysis |    |
|--------------------|------|-----------------------------|------------|-----------|-----------|------------|------------|----------------|--------------------|-----------|----|----------|----|----------|----|
|                    |      |                             | Stream     | Tributary |           |            |            |                |                    | Hardness  | pH | Hardness | pH | Hardness | pH |
| Point of Discharge | 2.96 |                             |            |           |           |            |            |                |                    |           |    |          |    |          |    |
| End of Reach 1     | 0    |                             |            |           |           |            |            |                |                    |           |    |          |    |          |    |

Stream / Surface Water Information

9/25/2024

Page 4



Model Results

Mount Union Municipal Authority, NPDES Permit No. PA0088757, Outfall 001

Instructions Results RETURN TO INPUTS SAVE AS PDF PRINT  All  Inputs  Results  Limits

Hydrodynamics

Wasteload Allocations

AFC

CCT (min): 0.299

PMF: 1

Analysis Hardness (mg/l): 56.781

Analysis pH: 6.96

| Pollutants                      | Stream Conc (µg/L) | Stream CV | Trib Conc (µg/L) | Fate Coef | WQC (µg/L) | WQ Obj (µg/L) | WLA (µg/L) | Comments                         |
|---------------------------------|--------------------|-----------|------------------|-----------|------------|---------------|------------|----------------------------------|
| Total Dissolved Solids (PWS)    | 0                  | 0         | 0                | 0         | N/A        | N/A           | N/A        |                                  |
| Chloride (PWS)                  | 0                  | 0         | 0                | 0         | N/A        | N/A           | N/A        |                                  |
| Sulfate (PWS)                   | 0                  | 0         | 0                | 0         | N/A        | N/A           | N/A        |                                  |
| Fluoride (PWS)                  | 0                  | 0         | 0                | 0         | N/A        | N/A           | N/A        |                                  |
| Total Aluminum                  | 0                  | 0         | 0                | 750       | 750        | 1,569         |            |                                  |
| Total Antimony                  | 0                  | 0         | 0                | 1,100     | 1,100      | 2,301         |            |                                  |
| Total Arsenic                   | 0                  | 0         | 0                | 340       | 340        | 711           |            | Chem Translator of 1 applied     |
| Total Barium                    | 0                  | 0         | 0                | 21,000    | 21,000     | 43,921        |            |                                  |
| Total Boron                     | 0                  | 0         | 0                | 8,100     | 8,100      | 16,941        |            |                                  |
| Total Cadmium                   | 0                  | 0         | 0                | 1,161     | 1,2        | 2,51          |            | Chem Translator of 0.968 applied |
| Total Chromium (III)            | 0                  | 0         | 0                | 356,470   | 1,134      | 2,373         |            | Chem Translator of 0.316 applied |
| Hexavalent Chromium             | 0                  | 0         | 0                | 16        | 16.3       | 34.1          |            | Chem Translator of 0.962 applied |
| Total Cobalt                    | 0                  | 0         | 0                | 95        | 95.0       | 199           |            |                                  |
| Total Copper                    | 0                  | 0         | 0                | 7,886     | 8.21       | 17.2          |            | Chem Translator of 0.96 applied  |
| Dissolved Iron                  | 0                  | 0         | 0                | N/A       | N/A        | N/A           |            |                                  |
| Total Iron                      | 0                  | 0         | 0                | N/A       | N/A        | N/A           |            |                                  |
| Total Lead                      | 0                  | 0         | 0                | 34,703    | 39.7       | 83.1          |            | Chem Translator of 0.873 applied |
| Total Manganese                 | 0                  | 0         | 0                | N/A       | N/A        | N/A           |            |                                  |
| Total Mercury                   | 0                  | 0         | 0                | 1,400     | 1.65       | 3.44          |            | Chem Translator of 0.85 applied  |
| Total Nickel                    | 0                  | 0         | 0                | 290,127   | 291        | 608           |            | Chem Translator of 0.998 applied |
| Total Phenols (Phenolics) (PWS) | 0                  | 0         | 0                | N/A       | N/A        | N/A           |            |                                  |
| Total Selenium                  | 0                  | 0         | 0                | N/A       | N/A        | N/A           |            | Chem Translator of 0.922 applied |
| Total Silver                    | 0                  | 0         | 0                | 1,216     | 1.43       | 2.99          |            | Chem Translator of 0.85 applied  |
| Total Thallium                  | 0                  | 0         | 0                | 65        | 65.0       | 136           |            |                                  |
| Total Zinc                      | 0                  | 0         | 0                | 72,554    | 74.2       | 155           |            | Chem Translator of 0.978 applied |

NPDES Permit Fact Sheet  
Mt Union Singers Gap WTP

NPDES Permit No. PA0088757

CFC CCT (min): 0.299 PMF: 1 Analysis Hardness (mg/l): 56.791 Analysis pH: 6.96

| Pollutants                      | Stream Conc (µg/L) | Stream CV | Trib Conc (µg/L) | Fate Coef | WQC (µg/L) | WQ Obj (µg/L) | WLA (µg/L) | Comments                         |
|---------------------------------|--------------------|-----------|------------------|-----------|------------|---------------|------------|----------------------------------|
| Total Dissolved Solids (PWS)    | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |                                  |
| Chloride (PWS)                  | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |                                  |
| Sulfate (PWS)                   | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |                                  |
| Fluoride (PWS)                  | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |                                  |
| Total Aluminum                  | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |                                  |
| Total Antimony                  | 0                  | 0         |                  | 0         | 220        | 220           | 460        |                                  |
| Total Arsenic                   | 0                  | 0         |                  | 0         | 150        | 150           | 314        | Chem Translator of 1 applied     |
| Total Barium                    | 0                  | 0         |                  | 0         | 4,100      | 4,100         | 8,575      |                                  |
| Total Boron                     | 0                  | 0         |                  | 0         | 1,600      | 1,600         | 3,348      |                                  |
| Total Cadmium                   | 0                  | 0         |                  | 0         | 0.166      | 0.18          | 0.37       | Chem Translator of 0.933 applied |
| Total Chromium (III)            | 0                  | 0         |                  | 0         | 46.630     | 54.2          | 113        | Chem Translator of 0.86 applied  |
| Hexavalent Chromium             | 0                  | 0         |                  | 0         | 10         | 10.4          | 21.7       | Chem Translator of 0.962 applied |
| Total Cobalt                    | 0                  | 0         |                  | 0         | 19         | 19.0          | 39.7       |                                  |
| Total Copper                    | 0                  | 0         |                  | 0         | 5.523      | 5.75          | 12.0       | Chem Translator of 0.96 applied  |
| Dissolved Iron                  | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |                                  |
| Total Iron                      | 0                  | 0         |                  | 0         | 1,500      | 1,500         | 3,137      | WQC = 30 day average; PMF = 1    |
| Total Lead                      | 0                  | 0         |                  | 0         | 1.352      | 1.55          | 3.24       | Chem Translator of 0.873 applied |
| Total Manganese                 | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |                                  |
| Total Mercury                   | 0                  | 0         |                  | 0         | 0.770      | 0.81          | 1.89       | Chem Translator of 0.85 applied  |
| Total Nickel                    | 0                  | 0         |                  | 0         | 32.224     | 32.3          | 67.6       | Chem Translator of 0.997 applied |
| Total Phenols (Phenolics) (PWS) | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |                                  |
| Total Selenium                  | 0                  | 0         |                  | 0         | 4,600      | 4.99          | 10.4       | Chem Translator of 0.922 applied |
| Total Silver                    | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        | Chem Translator of 1 applied     |
| Total Thallium                  | 0                  | 0         |                  | 0         | 13         | 13.0          | 27.2       |                                  |
| Total Zinc                      | 0                  | 0         |                  | 0         | 73.147     | 74.2          | 155        | Chem Translator of 0.986 applied |

THH CCT (min): 0.299 PMF: 1 Analysis Hardness (mg/l): N/A Analysis pH: N/A

| Pollutants                   | Stream Conc (µg/L) | Stream CV | Trib Conc (µg/L) | Fate Coef | WQC (µg/L) | WQ Obj (µg/L) | WLA (µg/L) | Comments |
|------------------------------|--------------------|-----------|------------------|-----------|------------|---------------|------------|----------|
| Total Dissolved Solids (PWS) | 0                  | 0         |                  | 0         | 500,000    | 500,000       | N/A        |          |
| Chloride (PWS)               | 0                  | 0         |                  | 0         | 250,000    | 250,000       | N/A        |          |
| Sulfate (PWS)                | 0                  | 0         |                  | 0         | 250,000    | 250,000       | N/A        |          |
| Fluoride (PWS)               | 0                  | 0         |                  | 0         | 2,000      | 2,000         | N/A        |          |
| Total Aluminum               | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Total Antimony               | 0                  | 0         |                  | 0         | 5.6        | 5.6           | 11.7       |          |
| Total Arsenic                | 0                  | 0         |                  | 0         | 10         | 10.0          | 20.9       |          |
| Total Barium                 | 0                  | 0         |                  | 0         | 2,400      | 2,400         | 5,020      |          |
| Total Boron                  | 0                  | 0         |                  | 0         | 3,100      | 3,100         | 6,484      |          |
| Total Cadmium                | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Total Chromium (III)         | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |          |

Model Results

9/25/2024

Page 6

|                                 |   |   |  |   |       |       |       |  |
|---------------------------------|---|---|--|---|-------|-------|-------|--|
| Hexavalent Chromium             | 0 | 0 |  | 0 | N/A   | N/A   | N/A   |  |
| Total Cobalt                    | 0 | 0 |  | 0 | N/A   | N/A   | N/A   |  |
| Total Copper                    | 0 | 0 |  | 0 | N/A   | N/A   | N/A   |  |
| Dissolved Iron                  | 0 | 0 |  | 0 | 300   | 300   | 627   |  |
| Total Iron                      | 0 | 0 |  | 0 | N/A   | N/A   | N/A   |  |
| Total Lead                      | 0 | 0 |  | 0 | N/A   | N/A   | N/A   |  |
| Total Manganese                 | 0 | 0 |  | 0 | 1,000 | 1,000 | 2,091 |  |
| Total Mercury                   | 0 | 0 |  | 0 | 0.050 | 0.05  | 0.1   |  |
| Total Nickel                    | 0 | 0 |  | 0 | 610   | 610   | 1,278 |  |
| Total Phenols (Phenolics) (PWS) | 0 | 0 |  | 0 | 5     | 5.0   | N/A   |  |
| Total Selenium                  | 0 | 0 |  | 0 | N/A   | N/A   | N/A   |  |
| Total Silver                    | 0 | 0 |  | 0 | N/A   | N/A   | N/A   |  |
| Total Thallium                  | 0 | 0 |  | 0 | 0.24  | 0.24  | 0.5   |  |
| Total Zinc                      | 0 | 0 |  | 0 | N/A   | N/A   | N/A   |  |

CRL CCT (min): 0.293 PMF: 1 Analysis Hardness (mg/l): N/A Analysis pH: N/A

| Pollutants                      | Stream Conc (µg/L) | Stream CV | Trib Conc (µg/L) | Fate Coef | WQC (µg/L) | WQ Obj (µg/L) | WLA (µg/L) | Comments |
|---------------------------------|--------------------|-----------|------------------|-----------|------------|---------------|------------|----------|
| Total Dissolved Solids (PWS)    | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Chloride (PWS)                  | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Sulfate (PWS)                   | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Fluoride (PWS)                  | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Total Aluminum                  | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Total Antimony                  | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Total Arsenic                   | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Total Barium                    | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Total Boron                     | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Total Cadmium                   | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Total Chromium (III)            | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Hexavalent Chromium             | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Total Cobalt                    | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Total Copper                    | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Dissolved Iron                  | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Total Iron                      | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Total Lead                      | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Total Manganese                 | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Total Mercury                   | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Total Nickel                    | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Total Phenols (Phenolics) (PWS) | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Total Selenium                  | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Total Silver                    | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Total Thallium                  | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Total Zinc                      | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |          |

Model Results

9/25/2024

Page 7

Recommended WQBELs & Monitoring Requirements

No. Samples/Month: 4

| Pollutants     | Mass Limits   |               | Concentration Limits |        |        |       | Governing WQBEL | WQBEL Basis | Comments                           |
|----------------|---------------|---------------|----------------------|--------|--------|-------|-----------------|-------------|------------------------------------|
|                | AML (lbs/day) | MDL (lbs/day) | AML                  | MDL    | IMAX   | Units |                 |             |                                    |
| Total Aluminum | Report        | Report        | Report               | Report | Report | µg/L  | 1,005           | AFC         | Discharge Conc > 10% WQBEL (no RP) |
| Total Cadmium  | Report        | Report        | Report               | Report | Report | µg/L  | 0.37            | CFC         | Discharge Conc > 10% WQBEL (no RP) |
| Total Copper   | Report        | Report        | Report               | Report | Report | µg/L  | 11.0            | AFC         | Discharge Conc > 10% WQBEL (no RP) |
| Total Zinc     | 0.051         | 0.079         | 99.5                 | 155    | 249    | µg/L  | 99.5            | AFC         | Discharge Conc ≥ 50% WQBEL (RP)    |

Other Pollutants without Limits or Monitoring

The following pollutants do not require effluent limits or monitoring based on water quality because reasonable potential to exceed water quality criteria was not determined and the discharge concentration was less than thresholds for monitoring, or the pollutant was not detected and a sufficiently sensitive analytical method was used (e.g., <= Target QL).

| Pollutants                      | Governing WQBEL | Units | Comments                   |
|---------------------------------|-----------------|-------|----------------------------|
| Total Dissolved Solids (PWS)    | N/A             | N/A   | PWS Not Applicable         |
| Chloride (PWS)                  | N/A             | N/A   | PWS Not Applicable         |
| Bromide                         | N/A             | N/A   | No WQS                     |
| Sulfate (PWS)                   | N/A             | N/A   | PWS Not Applicable         |
| Fluoride (PWS)                  | N/A             | N/A   | PWS Not Applicable         |
| Total Antimony                  | N/A             | N/A   | Discharge Conc < TQL       |
| Total Arsenic                   | N/A             | N/A   | Discharge Conc < TQL       |
| Total Barium                    | 5,020           | µg/L  | Discharge Conc ≤ 10% WQBEL |
| Total Beryllium                 | N/A             | N/A   | No WQS                     |
| Total Boron                     | 3,346           | µg/L  | Discharge Conc < TQL       |
| Total Chromium (III)            | 113             | µg/L  | Discharge Conc < TQL       |
| Hexavalent Chromium             | 21.7            | µg/L  | Discharge Conc < TQL       |
| Total Cobalt                    | 39.7            | µg/L  | Discharge Conc ≤ 10% WQBEL |
| Total Cyanide                   | N/A             | N/A   | No WQS                     |
| Dissolved Iron                  | 627             | µg/L  | Discharge Conc ≤ 10% WQBEL |
| Total Iron                      | 3,137           | µg/L  | Discharge Conc ≤ 10% WQBEL |
| Total Lead                      | 3.24            | µg/L  | Discharge Conc ≤ 10% WQBEL |
| Total Manganese                 | 2,091           | µg/L  | Discharge Conc ≤ 10% WQBEL |
| Total Mercury                   | 0.1             | µg/L  | Discharge Conc < TQL       |
| Total Nickel                    | 87.6            | µg/L  | Discharge Conc ≤ 10% WQBEL |
| Total Phenols (Phenolics) (PWS) |                 | µg/L  | Discharge Conc < TQL       |
| Total Selenium                  | 10.4            | µg/L  | Discharge Conc < TQL       |
| Total Silver                    | 1.92            | µg/L  | Discharge Conc < TQL       |
| Total Thallium                  | 0.5             | µg/L  | Discharge Conc < TQL       |
| Total Molybdenum                | N/A             | N/A   | No WQS                     |

**Proposed Effluent Limitations and Monitoring Requirements**

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (386-0400-001), SOPs and/or BPJ.

**Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.**

| Parameter                            | Effluent Limitations                |               |                       |                 |               |                  | Monitoring Requirements                         |                      |
|--------------------------------------|-------------------------------------|---------------|-----------------------|-----------------|---------------|------------------|-------------------------------------------------|----------------------|
|                                      | Mass Units (lbs/day) <sup>(1)</sup> |               | Concentrations (mg/L) |                 |               |                  | Minimum <sup>(2)</sup><br>Measurement Frequency | Required Sample Type |
|                                      | Average Monthly                     | Daily Maximum | Minimum               | Average Monthly | Daily Maximum | Instant. Maximum |                                                 |                      |
| Flow (MGD)                           | Report                              | Report        | XXX                   | XXX             | XXX           | XXX              | Continuous                                      | Measured             |
| pH (S.U.)                            | XXX                                 | XXX           | 6.0<br>Inst Min       | XXX             | XXX           | 9.0              | 1/day                                           | Grab                 |
| TRC                                  | XXX                                 | XXX           | XXX                   | 0.17            | XXX           | 0.55             | 1/day                                           | Grab                 |
| TSS                                  | Report                              | Report        | XXX                   | 30.0            | 60.0          | 75.0             | 2/month                                         | Grab                 |
| Total Aluminum                       | Report                              | Report        | XXX                   | 1.0             | 2.0           | 2.5              | 2/month                                         | Grab                 |
| Total Cadmium                        | Report                              | Report        | XXX                   | Report          | Report        | XXX              | 2/month                                         | Grab                 |
| Total Copper                         | Report                              | Report        | XXX                   | Report          | Report        | XXX              | 2/month                                         | Grab                 |
| Total Iron                           | Report                              | Report        | XXX                   | 2.0             | 4.0           | 5.0              | 2/month                                         | Grab                 |
| Total Manganese                      | Report                              | Report        | XXX                   | 1.0             | 2.0           | 2.5              | 2/month                                         | Grab                 |
| Total Zinc                           | Report                              | Report        | XXX                   | Report          | Report        | XXX              | 2/month                                         | Grab                 |
| Total Hardness Intake <sup>(3)</sup> | XXX                                 | XXX           | XXX                   | Report          | Report        | XXX              | 2/month                                         | Grab                 |
| Total Hardness                       | XXX                                 | XXX           | XXX                   | Report          | Report        | XXX              | 2/month                                         | Grab                 |

| Tools and References Used to Develop Permit |                                                                                                                                                                                                                    |
|---------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <input type="checkbox"/>                    | WQM for Windows Model (see Attachment [REDACTED])                                                                                                                                                                  |
| <input checked="" type="checkbox"/>         | Toxics Management Spreadsheet (see Attachment [REDACTED])                                                                                                                                                          |
| <input checked="" type="checkbox"/>         | TRC Model Spreadsheet (see Attachment [REDACTED])                                                                                                                                                                  |
| <input type="checkbox"/>                    | Temperature Model Spreadsheet (see Attachment [REDACTED])                                                                                                                                                          |
| <input type="checkbox"/>                    | Water Quality Toxics Management Strategy, 361-0100-003, 4/06.                                                                                                                                                      |
| <input type="checkbox"/>                    | Technical Guidance for the Development and Specification of Effluent Limitations, 386-0400-001, 10/97.                                                                                                             |
| <input type="checkbox"/>                    | Policy for Permitting Surface Water Diversions, 386-2000-019, 3/98.                                                                                                                                                |
| <input type="checkbox"/>                    | Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 386-2000-018, 11/96.                                                                                                                  |
| <input type="checkbox"/>                    | Technology-Based Control Requirements for Water Treatment Plant Wastes, 386-2183-001, 10/97.                                                                                                                       |
| <input type="checkbox"/>                    | Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 386-2183-002, 12/97.                                                                                                      |
| <input type="checkbox"/>                    | Pennsylvania CSO Policy, 386-2000-002, 9/08.                                                                                                                                                                       |
| <input type="checkbox"/>                    | Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.                                                                                                                                        |
| <input type="checkbox"/>                    | Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 386-2000-008, 4/97.                                                                                           |
| <input checked="" type="checkbox"/>         | Determining Water Quality-Based Effluent Limits, 386-2000-004, 12/97.                                                                                                                                              |
| <input type="checkbox"/>                    | Implementation Guidance Design Conditions, 386-2000-007, 9/97.                                                                                                                                                     |
| <input type="checkbox"/>                    | Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 386-2000-016, 6/2004.                                                    |
| <input type="checkbox"/>                    | Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 386-2000-012, 10/1997.                                                                             |
| <input type="checkbox"/>                    | Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 386-2000-009, 3/99.                                                                   |
| <input checked="" type="checkbox"/>         | Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 386-2000-015, 5/2004.                                                              |
| <input type="checkbox"/>                    | Implementation Guidance for Section 93.7 Ammonia Criteria, 386-2000-022, 11/97.                                                                                                                                    |
| <input type="checkbox"/>                    | Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 386-2000-013, 4/2008.                                             |
| <input checked="" type="checkbox"/>         | Implementation Guidance Total Residual Chlorine (TRC) Regulation, 386-2000-011, 11/1994.                                                                                                                           |
| <input type="checkbox"/>                    | Implementation Guidance for Temperature Criteria, 386-2000-001, 4/09.                                                                                                                                              |
| <input type="checkbox"/>                    | Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 386-2000-021, 10/97.                                                                                                       |
| <input type="checkbox"/>                    | Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 386-2000-020, 10/97.       |
| <input checked="" type="checkbox"/>         | Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 386-2000-005, 3/99.                                                                               |
| <input type="checkbox"/>                    | Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 386-2000-010, 3/1999. |
| <input type="checkbox"/>                    | Design Stream Flows, 386-2000-003, 9/98.                                                                                                                                                                           |
| <input type="checkbox"/>                    | Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 386-2000-006, 10/98.                                     |
| <input type="checkbox"/>                    | Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 386-3200-001, 6/97.                                                                                                                         |
| <input type="checkbox"/>                    | Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.                                                                                                                   |
| <input checked="" type="checkbox"/>         | SOP: Establishing effluent limitation for individual industrial permit.                                                                                                                                            |
| <input type="checkbox"/>                    | Other: [REDACTED]                                                                                                                                                                                                  |