

 Application Type
 Renewal

 Facility Type
 Industrial

 Major / Minor
 Major

NPDES PERMIT FACT SHEET INDIVIDUAL INDUSTRIAL WASTE (IW) AND IW STORMWATER

 Application No.
 PA0088781

 APS ID
 723504

 Authorization ID
 1434783

Applicant and Facility Information

Applicant Name	Calpine	e Mid Merit, LLC	Facility Name	York Energy Center
Applicant Address	6 Hillma	an Drive, Suite 201	Facility Address	1055 Pikes Peak Road
	Chadds	Ford, PA 19317-9713		Delta, PA 17314-9239
Applicant Contact	Cheryl	Hess	Facility Contact	Joann Edgar
Applicant Phone	(302) 468-5312		Facility Phone	(717) 456-2446
Client ID	281427		Site ID	543800
SIC Code	4911		Municipality	Peach Bottom Township
SIC Description	Trans.	& Utilities - Electric Services	County	York
Date Application Recei	ved	March 31, 2023	EPA Waived?	No
Date Application Accept	oted	April 10, 2023	If No, Reason	DEP Discretion
Purpose of Application		NPDES permit renewal.		

Summary of Review

ASA Analysis & Communication, Inc., on behalf of the Calpine Mid Merit, LLC electric generating facility (known as "York Energy Center (YEC)") (Authority/Permittee), applied to the Pennsylvania Department of Environmental Protection (DEP) for issuance of the NPDES permit. The permit was reissued on September 14, 2018 and became effective on October 1, 2018. The permit expired on September 30, 2023 but the terms and conditions of the permit have been extended since that time.

NPDES Permit No. PA0088781 authorizes discharges, via four outfalls, from the YEC in Peach Bottom Township, York County, Pennsylvania.

The YEC is a two-block, combined cycle electric generation facility. The primary electric generating equipment for Block 1 includes three Siemens V84.2 combustion turbines (CTs), three unfired heat recovery steam generators (HRSGs), and one steam turbine. Electric generating equipment for Block 2 includes two General Electric combustion turbines (CTs), two heat recovery steam generators (HRSGs), and one steam turbine. The facility generates approximately 1,393-megawatt (MW) total (Calpine 2023). The primary fuel for both blocks is natural gas. However, ultra-low sulfur liquid distillate is used as an alternate fuel when natural gas is either not available or economically infeasible to use. Low nitrogen oxides (NOx) combustors and selective catalytic reduction (SCR) are used to minimize NOx emissions. The facility also includes cooling water intake and discharge systems; cooling towers; water treatment systems; and chemical and petroleum vessels and storage tank systems necessary for operation of the turbines and associated equipment.

Outfall 001 receives blowdown from the cooling towers, and discharges to the Conowingo Pool on the Susquehanna River. Outfalls 002, 003 and 004 discharge stormwater runoff from the site (after the runoff has been detained in stormwater basins) to an unnamed tributary to the Susquehanna River. Outfall 100 designates the internal monitoring point on the recycle water line, which conveys effluent from the recycle water treatment plant, reverse osmosis concentrate, and ultrafiltration unit rinse water from the process water treatment plant to the cooling towers.

The YEC utilizes a closed-cycle recirculating system (CCRS) consisting of one 10-cell counterflow mechanical draft cooling tower (MDCT) per power block. Make-up water for the two MDCTs is withdrawn from the Conowingo Pool in the

Approve	Deny	Signatures	Date
х		<i>Hilaryle</i> Hilary H. Le / Environmental Engineering Specialist	February 9, 2024
х		<i>Maria D. Bebenek for</i> Daniel W. Martin, P.E. / Environmental Engineer Manager	April 11, 2024

Summary of Review

Susquehanna River via the cooling water intake structure (CWIS), which is comprised of six 4-millimeter (mm) slot cylindrical wedgewire screens installed offshore and three pumps installed within the onshore pumphouse. The CWIS is designed and operated to maintain through-slot velocity of no greater than 0.5 fps. The design and operation of the CWIS and MDCTs meet best technology available criteria for both impingement mortality and entrainment.

Changes from the previous permit:

Outfall 001:

- Oil and Grease limits of 15 mg/L average monthly, 20 mg/L daily maximum, and 30 mg/L IMAX will add to the proposed permit.

- Total Dinitrotoluene (2,6-Dinitrotoluene) & Total Copper quarterly monitoring requirement will add to the proposed permit.

Based on the review outlined in this fact sheet, it is recommended that the permit be drafted. A public notice of the draft permit will be published in the *Pennsylvania Bulletin* for public comments for 30 days.

Discharge, Receiving Waters and Water Supply Inform	nation	
Outfall No. 001 Latitude <u>39º 46' 05"</u> Quad Name <u>Holtwood</u> Wastewater Description: <u>Noncontact Cooling Water</u>	Design Flow (MGD) Longitude Quad Code (NCCW)	6.01 -76º 16' 06" 2035
Receiving WatersSusquehanna River (WWF, MF)NHD Com ID57473383Drainage Area26,900 sq. mi.Q7-10 Flow (cfs)3500Elevation (ft)99Watershed No.7-1Existing UseExceptions to Use	Stream Code RMI Yield (cfs/mi ²) Q ₇₋₁₀ Basis Slope (ft/ft) Chapter 93 Class. Existing Use Qualifier Exceptions to Criteria	06685 4.25 0.13 USGS StreamStats WWF & MF
Assessment Status Impaired Cause(s) of Impairment PCB Source(s) of Impairment Source Unknown TMDL Status Pending Nearest Downstream Public Water Supply Intake PWS Waters Susquehanna River	Name Chester Water Authority Flow at Intake (cfs)	
PWS RMI	Distance from Outfall (mi)	Approximate 2.0 miles

Changes Since Last Permit Issuance:

Discharge, Recei	iving Wate	rs and Water Supply Inforr	nation	
	00		Decigo Flow (MCD)	0.2
			Design Flow (MGD)	
Latitude <u>3</u>	9º 46' 05"		Longitude	-76º 16' 06"
Quad Name	Holtwood		Quad Code	2035
Wastewater De	escription:	Wastewater from recycle w filtration unit rinse water.	water treatment plant, reverse os	smosis concentrate, and ultra-
Receiving Wate	ers <u>Susq</u>	uehanna River (WWF, MF)	Stream Code	06685
NHD Com ID	5747	3383	RMI	4.25
Drainage Area	26,90	00	Yield (cfs/mi ²)	0.13
Q ₇₋₁₀ Flow (cfs)	3500		Q7-10 Basis	USGS StreamStats
Elevation (ft)	99		Slope (ft/ft)	
Watershed No.	<u>7-</u>		Chapter 93 Class.	WWF, MF
Existing Use			Existing Use Qualifier	
Exceptions to L	Jse		Exceptions to Criteria	
Assessment St	atus	Impaired		
Cause(s) of Imp	pairment	РСВ		
Source(s) of Im	pairment	Source Unknown		
TMDL Status		Pending	Name	
Nearest Downs	tream Publ	ic Water Supply Intake	Chester Water Authority	
PWS Waters	Susque	hanna River	Flow at Intake (cfs)	
PWS RMI			Distance from Outfall (mi)	Approximate 2.0 miles

Changes Since Last Permit Issuance:

Drainage Area

The discharge is to Plum Creek at RMI 4.25 miles. The drainage area upstream of the point of discharge is 26,900 sq.mi, according to USGS PA StreamStats (<u>https://water.usgs.gov/osw/streamstats/pennsylvania.html</u>).

Stream Flow

York Energy Center's discharge is to Conowingo Pond, a 14-mile portion of the Susquehanna River which is bounded upstream by Holtwood Dam and impounded downstream by Conowingo Dam. Considering the abnormal flow processes in this portion of the river, an accurate Q₇₋₁₀ low flow value cannot be obtained. However, for the modeling purposes for this NPDES permit, a Q₇₋₁₀ value will be used as a conservative approach for protecting the Lower Susquehanna River. Various data sources were examined in order to arrive at an appropriate result.

The United States Geologic Survey (USGS) maintains a stream gaging station on the Susquehanna River at Marietta (No. 01576000), which is the Susquehanna River gage that is nearest to the proposed discharge point. Evaluation of the Marietta gage's low flow statistics reveals a Q₇₋₁₀ low flow yield of 0.146 cfs/mi² for the post-regulation period of 1972-1996 (derived from a flow of 3800 cfs and a drainage area of 25,990 sq. mi.) (*reference the 2015 fact sheet*).

StreamStats' watershed delineation tool, when used at the discharge point for York Energy Center, produces a Q_{7-10} value of 3,590 cfs, with a drainage area of 26,900 mi² (resulting in a low flow yield of 0.13 cfs/mi²). However, since the flow in the pond is regulated by flow from upstream and downstream dams, the low flow must be examined further. According to SRBC's 2006 Conowingo Pond Management Plan, the release rates from both the Conowingo and Holtwood dams reach a minimum of 3,500 cfs during the lower flow months of July-November. Since it is a close match, the StreamStats Q_{7-10} low flow for modeling purposes will be rounded to 3,500 cfs. This information is used to obtain a chronic or 30-day (Q_{30-10}), and an acute or 1-day (Q_{1-10}) exposure stream flow for the discharge point as follows (Guidance No. 391-2000-023):

 $\begin{array}{l} Q_{7\text{-}10}=3,590 \mbox{ cfs} \\ \mbox{Low Flow Yield}=3,590 \mbox{ cfs} / 26,900 \mbox{ mi}^2 \approx 0.130 \mbox{ cfs/mi}^2 \\ Q_{30\text{-}10}=1.36 & 3,590 \mbox{ cfs} \approx 4,882 \mbox{ cfs} \\ Q_{1\text{-}10}=0.64 & 3,590 \mbox{ cfs} \approx 2,298 \mbox{ cfs} \\ \mbox{The resulting } Q_{7\text{-}10} \mbox{ dilution ratio is: } Q_{\text{stream}} / \mbox{ Q}_{\text{discharge}}=3,590 \mbox{ cfs} / [6.01 \mbox{ MGD} & (1.547 \mbox{ cfs/MGD})] = 386:1 \end{array}$

Public Water Supply

The nearest downstream public water supply intake is the Chester Water Authority on Susquehanna River in Lancaster County. It is approximately 2.25 miles. Due to the distance, dilution, and proposed effluent limits the discharge is not expected to impact the water supply.

	Compliance History
Summary of DMRs:	A summary of past 12-month DMRs is presented on next pages.
Summary of Inspections:	7/13/2021: Ms. Dock, DEP's WQS, conducted a compliance evaluation inspection. Recommendations were: 1. Calibrate handheld/bench top pH meter daily and record slope, 2. Confirm whether oil/water separator is on a routine maintenance schedule, 3. Confirm calibration on outfall 001 temperature sensor at minimum & annual calibration, 4. Please complete and submit Lab Registration form with 30 days of receipt of report which include the on-site parameters on the Lab Accreditation supplemental form, 5. On quarterly DMRs report flow on supplemental form for day of sample, 6. Ensure that parameters not dependent on flow (pH, free chlorine) are reported on DMRs in a way that is representative of the discharge. The Department will provide additional information on this if it becomes available. There were no violations identified during inspection. The field test results were within permit limits.
Other Comments:	There is one open violation associated with the permittee or the facility. - 2/3/2023: NPDES -Violation of Effluent Limits in Part A of permit.

Compliance History

DMR Data for Outfall 001 (from January 1, 2023 to December 31, 2023)

Parameter	DEC-23	NOV-23	OCT-23	SEP-23	AUG-23	JUL-23	JUN-23	MAY-23	APR-23	MAR-23	FEB-23	JAN-23
Flow (MGD)												
Average Monthly	1.7311	1.6386	1.0857	1.3089	1.5127	13957	1.4660	1.5556	1.4923	1.3711	1.6710	1.6124
Flow (MGD)												
Daily Maximum	1.9902	2.0133	1.6065	1.8160	1.021	1.7433	1.7386	1.7662	2.0097	2.0208	1.9354	1.8052
pH (S.U.)												
Minimum	7.5	7.4	7.0	7.4	7.1	7.3	7.4	7.6	7.1	7.3	7.5	7.1
pH (S.U.)												
Instantaneous												
Maximum	8.0	7.7	7.8	7.8	7.8	7.9	8.0	7.8	7.9	7.8	8.0	7.8
Free Available												
Chlorine (mg/L)												
Daily Maximum	0.11	0.09	0.18	0.17	0.14	0.17	0.12	0.16	0.16	0.09	0.13	0.13
Temperature (°F)												
Daily Maximum	81.6	74.9	85.1	79.9	86.4	89.1	75.4	80.0	79.9	72.2	73.2	77.6
TSS (mg/L)												
Effluent Net 												
Average Monthly	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TSS (mg/L)												
Effluent Net 												
Daily Maximum	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Total Dissolved Solids												
(mg/L)												
Daily Maximum	632			874.7			640.0			533.6		
Total Aluminum												
(lbs/day)												
Average Quarterly	10.81			5.36			31.79			3.49		
Total Aluminum												
(lbs/day)												
Daily Maximum	10.81			5.36			31.79			3.49		
Total Aluminum												
(mg/L)												
Average Quarterly	0.87			0.45			2.28			0.25		
Total Aluminum												
(mg/L)												
Daily Maximum	0.87			0.45			2.28			0.25		
Sulfate (mg/L)												
Daily Maximum	269.91			429.32			267.01			222.07		
Chloride (mg/L)												
Daily Maximum	89.58			136.13			82.28			92.67		

NPDES Permit Fact Sheet

NPDES Permit No. PA0088781

York Energy Center

Bromide (mg/L)								
Daily Maximum	< 2.87		2.72		1.61		1.46	

DMR Data for Outfall 100 (from January 1, 2023 to December 31, 2023)

Parameter	DEC-23	NOV-23	OCT-23	SEP-23	AUG-23	JUL-23	JUN-23	MAY-23	APR-23	MAR-23	FEB-23	JAN-23
Flow (MGD)												
Average Monthly	0.0874	0.0667	0.0950	0.0467	0.0792	0.0931	0.0758	0.0605	0.0604	0.1161	0.1150	0.1206
Flow (MGD)												
Daily Maximum	0.3616	0.0822	0.3498	0.1261	0.0988	0.4348	0.1516	0.0927	0.1503	0.2858	0.1669	0.1764
TSS (mg/L)												
Effluent Net 												
Average Monthly	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TSS (mg/L)												
Effluent Net 												
Daily Maximum	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Oil and Grease (mg/L)												
Effluent Net 												
Average Monthly	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Oil and Grease (mg/L)												
Effluent Net 												
Daily Maximum	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

Development of Effluent Limitations

Outfall No.	001		Design Flow (MGD)	6.01
Latitude	39° 46' 5.00"		Longitude	-76º 16' 6.00"
Wastewater D	escription:	Noncontact Cooling Water (NCCW)		

<u>Technology-Based Limitations / Water Quality-Based Limitations / Best Professional Judgment (BPJ) Limitations</u>

Effluent Limitations Guidelines:

This facility is regulated by an Effluent Limitation Guideline (ELG) from the Code of Federal Regulations 40 CFR Part 423 Steam Electric Power Generating Point Source Category. Limits have been applied in the permit based on Part 423.15 – New Source Performance Standards (NSPS).

pH:

The effluent discharge pH should remain above 6 and below 9 standard units according to 25 Pa Code § 95.2(1).

Free available Chlorine: (Total Residual Chlorine (TRC):

The ELG Part 423.15(b)(10)(i) requires limits for free available chlorine in cooling tower blowdown. The requirement is a concentration of 0.2 mg/L as an average concentration, and a concentration of 0.5 mg/L as a maximum concentration. DEP's Guidance Document No.362-2183-004 "Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry" states that the average FAC limit from the ELG should be included in the permit as a maximum daily, and the maximum limit should be included as an IMAX. This is consistent with the existing limits, which will remain in the permit. Additionally, the Guidance 362-2183-004 and ELG Part 423 requires the following language to be included in Part C of the NPDES permit:

"The term maximum daily concentration as it relates to chlorine discharge means the average analyses made over a single period of chlorine release which does not exceed two hours."

"The term 'free available chlorine' shall mean the value obtained using the amperometric titration method for free available chlorine described in "Standard methods for the Examination of Water and Wastewater," page 112 (13th edition)."

"Neither free available chlorine nor total residual chlorine may be discharged from any unit for more than two hours in any one day and not more than one unit in any plant may discharge free available or total residual chlorine at any one time unless the utility can demonstrate to the Regional Administrator or state, if the state has NPDES permit issuing authority, that the units in a particular location cannot operate at or below this level of chlorination.

This additional language will be included in Part C of the NPDES permit, which is consistent with the existing permit.

Polychlorinated Biphenyls (PCBs):

The ELG Part 423.15(b)(2) states "There shall be no discharge of polychlorinated biphenyl compounds such as those commonly used for transformer fluid." This statement will be included in the Part C conditions of the NPDES permit, which is consistent with the existing permit.

Total Suspended Solids (TSS):

The ELG Part 423.15(b)(3) requires limits for TSS in low volume waste sources. The requirement is an average monthly limit of 30 mg/L, and a daily maximum limit of 100 mg/L. Multipliers of 2.0 and 2.5 will be used for the daily maximum and instantaneous maximum (IMAX) in accordance with DEP's Guidance 362-0400-001. This results in a daily maximum limit of 60 mg/L, and an IMAX limit of 75 mg/L. These limits will be included, which is consistent with the existing permit. The existing permit has a minimum monitoring frequency of 2/month and sample type of "grab" will remain in the proposed permit.

Oil and Grease:

The ELG Part 423.15(b)(3) requires limits for oil and grease in low volume waste sources. The requirement is an average monthly limit of 15 mg/L, and a daily maximum limit of 20 mg/L. Additionally, 25 Pa Code § 95.2(2)(ii) requires an IMAX limit of 30 mg/L for oil and grease. These limits will be included, which is consistent with the existing permit limits. The existing permit has a minimum monitoring frequency of 2/month and sample type of "grab" will remain in the proposed permit.

NPDES Permit Fact Sheet York Energy Center Total Chromium/Total Zinc:

The ELG Part 423.15(b)(10)(i) requires limits for Total Chromium and Total Zinc. The requirement for Total Chromium is an average monthly limit of 0.2 mg/L and a maximum daily limit of 0.2 mg/L. The requirement for Total Zinc is an average monthly limit of 1.0 mg/L and a maximum daily limit of 1.0 mg/L.

DEP recognizes the intent of the ELG and determines that since Calpine doesn't use chemicals containing Total Chromium or Total Zinc for cooling tower maintenance or otherwise add Zinc or Chromium to the effluent, the ELG (40 CFR § 423.15) may not be applicable. This is also explained in the Federal Registry Volume 47 No. 224 page 52295. Therefore, no Total Chromium and Total Zinc limits monitoring are required in the existing permit and it will remain in the proposed permit.

Priority Pollutants:

The ELG Part 423.15(b)(10)(i) requires that any of the 126 Priority Pollutants contained in chemicals added for cooling tower maintenance should not be detectable, except for Total Zinc and total Chromium. In accordance with DEP's Guidance No. 362-2183-004, it is not always necessary to require monitoring for priority pollutants, and can be handled with a narrative condition instead. Since the chemical additives used at the facility do not contain any of the Priority Pollutants, a narrative condition was included in Part C of the permit. This is consistent with the existing permit. The Part C condition states:

"Cooling tower blowdown discharges shall contain no detectable amounts of the 126 Priority Pollutants listed in 40 CFR Part 423, Appendix A, with the exception of Total Chromium and Total Zinc. When requested by DEP, the permittee shall conduct monitoring or submit engineering calculations to demonstrate compliance with 40 CFR 423.13(d)(a)."

Total Dissolved Solids (TDS):

Total Dissolved Solids and its major constituents including Bromide, Chloride, and Sulfate have become statewide pollutants of concern and threats to DEP's mission to prevent violations of water quality standards. The requirement to monitor these pollutants must be considered under the criteria specified in 25 Pa. Code § 95.10 and the following January 23, 2014 DEP Central Office Directive:

For point source discharges and upon issuance or reissuance of an individual NPDES permit:

- Where the concentration of TDS in the discharge exceeds 1,000 mg/L, or the net TDS load from a discharge exceeds 20,000 lbs/day, and the discharge flow exceeds 0.1 MGD, Part A of the permit should include monitor and report for TDS, sulfate, chloride, and bromide. Discharges of 0.1 MGD or less should monitor and report for TDS, sulfate, chloride if the concentration of TDS in the discharge exceeds 5,000 mg/L.
- Where the concentration of bromide in a discharge exceeds 1 mg/L and the discharge flow exceeds 0.1 MGD, Part A of the permit should include monitor and report for bromide. Discharges of 0.1 MGD or less should monitor and report for bromide if the concentration of bromide in the discharge exceeds 10 mg/L.
- Where the concentration of 1,4-dioxane (CAS 123-91-1) in a discharge exceeds 10 µg/L and the discharge flow exceeds 0.1 MGD, Part A of the permit should include monitor and report for 1,4-dioxane. Discharges of 0.1 MGD or less should monitor and report for 1,4-dioxane if the concentration of 1,4-dioxane in the discharge exceeds 100 µg/L.

YEC reported a maximum effluent concentration of 1,340 mg/L for TDS. Based upon the data provided in the application, monitoring of TDS, Bromide, Chloride, and Sulfate will be required. These monitoring requirements were included in the existing permit, and will remain in the renewal. The existing permit has a minimum monitoring frequency of 1/quarter and sample type of "grab" will remain in the proposed permit.

Toxics:

Recommended WQBELs & Monitoring Requirements

No. Samples/Month: 4

	Mass	Limits		Concentra	tion Limits				
Pollutants	AML (lbs/day)	MDL (lbs/day)	AML	MDL	IMAX	Units	Governing WQBEL	WQBEL Basis	Comments
Total Copper	Report	Report	Report	Report	Report	µg/L	89.8	AFC	Discharge Conc > 10% WQBEL (no RP)
Total Dinitrotoluene	0.25	0.4	5.05	7.89	12.6	µg/L	5.05	CRL	Discharge Conc ≥ 50% WQBEL (RP)

NPDES Permit No. PA0088781

NPDES Permit Fact Sheet York Energy Center

Effluent sample results for toxic pollutants reported on the renewal application were entered into DEP's Toxics Management Spreadsheet Version 1.0 to develop appropriate permit requirements for toxic pollutants of concern. The Toxics Management Spreadsheet combines the functions of PENTOXSD and DEP's Toxics Screening Analysis. Based on effluent sample results reported on the application, the Toxics Management Spreadsheet recommended a limit for Total Dinitrotoluene, and monitoring for Total Copper. A discharge hardness of 418 mg/L and a pH of 8.4 were used in the Spreadsheet, taken from the application.

The TMS output provided specific partial mix factors for each criteria. These partial mix factors were multiplied by 2, to account for the fact that mixing occurs on two sides of the plume. The width and depth of the river at the point of discharge were stated in the previous permit application to be approximately 5,620 ft. and 10 ft., respectively. Additionally, elevations were provided in the previous application for the outfall location and at the PA/MD border. These values were all used in the TMS, and are consistent with how modeling was performed for the existing permit.

Stream pH and hardness inputs for the spreadsheet were based on data acquired from the National Water Quality Monitoring Council website. Data was analyzed from the Water Quality Network (WQN) Station ID 201 on the Susquehanna River from 2010 to 2020. A 90th percentile analysis was performed on the data and resulted in a Stream pH of 8.2 and a Stream Hardness of 159 mg/L.

This data was analyzed based on the guidelines found in DEP's Water Quality Toxics Management Strategy (Document No. 361-0100-003) and DEP's SOP No. BPNPSM-PMT-033. Spreadsheet results are attached to this fact sheet. The Toxics Management Spreadsheet uses the following logic:

- a. Establish average monthly and IMAX limits in the draft permit where the maximum reported concentration exceeds 50% of the WQBEL.
- b. For non-conservative pollutants, establish monitoring requirements where the maximum reported concentration is between 25% 50% of the WQBEL.
- c. For conservative pollutants, establish monitoring requirements where the maximum reported concentration is between 10%-50% of the WQBEL.

Since the reported maximum concentration for Total Dinitrotoluene was greater than or equal 50% of its WQBEL, the TMS produced an effluent limit. However, the maximum concentration reported in the application for Total Dinitrotoluene (2,6-Dinitrotoluene) was based on a non-detect result of 16.8 μ g/L. Therefore, these parameters will be included in the permit as monitoring requirements with a sample frequency of 1/quarter. These parameters will be re-evaluated again during the next permit cycle to determine if they will remain or can be removed from the permit.

The reported maximum concentration for Total Copper was greater than 10% of its WQBEL, the TMS produced an effluent limit. However, the maximum concentration reported in the application for Total Copper was based on a non-detect result of $10.0 \mu g/L$. Therefore, these parameters will be included in the permit as monitoring requirements with a sample frequency of 1/quarter. These parameters will be re-evaluated again during the next permit cycle to determine if they will remain or can be removed from the permit.

Total Aluminum monitoring quarterly was required in the existing permit and will remain in the renewal.

Chesapeake Bay Total Maximum Daily Load (TMDL)

The discharge of TN and TP from this facility is consistent with and covered under the Chesapeake Bay TMDL aggregate WLA for non-significant wastewater discharges.

This is a non-significant industrial discharge facility that does not require nitrogen or phosphorus monitoring. The facility discharges non-contact cooling water and stormwater without any chemical additives containing significant amounts of nitrogen or phosphorus. The Supplement to Phase II Watershed Implementation Plan states the following:

"For non-significant IW facilities, monitoring and reporting of TN and TP will be required throughout the permit term in renewed or amended permits anytime the facility has the potential to introduce a net TN or TP increase to the load contained within the intake water used in processing. In general, facilities that discharge groundwater and cooling water with no addition of chemicals containing N or P do not require monitoring."

No TN or TP monitoring requirements are currently needed in the permit.

316(b) Cooling Water Intake Requirements:

The 2023 permit application indicates that the facility withdraws 12.62 MGD from Susquehanna River.

Section 316(b) of the Clean Water Act (CWA) requires that the location, design, construction, and capacity of cooling water intake structures (CWISs) reflect the best technology available (BTA) for minimizing adverse environmental impacts. Under Section 316(b) of the CWA, EPA developed regulations which are divided into three phases: Phase I for

NPDES Permit Fact Sheet

York Energy Center

new facilities, Phase II for existing large electric-generating facilities, and Phase III for certain existing facilities and new offshore oil and gas extraction facilities.

York Energy Center's existing permit applied the Phase I 316(b) requirements for new facilities (codified in 40 CFR § 125, Subpart I), since the facility was constructed after January 17, 2002.

Per the application, the facility has closed-cycle cooling, and the intake structure consists of six 4-millimeter slot wedgewire cylinder screens. Additionally, the YECs WWS are designed for a through-slot velocity (TSV) of less than 0.5 ft/s and are located offshore within the Conowingo Pool.

The Part C language included in the existing permit for CWISs will remain in the proposed permit.

Chemical Additives:

The term chemical additive means a chemical product introduced into a waste stream that is used for cleaning, disinfecting, or maintenance and which may be detected in effluent discharged to waters of the Commonwealth. Generally, the term "chemical additive" excludes chemicals used for neutralization of waste streams, the production of goods, and treatment of wastewater. The following chemical additives will be used at the facility and will replace the chemical additives currently used. These chemicals were not identified on the previous permit application.

Chemical Additive	Purpose	Maximum Usage (Ib/day)	Usage Frequency
Steamate PAP7000	Steam condensate treatment	200	Daily
Biomate MBC2881	Biocide	6 gallons/day	As required
Gengard GN7004	Dispersant	37	As required
Sodium Bisulfite 42%	Dechlorination	61 gallons/day	As required
Sodium Hypochlorite	pH and TRC control	As required	As required
Sodium Hydroxide	Anti-scalant	As required	As required

These chemicals are included on DEP's Approved List of Chemical Additives. No limits or monitoring requirements will be necessary for these chemicals. The permittee will be required to provide the usage rates of all chemical additives used at the site on a monthly basis, and will report these results on DEP's Chemical Additives Usage Form. The permit will include Part C conditions for chemical additive usage and reporting requirements.

Temperature Limitations:

A reasonable potential (RP) analysis was performed for temperature which is the main pollutant of concern for the NCCW. Effluent limitations for temperature were calculated using DEP's Temperature Spreadsheet Model which uses DEP's Guidance No. 391-2000-017 for Temperature Criteria. In the Temperature Spreadsheet, per the previous fact sheet, a Q₇₋₁₀ multiplier of 1.0 was used for each more in the spreadsheet. This was done to be conservative due to the nature of the low flows in the Conowingo Pond.

The stream Q_{7-10} of 89.3 cfs (calculated acute partial mixing factor (PMF_a) of 0.0253 was multiplied by the Q_{7-10} flow of 3,530 cfs for the entire river to give the Q_{7-10} flow relevant for the temperature model) used in the previous fact sheet was used in the Temperature Spreadsheet to account for the partial mixing of the discharge plume. The design intake flow is 12.62 MGD or 0.04 percent of the Susquehanna River.

The effluent limitations were analyzed using the Case 2 Thermal Worksheet for WWF streams. The worksheet recommended permit limits of 110°F for all months. The existing permit limit for Temperature of 110°F is consistent with this analysis, and will remain in the permit. A printout of the worksheet is attached.

NPDES Permit No. PA0088781

NPDES Permit Fact Sheet

Inputs

Facility:	Calpine Mid Merit, LLC-York Energy Center

Permit No.: PA0088781

Analyst/Engineer: Hilary Le Analysis Type*: www.

Stream Name: Susquehanna River Stream Q7-10 (cfs)*: 89.3 Outfall No.: 001
 Facility Flows

 Intake
 Intake

 (Stream)
 (External)

 (MGD)*
 (MGD)*
 Loss (MGD)* Discharge Flow (MGD) Semi-Monthly Jan 1-31 Feb 1-29 12.62 6.61 6.01 12.62 6.61 6.01 Mar 1-31 Apr 1-15 6.01 6.01 Apr 1-15 Apr 16-30 May 1-15 May 16-31 12.6 6.01 12.62 Jun 1-15 Jun 16-30 6.01 Jul 1-31 Aug 1-15 12.6 6.0 6.0 6.6 Aug 16-31 12.6 6.6 6.0 Sep 1-15

	Stream FI	ows	
Q7-10 Multipliers (Default Shown)	PMF	Seasonal Stream Flow (cfs)	Downstream Stream Flow (cfs)
3.2	1.00	285.76	275.53
3.5	1.00	312.55	302.32
7	1.00	625.10	614.87
9.3	1.00	830.49	820.26
9.3	1.00	830.49	820.26
5.1	1.00	455.43	445.20
5.1	1.00	455.43	445.20
3	1.00	267.90	257.67
3	1.00	267.90	257.67
1.7	1.00	151.81	141.58
1.4	1.00	125.02	114.79
1.4	1.00	125.02	114.79
1.1	1.00	98.23	88.00
1.1	1.00	98.23	88.00
1.2	1.00	107.16	96.93
1.2	1.00	107.16	96.93
1.6	1.00	142.88	132.65
1.6	1.00	142.88	132.65
2.4	1.00	214.32	204.09

12.6

12.6

12.6 12.6 12.6

WWF Results

Sep 16-30 Oct 1-15

et 16-31 ov 1-15 ov 16-30

VOV

Recommended Limits for Case 1 or Case 2

	WWF	Case 1	Case 2
Semi-Monthly	Target Maximum	Daily	Daily
Increment	Stream Temp.	WLA	WLA
	(°F)	(Million BTUs/day)	(°F)
Jan 1-31	40	7,426	110.0
Feb 1-29	40	8,148	110.0
Mar 1-31	46	19,885	110.0
Apr 1-15	52	22,106	110.0
Apr 16-30	58	22,106	110.0
May 1-15	64	14,398	110.0
May 16-31	72	23,997	110.0
Jun 1-15	80	18,055	110.0
Jun 16-30	84	18,055	110.0
Jul 1-31	87	9,158	110.0
Aug 1-15	87	8,044	110.0
Aug 16-31	87	8,044	110.0
Sep 1-15	84	6,166	110.0
Sep 16-30	78	6,166	110.0
Oct 1-15	72	6,270	110.0
Oct 16-31	66	6,270	110.0
Nov 1-15	58	7,150	110.0
Nov 16-30	50	5,720	110.0
Dec 1-31	42	5 500	110.0

6.61

6.61

6.61 6.61 6.61

6.6

6.0

6.01 6.01

6.0 6.0

Thermal Limits Spreadsheet ersion 1.0, Draft, August, 2023

Additional Considerations

Anti-Degradation

The effluent limits for this discharge have been developed to ensure that existing instream water uses and the level of water quality necessary to protect the existing uses are maintained and protected. No High Quality Waters are impacted by this discharge. No Exceptional Value Waters are impacted by this discharge.

303(d) Listed Streams

The discharge is located on a stream segment that is designated on the 303(d) list as impaired. There is a fish consumption impairment for polychlorinated biphenyls and pH due to an unknown source. The permit has a condition that states there shall be no discharge of polychlorinated biphenyl compounds such as those commonly used for transformer fluid, and contains a limit for pH.

Class A Wild Trout Fisheries

No Class A Wild Trout Fisheries are impacted by this discharge.

NPDES Permit No. PA0088781

Development of Effluent Limitations

Outfall No.	100		Design Flow (MGD)	0.3
Latitude	39° 46' 5.00"		Longitude	-76º 16' 6.00"
		Wastewater from recycle	water treatment plant, reverse os	mosis concentrate, and ultra-
Wastewater D	escription:	filtration unit rinse water.		

Technology-Based Limitations / Water Quality-Based Limitations / Best Professional Judgment (BPJ) Limitations / Additional Considerations

Outfall 100 designates the internal monitoring point on the recycle water line, which conveys effluent from the recycle water treatment plant, reverse osmosis concentrate, and ultrafiltration unit rinse water from the process water treatment plant to the cooling towers.

As described above, the ELG Part 423.15(b)(3) requires limits for TSS and Oil and Grease in low volume waste sources.

Flow monitoring is recommended by DEP's technical guidance and is also required by 25 PA Code §§ 92a.61. It will be included, which is consistent with the existing permit.

The existing TSS limits of 30.0 mg/L average monthly, and 100 mg/L daily maximum monitoring of 2/month requirements will remain in the proposed permit.

The existing Oil and Grease limits of 15 mg/L average monthly, 20 mg/L daily maximum, and 30 mg/L IMAX monitoring of 2/month requirements will remain in the proposed permit.

Development of Effluent Limitations

Outfall No.002, 003, & 004Wastewater Description:Stormwater

Design Flow (MGD) 0

Technology-Based Limitations / Water Quality-Based Limitations / Best Professional Judgment (BPJ) Limitations / Additional Considerations

The facility contains the following three stormwater outfalls: <u>Outfall 002</u> Latitiude 39°44'10", Longitude -76°18'25" UNT Susguehanna River (07245), RMI: 3.24 + 1.00 (No Stream Code)

- Discharges via a retention basin for a drainage area of 27.7 acres (1,206,612 sq. ft.). The drainage area is 62% impervious. A fuel oil storage tank is named as a potential pollutant source by the most recent application.

Outfall 003

Latitiude 39°44'30", Longitude -76°18'10" UNT Susquehanna River (07245), RMI: 3.24 + 0.66 (No Stream Code)

- Discharges via a retention basin for a drainage area of 11.9 acres (518,364 sq. ft.). The drainage area is 92% impervious. No artificial potential pollutant sources are listed.

Outfall 004

Latitiude 39°44'15", Longitude -76°18'10" UNT Susquehanna River (07245), RMI: 3.24 + 0.78 (No Stream Code)

- Discharges via a retention basin for a drainage area of 31.5 acres (1,372,140 sq. ft.). The drainage area is 20% impervious. No artificial potential pollutant sources are listed.

The existing monitoring requirements for Outfall 002 match the current requirements for Steam Electric Power Generating Facilities listed in Appendix H of the PAG-03 permit for industrial stormwater discharges.

Recent DMR sampling data for the three basins indicate minimal amounts of pollutants. Due to Outfall 002 having the only listed artificial pollutant source (in addition to a relatively high impervious area of 17.2 acres), therefore, the existing yearly monitoring of pH, TSS, Oil & Grease, Total Copper, Total Iron, Total Nickel, and Total Zinc requirements will remain in the proposed permit.

1,000 2,000

0

NPDES Permit Fact Sheet York Energy Center

Sources: Aerial Imagery - PASDA

NPDES Permit No. PA0088781

	(S The Mail and	-		- PAR	A	Leaflet Esri
innee for a changing worki							
SELECT & STATE / REGION							Collapse All
Pennsylvania O 🗸 dama +	> Basin Character	istics					
IDENTIFY A STUDY AREA	Parameter						
Basin Delineated 🤟 rd*	Code	Parameter Description				Value Un	it
	BSLOPD	Mean basin slope measured in de	grees			8.0251 deg	grees
SELECT BOENARIOS	CARBON	Percentage of area of carbonate r	rock			7.93 per	cent
PORT Report Built >	DRNAREA	Area that drains to a point on a st	ream			26900 sq	uare miles
	ELEV	Mean Basin Elevation				1301 fee	t
	FOREST	Percentage of area covered by for	rest			66.4085 per	cent
p 1: You can modify computed basin iracteristics here, then select the types of orts you wish to generate. Then click the	GLACIATED	Percentage of basin area that was glaciers	s historic	ally cov	ered by	43.8327 per	cent
IId Report" button	PRECIP	Mean Annual Precipitation				40 inc	hes
1	ROCKDEP	Depth to rock				4.5 fee	t
Show Basin Characteristics	STRDEN	Stream Density total length of s area	treams d	ivided b	oy drainage	1.75 mil mil	es per square e
lable reports to display:	URBAN	Percentage of basin with urban de	evelopme	nt		3.0316 per	cent
Characteristics Report							
Io Flow Reports	> Low-Flow Statis	tics					
Open Report	Low-Flow Statist	tics Parameters [7.0 Percent (19	930 squa	re mile	s) Low Flow Re	gion 1]	
	Parameter Code	Parameter Name	v	alue	Units	Min Limi	t Max Limit
	DRNAREA	Drainage Area	2	6900	square miles	4.78	1150
POWERED BY WIM	BSLOPD	Mean Basin Slope degrees	8	0251	degrees	1.7	6.4
e Contact USGS Search USGS	ROCKDEP	Depth to Rock	4	5	feet	4.13	5.21
FOIA Privacy Policy & Notices	URBAN	Percent Urban	3	0316	percent	0	89
	Low-Flow Statist	tics Parameters [41.0 Percent (1	11100 sq	uare m	iles) Low Flow	Region 2]	
	Parameter Code	Parameter Name	Value	Unit		Min Li	mit Max Limit
	DRNAREA	Drainage Area	26900	squa	re miles	4.93	1280
101-	PRECIP	Mean Annual Precipitation	40	inch	es	35	50.4
argai	STRDEN	Stream Density	1.75	mile	s per square mil	e 0.51	3.1
	ROCKDEP	Depth to Rock	4.5	feet		3.32	5.65
Zo Mis	CARBON	Percent Carbonate	7.93	perc	ent	o	99
150	Low-Flow Statist	tics Parameters [6.0 Percent (16	510 squa	re mile	s) Low Flow Re	aion 31	

Example of a characteria waved	Low-
	Parar
SELECT A STATE / REGION	DRNA
Pennsyivama 😈 🗸 ciam	BSLO
-	ROCK
Basin Delineated V	URBA
	Low-I
	Parar
BUILD A REPORT Report Built >	DRNA
	PREC
Step 1: You can modify computed basin	STRD
characteristics here, then select the types of reports you wish to generate. Then click the	ROCK
"Build Report" button	CARB
✓ Show Basin Characteristics	Low-
	Parar
Select available reports to display:	DRNA
	ELEV
✓ Basin Characteristics Report	PREC
✓ Scenario Flow Reports	
Open Report	LOW-
	Parar
	DRNA
POWERED BY WIM	PREC
	GLAC
USGS Home Contact USGS Search USGS	FORE
Accessibility FOIA Privacy Policy & Notices	Low-
-	One
	Low-
	Statis
orga	7 Day
	30 Da
Zo	7 Dav
La	30 Da
30	90 Da

Low-Flow Statistics Parameters [7.0 Percent (1930 square miles) Low Flow Region 1] Daramater Name Value Units Para MinLimit

REA	Drainage Area	26900	square miles	4.78	1150
PD	Mean Basin Slope degrees	8.0251	degrees	1.7	6.4
DEP	Depth to Rock	4.5	feet	4.13	5.21
N	Percent Urban	3.0316	percent	0	89

Max Limit

Low-Flow Statistics Parameters [41.0 Percent (11100 square miles) Low Flow Region 2]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	26900	square miles	4.93	1280
PRECIP	Mean Annual Precipitation	40	inches	35	50.4
STRDEN	Stream Density	1.75	miles per square mile	0.51	3.1
ROCKDEP	Depth to Rock	4.5	feet	3.32	5.65
CARBON	Percent Carbonate	7.93	percent	0	99

Low-Flow Statistics Parameters [6.0 Percent (1610 square miles) Low Flow Region 3]

rameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
RNAREA	Drainage Area	26900	square miles	2.33	1720
EV	Mean Basin Elevation	1301	feet	898	2700
ECIP	Mean Annual Precipitation	40	inches	38.7	47.9

Low-Flow Statistics Parameters [46.0 Percent (12300 square miles) Low Flow Region 5]

rameter Code	Parameter Name	Value	Units	Min Limit	Max Limit	
NAREA	Drainage Area	26900	square miles	4.84	982	
ECIP	Mean Annual Precipitation	40	inches	33.1	47.1	
ACIATED	Percent of Glaciation	43.8327	percent	0	100	
REST	Percent Forest	66.4085	percent	41	100	

Low-Flow Statistics Disclaimers [7.0 Percent (1930 square miles) Low Flow Region 1]

Low-Flow Statistics Flow Report [7.0 Percent (1930 square miles) Low Flow Region 1]

tatistic	Value	Unit
Day 2 Year Low Flow	9480	ft^3/s
Day 2 Year Low Flow	10600	ft^3/s
Day 10 Year Low Flow	7390	ft^3/s
Day 10 Year Low Flow	7800	ft^3/s
Day 10 Year Low Flow	8370	ft^3/s

FOREST

Statistic

Statistic

7 Day 2 Year Low Flow

30 Day 2 Year Low Flow

7 Day 10 Year Low Flow

30 Day 10 Year Low Flow

90 Day 10 Year Low Flow

7 Day 2 Year Low Flow

30 Day 2 Year Low Flow

7 Day 10 Year Low Flow

30 Day 10 Year Low Flow

90 Day 10 Year Low Flow

Percent Forest

Low-Flow Statistics Flow Report [Area-Averaged]

SELECT A STATE / REGION Pennsylvania CEDENTIPY A STUDY AREA Basin Delineated SELECT SCENARIOS CEDENT SCENARIOS CEDENT SCENARIOS Step 1: You can modify computed basin characteristics nee, then select the types of result select scenario from click the 'Build Report' button Step 1: You can modify computed basin characteristics Report Basin Characteristics Report Basin Characteristics Report Scenario Flow Reports Core Raport POWERED BY WIM Stops Home Contract USOS Search USOS Accessibility FOA Privacy Policy & Notices	science for a changing world	
IDENTIFY A STUDY AREA Basin Delineated SELECT SCREARIOS CULLD A REPORT Report Built Step 1: You can modify computed basin characteristics they then select the types of "Build Report button" Step 1: You can modify computed basin characteristics they then select the types of "Build Report button" Step 1: You can modify computed basin characteristics Select available reports to display: Basin Characteristics Report Scenario Flow Reports Option Report DYNERED BY WIM Scenario Flow Reports DSQS Home Contact USQS Search USQS Accessibility FOA Privacy Policy & Notices	SELECT A STATE / REGION Pennsylvania O 🗸	21
CULLD A REPORT Report Built Step 1: You consult to penetrate them of the structure that the	IDENTIFY A STUDY AREA Basin Delineated 🤟	- rd
BUILD A REPORT Report Built > Step 1: You can modify computed basin characteristics here, then select the types of "Build Report" butten Step 1: You can modify computed basin characteristics then then select the types of "Build Report" butten Show Basin Characteristics Select available reports to display: Basin Characteristics Report Scenario Flow Reports Open Report POWERED BY WIM USGS Home Contact USGS Search USGS Accessibility FOIA Privacy Policy & Notices	SELECT SCENARIOS 🗸	2
Step 1: You can modify computed basin characteristics here, then select the types of reports you with to generate. Then click the Report button Show Basin Characteristics Select available reports to display: Basin Characteristics Report Scenario Flow Reports Open Report POWERED BY WIM USGS Home Contact USGS Search USGS Accessibility FOIA Privacy Policy & Notices	BUILD A REPORT Report Built >	1
Select available reports to display: Select available reports to display: Seanto Flow Report Copen Report POWERED BY WIM USSS Home Contact USSS Search USSS Accessibility FOIA Privacy Policy & Notices Transformed Contact USSS Search USSS Copen Report Transformed Contact USS Copen Report Transformed Conta	Step 1: You can modify computed basin characteristics here, then select the types of reports you wish to generate. Then click the 'Build Report' button	
Select available reports to display: Basin Characteristics Report Scenario Flow Reports Open Report POWERED BY WIM USGS Home Contact USGS Search USGS Accessibility FOIA Privacy Policy & Notices Tage	Show Basin Characteristics	
Basin Characteristics Report Scenario Flow Report Open Report POWERED BY WIM USGS Home Contact USGS Search USGS Accessibility FOIA Privacy Policy & Notices Transition	Select available reports to display:	
Open Report Owered by WiM USSS Home Contact USSS Search USSS Accessibility FOIA Privacy Policy & Notices	Basin Characteristics Report	
POWERED BY WIM USGS Home Contact USGS Search USGS Accessibility FOIA Privacy Policy & Notices	Scenario Flow Report Open Report	*
POWERED BY WIM		4
USGS Home Contact USGS Search USGS Accessibility FOIA Privacy Policy & Notices	POWERED BY WIM	
30	USGS Home Contact USGS Search USGS Accessibility FOIA Privacy Policy & Notices	orga EZc Ma 30 20

11000

science for a changing world	
SELECT A STATE / REGION Pennsylvania O 🗸	al di Channe +
IDENTIFY A STUDY AREA Basin Delineated 🗸	rd"
BUILD A REPORT Report Built >	
Step 1: You can modify computed basin characteristics here, then select the types of reports you wish to generate. Then click the 'Build Report' button	
✓ Show Basin Characteristics	
Select available reports to display:	-
✓ Basin Characteristics Report	
 Scenario Flow Reports 	
 Open Report 	
POWERED BY WIM	
USGS Home Contact USGS Search USGS Accessibility FOIA Privacy Policy & Notices	
	argar E Zo Ma

NPDES Permit No. PA0088781

FOREST	Percent For	rest	66.4085	percent	41	100	
Low-Flow Statistics	s Disclaimers	[7.0 Percent (1930	square miles	s) Low Flow Red	aion 1]		 Batch Proce
				· · ·	<i>.</i>		
One or more of the p							
Low-Flow Statistics	s Flow Report	[7.0 Percent (1930	square miles	s) Low Flow Re	gion 1]		
Statistic				Value		Unit	
7 Day 2 Year Low FI	ow			9480		ft^3/s	A 400
30 Day 2 Year Low F	low			10600		ft^3/s	A
7 Day 10 Year Low F	low			7390		ft^3/s	
30 Day 10 Year Low	Flow			7800		ft^3/s	
90 Day 10 Year Low	Flow			8370		ft^3/s	
Low-Flow Statistics	s Disclaimers	[41.0 Percent (1110	00 square mi	les) Low Flow F	Region 2]		
							ACA -
Low-Flow Statistics	s Flow Report	[41.0 Percent (111	00 square mi	iles) Low Flow	Region 2]		4 the s
Statistic				Value		Unit	-
7 Day 2 Year Low Fl	ow			6340		ft^3/s	
30 Day 2 Year Low F	low			7450		ft^3/s	A
7 Day 10 Year Low F	low			4760		ft^3/s	
30 Day 10 Year Low	Flow			5590		ft^3/s	
90 Day 10 Year Low	Flow			6900		ft^3/s	44 . 44
Low-Flow Statistics	s Disclaimers	[6.0 Percent (1610	square miles	s) Low Flow Reg	gion 3]		
One or more of the p							AL A
Low-Flow Statistics	s Flow Report	[6.0 Percent (1610	square miles	s) Low Flow Re	gion 3]		
Statistic				Value		Unit	**
7 Day 2 Year Low Fl	ow			2450		ft^3/s	Trenton
30 Day 2 Year Low F	low			3040		ft^3/s	-
7 Day 10 Year Low F	low			1480		ft^3/s	AN- 24
30 Day 10 Year Low	Flow			1850		ft^3/s	ALA L
90 Day 10 Year Low	Flow			2530		ft^3/s	GANA A
Low-Flow Statistics	s Disclaimers	[46.0 Percent (1230)0 square mi	les) Low Flow F	Region 5]		A Vinelar
One or more of the p							Vare
Low-Flow Statistics	s Flow Report	[46.0 Percent (123	00 square mi	iles) Low Flow	Region 5]		
Low-Flow Statistic	s Flow Report	t [41.0 Percent (111	00 square m	iles) Low Flow	Region 2]		Betch Prov
Statistic				Value		Unit	- Jaten Prot
7 Day 2 Year Low F	low			6340		ft^3/s	
30 Day 2 Year Low	Flow			7450		ft^3/s	A 44
7 Day 10 Year Low	Flow			4760		ft^3/s	
30 Day 10 Year Low	Flow			5590		ft^3/s	
90 Day 10 Year Low	FIOW			6900		1("3/\$	A
Low-Flow Statistic	s Disclaimers	6.0 Percent (1610	square mile:	s) Low Flow Re	gion 3]		+
One or more of the p							AAA
Low-Flow Statistic	s Flow Report	t [6.0 Percent (1610	square mile	s) Low Flow Re	egion 3]		× 2
Statistic				Value		Unit	
7 Day 2 Year Low F	low			2450		ft^3/s	NA AN
30 Day 2 Year Low	Flow			3040		ft^3/s	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
7 Day 10 Year Low	Flow			1480		ft^3/s	Starthant +
30 Day 10 Year Low	Flow			1850		ft^3/s	*
90 Day 10 Year Low	Flow			2530		ft^3/s	
Low-Flow Statistic	s Disclaimers	[46.0 Percent (123	00 square m	iles) Low Flow	Region 5]		AMige

Low-Flow Statistics Flow Report [46.0 Percent (12300 square miles) Low Flow Region 5]

Value

3530

4470

2240

2970

3840

Value

5030

6040

3590

4320

5330

Unit

ft^3/s

ft^3/s

ft^3/s

ft^3/s

ft^3/s

Unit

ft^3/s

ft^3/s ft^3/s

ft^3/s

ft^3/s

NPDES Permit No. PA0088781

NPDES Permit Fact Sheet York Energy Center

science for a changing world										
SELECT A STATE / REGION	Parameter Code	Parameter Description			Value U	Init				
Pennsylvania 🔁 🤟 🖬	BSLOPD	Mean basin slope measured in de	egrees		8.0213 d	egrees				
d _	CARBON	Percentage of area of carbonate		7.91 p	ercent					
IDENTIFY A STUDY AREA Basin Delineated	DRNAREA .	Area that drains to a point on a s	tream		27000 s	quare miles				
	ELEV	Mean Basin Elevation			1299 fe	eet				
SELECT SCENABIOS	FOREST	Percentage of area covered by fo	rest		66.3412 p	ercent				
A REPORT Report Built	GLACIATED	Percentage of basin area that wa glaciers	is historica	lly covered by	43.7564 p	ercent				
	PRECIP	Mean Annual Precipitation			40 ir	nches				
	ROCKDEP	Depth to rock			4.5 fe	eet				
Step 1: You can modify computed basin characteristics here, then select the types of eports you wish to generate. Then click the	STRDEN	Stream Density total length of s area	length of streams divided by drainage 1.75 miles per square mile							
"Build Report" button	URBAN	Percentage of basin with urban d	levelopmen	t	3.0275 p	ercent				
✓ Show Basin Characteristics										
t available reports to display:	> Low-Flow Statist	ics								
Basin Characteristics Report	Low-Flow Statisti	cs Parameters [7.0 Percent (1)	980 square	e miles) Low Flow Re	egion 1]					
	Parameter Code	Parameter Name	Va	lue Units	Min Lin	nit Max Limit				
cenario Flow Reports	DRNAREA	Drainage Area	27	000 square miles	4.78	1150				
Open Report	BSLOPD	Mean Basin Slope degrees	8.0	213 degrees	1.7	6.4				
Open Report	ROCKDEP	Mean Basin Slope degrees Depth to Rock	8.0 4.5	213 degrees 5 feet	1.7 4.13	6.4 5.21				
Open Report	BSLOPD ROCKDEP URBAN	Mean Basin Slope degrees Depth to Rock Percent Urban	8.0 4.5 3.0	0213 degrees 5 feet 0275 percent	1.7 4.13 0	6.4 5.21 89				
Open Report POWERED BY WIM	BSLOPD ROCKDEP URBAN Low-Flow Statisti	Mean Basin Slope degrees Depth to Rock Percent Urban cs Parameters [41.0 Percent (8.0 4.5 3.0 11100 squ	0213 degrees 5 feet 0275 percent 0are miles) Low Flow	1.7 4.13 0 Region 2]	6.4 5.21 89				
Open Report POWERED BY WIM Home Contact USGS Search USGS	BSLOPD ROCKDEP URBAN Low-Flow Statisti Parameter Code	Mean Basin Slope degrees Depth to Rock Percent Urban cs Parameters [41.0 Percent (Parameter Name	8.0 4.5 3.0 11100 squ Value	0213 degrees 5 feet 0275 percent 1are miles) Low Flow Units	1.7 4.13 0 Region 2] Min I	6.4 5.21 89 Limit Max Limit				
Open Report POWERED BY WIM Home Contact USGS Search USGS ability FOIA Privacy Policy & Notices	BSLOPD ROCKDEP URBAN Low-Flow Statisti Parameter Code DRNAREA	Mean Basin Slope degrees Depth to Rock Percent Urban cs Parameters [41.0 Percent (Parameter Name Drainage Area	8.0 4.5 3.0 11100 squ Value 27000	2213 degrees 5 feet 2275 percent 2476 Junites 275 Junites 275 Junites	1.7 4.13 0 Region 2] Min I 4.93	6.4 5.21 89 Limit Max Limit 1280				
Open Report POWERED BY WIM Home Contact USGS Search USGS billty FDIA Privacy Policy & Notices	BSLOPD ROCKDEP URBAN Low-Flow Statisti Parameter Code DRNAREA PRECIP	Mean Basin Slope degrees Depth to Rock Percent Urban cs Parameters [41.0 Percent (Parameter Name Drainage Area Mean Annual Precipitation	8.0 4.5 3.0 11100 squ Value 27000 40	2213 degrees 5 feet 2275 percent are miles) Low Flow Units square miles inches	1.7 4.13 0 Region 2] Min I 4.93 35	6.4 5.21 89 Limit Max Limit 1280 50.4				
Open Report POWERED BY WIM Home Contact USGS Search USGS ibility FOIA Privacy Policy & Notices	BSLOPD ROCKDEP URBAN Low-Flow Statisti Parameter Code DRNAREA PRECIP STRDEN	Mean Basin Slope degrees Depth to Rock Percent Urban cs Parameters [41.0 Percent (' Parameter Name Drainage Area Mean Annual Precipitation Stream Density	8.0 4.5 3.0 11100 squ Value 27000 40 1.75	2213 degrees 5 feet 2275 percent are miles) Low Flow Units square miles inches miles per square mi	1.7 4.13 0 Region 2] 4.93 35 1e 0.51	6.4 5.21 89 Limit Max Limit 1280 50.4 3.1				
Open Report POWERED BY WIM S Home Contact USGS Search USGS aibility FOIA Privacy Policy & Notices	BSLOPD ROCKDEP URBAN Low-Flow Statisti Parameter Code DRNAREA PRECIP STRDEN ROCKDEP	Mean Basin Slope degrees Depth to Rock Percent Urban cs Parameters [41.0 Percent (' Parameter Name Drainage Area Mean Annual Precipitation Stream Density Depth to Rock	8.0 4.5 3.0 11100 squ Value 27000 40 1.75 4.5	2213 degrees 5 feet 2275 percent Inches Inc	1.7 4.13 0 Region 2] Min I 4.93 35 1e 0.51 3.32	6.4 5.21 89 Limit Max Limit 1280 50.4 3.1 5.65				
Open Report POWERED BY WIM SS Home Contact USGS Search USGS ssibility FDIA Privacy Policy & Notices	BSLOPD ROCKDEP URBAN Low-Flow Statisti Parameter Code DRNAREA PRECIP STRDEN ROCKDEP CARBON	Mean Basin Slope degrees Depth to Rock Percent Urban cs Parameters [41.0 Percent (' Parameter Name Drainage Area Mean Annual Precipitation Stream Density Depth to Rock Percent Carbonate	8.0 4.5 3.0 11100 squ 27000 40 1.75 4.5 7.91	2213 degrees 5 feet 2275 percent Arree miles) Low Flow Units Units Inches miles per square mile feet percent	1.7 4.13 0 Region 2] 4.93 35 le 0.51 3.32 0	6.4 5.21 89 Limit Max Limit 1280 50.4 3.1 5.65 99				
Open Report POWERED BY WIM S Home Contact USGS Search USGS subility FOIA. Privacy Policy & Notices	BSLOPD ROCKDEP URBAN Low-Flow Statisti Parameter Code DRNAREA PRECIP STRDEN ROCKDEP CARBON Low-Flow Statisti	Mean Basin Slope degrees Depth to Rock Percent Urban CCS Parameters [41.0 Percent (Parameter Name Drainage Area Mean Annual Precipitation Stream Density Depth to Rock Percent Carbonate CCS Parameters [6.0 Percent (10)	8.0 4.5 3.0 11100 squ 27000 40 1.75 4.5 7.91 610 square	2213 degrees 6 feet 2275 percent 2276 percent arae miles) Low Flow Units square miles inches miles per square mil feet percent e miles) Low Flow Red	1.7 4.13 0 Region 2] Min I 4.93 35 1e 0.51 3.32 0 egion 3]	6.4 5.21 89 1280 50.4 3.1 5.65 99				
Open Report POWERED BY WIM Home Contact USGS Search USGS builty FOIA Privacy Policy & Notices	BSLOPD ROCKDEP URBAN Low-Flow Statisti Parameter Code DRNAREA PRECIP STRDEN ROCKDEP CARBON LOW-Flow Statisti Parameter Code	Mean Basin Slope degrees Depth to Rock Percent Urban CCS Parameters [41.0 Percent (Parameter Name Drainage Area Mean Annual Precipitation Stream Density Depth to Rock Percent Carbonate CS Parameters [6.0 Percent (10 Parameter Name	8.0 4.5 3.0 11100 squ 27000 40 1.75 4.5 7.91 610 square Va	2213 degrees feet 2275 percent 2275 percent units square miles inches miles per square mil feet percent e miles) Low Flow Re slue Units	1.7 4.13 0 Region 2] 4.93 35 1e 0.51 3.32 0 egion 3] Min Lin	6.4 5.21 89 Limit Max Limit 1280 50.4 3.1 5.65 99				
Open Report POWERED BY WIM Home Contact USGS Search USGS ibility FOIA Privacy Policy & Notices 7004	BSLOPD ROCKDEP URBAN Low-Flow Statisti Parameter Code DRNAREA PRECIP STRDEN ROCKDEP CARBON Low-Flow Statisti Parameter Code DRNAREA	Mean Basin Slope degrees Depth to Rock Percent Urban cs Parameters [41.0 Percent (* Parameter Name Drainage Area Mean Annual Precipitation Stream Density Depth to Rock Percent Carbonate cs Parameters [6.0 Percent (1/1 Parameter Name Drainage Area	8.0 4.5 3.0 11100 squ 27000 40 1.75 4.5 7.91 610 square 40 1.75 7.91 4.5 7.91 4.5 7.91 4.5 7.91 4.5 7.91	2213 degrees 2275 feet 2275 percent arare miles) Low Flow Units nuches inches miles per square mile feet percent emiles) Low Flow Res miles) Low Flow Res miles) Low Flow Res miles) Low Flow Res	1.7 4.13 0 Region 2] 4.93 35 10 0.51 3.32 0 20 20 20 8 20 3 20 8 20 10 10 10 10 10 10 10 10 10 10 10 10 10	6.4 5.21 89 Limit Max Limit 1280 50.4 3.1 5.65 99 				
Open Report POWERED BY WIM S Home Contact USGS Search USGS sibility FOIA. Privacy Policy & Notices	BSLOPD ROCKDEP URBAN Low-Flow Statisti Parameter Code DRNAREA PRECIP STRDEN ROCKDEP CARBON Low-Flow Statisti Parameter Code DRNAREA ELEV	Mean Basin Slope degrees Depth to Rock Percent Urban cs Parameters [41.0 Percent (" Parameter Name Drainage Area Mean Annual Precipitation Stream Density Depth to Rock Percent Carbonate cs Parameters [6.0 Percent (10 Parameter Name Drainage Area Mean Basin Elevation	8.0 4.5 3.0 11100 squ 27000 40 1.75 4.5 7.91 610 square 610 square 27 22 22	1213 degrees 5 feet 12275 percent 12275 percent Units Inches miles per square mile miles per square mile feet percent units Units Units Units Units square miles Low Flow Re ular Units 10000 square miles	1.7 4.13 0 Region 2] 4.93 35 4 4.93 35 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6.4 5.21 89 Limit Max Limit 1280 50.4 3.1 5.65 99 				

science for a changing world Stream Stats	
SELECT A STATE / REGION Pennsylvania 0 🗸	100000 100000 100000 100000 100000 100000 100000 100000 100000 100000 100000 100000 100000 100000 1000000
IDENTIFY A STUDY AREA Basin Delineated ↓	
	T.a.
BUILD & REPORT Report Built >	7
Step 1: You can modify computed basin characteristics here, then select the types of reports you wish to generate. Then click the Build Report' button.	
✓ Show Basin Characteristics	-
Select available reports to display:	5
✓ Basin Characteristics Report	5
 Scenario Flow Reports 	
Open Report	1
POWERED BY WIM	
USGS Home Contact USGS Search USGS Accessibility FOIA Privacy Policy & Notices	
	-
	argai

Low-Flow Statistics	Parameters [6.0 Percent (1610) square mile	s) Low Flow Reg	ion 3]	
Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	27000	square miles	2.33	1720
ELEV	Mean Basin Elevation	1299	feet	898	2700
PRECIP	Mean Annual Precipitation	40	inches	38.7	47.9
Low-Flow Statistics	Parameters [46.0 Percent (123	300 square m	niles) Low Flow R	egion 5]	
Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	27000	square miles	4.84	982
PRECIP	Mean Annual Precipitation	40	inches	33.1	47.1
GLACIATED	Percent of Glaciation	43.7564	percent	0	100
FOREST	Percent Forest	66.3412	percent	41	100
Low-Flow Statistics	Disclaimers [7.0 Percent (1986) square mile	s) Low Flow Reg	ion 1]	
One or more of the pa					
Low-Flow Statistics	Flow Report [7.0 Percent (198	0 square mile	es) Low Flow Reg	ion 1]	
Statistic			Value	Uni	:
7 Day 2 Year Low Flo	w		9500	ft^3	/s
30 Day 2 Year Low F	low		10600	ft^3	/s
7 Day 10 Year Low F	low		7410	ft^3	/s
30 Day 10 Year Low	Flow		7820	ft^3	/s
90 Day 10 Year Low	Flow		8400	ft^3	/s

30 Day 10 Year Low Flow 90 Day 10 Year Low Flow 7820 8400 w-Flow Statistics Disclaimers [41.0 Percent (11100 square miles) Low Flow Re 01

Low-Flow Statistics Flow Report [41.0 Percent (11100 squa	are miles) Low Flow Regi	on 2]
Statistic	Value	Unit
7 Day 2 Year Low Flow	6360	ft^3/s
30 Day 2 Year Low Flow	7480	ft^3/s
7 Day 10 Year Low Flow	4780	ft^3/s
30 Day 10 Year Low Flow	5620	ft^3/s
90 Day 10 Year Low Flow	6930	ft^3/s
Low-Flow Statistics Disclaimers [6.0 Percent (1610 square	miles) Low Flow Region	3]
Low-Flow Statistics Flow Report [6.0 Percent (1610 square	miles) Low Flow Region	3]
Statistic	Value	Unit

NPDES Permit No. PA0088781

USGS StreamStats	One or more of the parameters is outside the suggested range. Estimate			👄 Batch Processor 🗯 Report 🔮 About 📍 Help
science for a changing world	Low-Flow Statistics Flow Report [41.0 Percent (11100 squa	are miles) Low Flow Regi	on 2]	
SELECT A STATE / REGION	Statistic	Value	Unit	Layers
Pennsylvania 0 •	+ 7 Day 2 Year Low Flow	6360	ft^3/s	2 Southern a
	- 30 Day 2 Year Low Flow	7480	ft^3/s	A A A
Basin Delineated 🕹	7 Day 10 Year Low Flow	4780	ft^3/s	Application Layers 🗸
15	30 Day 10 Year Low Flow	5620	ft^3/s	
	90 Day 10 Year Low Flow	6930	ft^3/s	National Layers
BUILD & REPORT Report Built >	Low-Flow Statistics Disclaimers [6.0 Percent (1610 square	miles) Low Flow Region	3]	PA Map Layers
	One or more of the parameters is outside the suggested range. Estimate			AAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
characteristics here, then select the types of reports you wish to generate. Then click the	Low-Flow Statistics Flow Report [6.0 Percent (1610 square	miles) Low Flow Region	3]	A A A A A A
"Build Report" button	Statistic	Value	Unit	
	7 Day 2 Year Low Flow	2460	ft^3/s	
 Show Basin Characteristics 	30 Day 2 Year Low Flow	3040	ft^3/s	Kingston
	7 Day 10 Year Low Flow	1480	ft^3/s	
Select available reports to display:	30 Day 10 Year Low Flow	1850	ft^3/s	A goughkeepsie
✓ Basin Characteristics Report	90 Day 10 Year Low Flow	2540	ft^3/s	Beacht A
✓ Scenario Flow Reports	Low-Flow Statistics Disclaimers [46.0 Percent (12300 squa	re miles) Low Flow Regi	on 5]	Migdletawn • Hewburgh
Open Report	One or more of the parameters is outside the suggested range. Estimate			A CONTRACTOR
	Low-Flow Statistics Flow Report [46.0 Percent (12300 squa	are miles) Low Flow Regi	on 5]	anterias anterias and a Greenw
POWERED BY WIM	Statistic	Value	Unit	Hicksville
	7 Day 2 Year Low Flow	3540	ft^3/s	New Levitton
USGS Home Contact USGS Search USGS Accessibility FOIA Privacy Policy & Notices	30 Day 2 Year Low Flow	4480	ft^3/s	York
	7 Day 10 Year Low Flow	2250	ft^3/s	ALL DATE TO AND
	30 Day 10 Year Low Flow	2980	ft^3/s	A Long Branch
	90 Day 10 Year Low Flow	3850	ft^3/s	Trenton
	Low-Flow Statistics Flow Report [Area-Averaged]			A Tom River
	Statistic	Value	Unit	
	7 Day 2 Year Low Flow	5050	ft^3/s	
	30 Day 2 Year Low Flow	6050	ft^3/s	A- A
	7 Day 10 Year Low Flow	3600	ft^3/s	
	Zo 30 Day 10 Year Low Flow	4330	ft^3/s	A Chante City
	90 Day 10 Year Low Flow	5350	ft^3/s	Displaying simplified Basin. See FAQ for more information.

TMS model inputs

Parameter	<u>Value</u>	Source
Discharge pH	7.5	(Recent DMR data) ((6.59 + 8.39) /2 = 7.49)
Discharge Hardness	418 mg/L	(2023 permit application)
Stream pH	8.2	(Water Quality Network data)
Stream Hardness	159 mg/L	(Water Quality Network data)
River Width	5,620 ft	(Previous protection report)
River Depth	10 ft	(Previous protection report)
Slope	0.0001	(Previous protection report / Estimation via BPJ)

Partial Mixing Factors:

AFC = (0.01 x 2) + 0.00534 = 0.0253 CFC = (0.073 x 2) + 0.00534 = 0.151 THH = (0.073 x 2) + 0.00534 = 0.151 CRL = (0.1 x 2) + 0.00534 = 0.205

Low Flow Yield:

Discharge Flow:

Using an estimated slope of 0.0001: Node 2 Elevation = Node 1 Elevation - [(19.25 mi - 15.001 mi) (5,280 ft)](0.0001)= 99 ft - 2.24 ft = 96.76 ft

Node 1:	Discharge Point in S	usquehanna River (06685)
	Elevation:	99 ft (USGS National Map Viewer / Estimation)
	Drainage Area:	26,900 mi ² (USGS PA StreamStats)
	River Mile Index:	19.25 <i>(15</i> + <i>4.25)</i> (PA DEP eMapPA)
	Low Flow Yield:	0.13 cfs/mi ²
	Discharge Flow:	6.01 MGD (NPDES Application)
Node 2:	Susquehanna River	at Pennsylvania/Maryland Border
	Elevation:	96.76 ft
	Drainage Area:	27,000 mi ² (USGS PA StreamStats)
	River Mile Index:	15.001 <i>(15</i> + <i>0.001)</i> (PA DEP eMapPA)

0.13 cfs/mi² 0.000 MGD

DEPARTMENT OF ENVIRONMENTAL PROTECTION

Discharge Information

structions Discharge Stream

Facility:	Calpine Mid Merit, LLC-York Energy Center tion Type: Major Sewage / Industrial Waste		NPDES Permit No.: PA0088781	Outfall No.: 001
Evaluation T	ype:	Major Sewage / Industrial Waste	Wastewater Description: Susquehanna R	liver

					Discha	rge Ch	aracteris	tics						
D	esign Flow	Handrey (market)		ern		Part	ial Mix Fa	actors (F	PMFs)		Com	plete Mi	x Times	(min)
I .	(MGD)*	Hardness (mg/i)-		sur	AFC	:	CFC	THH		CRL	Q7-10		Q,	
	6.01	418	7	.5										
-			•		-								•	
						01710	ft blank	0.5 17 10	ft blank	6	If left blan	k	7.07.001	blank
	Disch	arge Pollutant	Units	Ma	x Discharge Conc	Conc	Conc	CV	CV	m CV	Fate Coeff	FOS	a Mod	Chem Transl
	Total Dissolve	d Solids (PWS)	mg/L		1340			1		1				
5	Chloride (PW:	S)	mg/L		130									
15	Bromide		mg/L		2.7									
6	Sulfate (PWS)	mg/L		412									
	Fluoride (PWS	5)	mg/L		0.32									
	Total Aluminu	m	µg/L		1.9									
	Total Antimon	У	µg/L		1.2									
	Total Arsenic		µg/L		2.9									
1	Total Barlum		µg/L		140									
1	Total Beryllur	n	µg/L		0.11									
1	Total Boron		µg/L		92									
I .	Total Cadmiu	m	µg/L											
	Total Chromiu	im (III)	µg/L		3.2									
	Hexavalent Cl	hromlum	µg/L		0.73									
1	Total Cobalt		µg/L		1.1									
	Total Copper		µg/L		10									
	Free Cyanide		µg/L											
12	Total Cyanide		µg/L		4.3									
0	Dissolved Iron		µg/L		300									
	Total Iron		µg/L		1800									
	Total Lead		µg/L		3.6									
	Total Mangan	ese	µg/L		360									
	Total Mercury		µg/L		0.005									
	Total Nickel		µg/L		12									
	Total Phenois	(Phenolics) (PWS)	µg/L		2									
1	Total Seleniur	n	µg/L		0.74									
1	Total Silver		µg/L											
	Total Thallum	1	µg/L											
1	Total Zinc		µg/L		42									
_	Total Molybde	num	µg/L		3									
1	Acroiein		µg/L	<										
1	Acrylamide		µg/L	<										
1	Acrylonitrile		µg/L	<										
1	Benzene		µg/L	-										
	Bromoform		µg/L	<										

Discharge Information

2/8/2024

<u>µg/L</u> « Carbon Tetrachloride Chlorobenzene Chlorodibromomethane Chioroethane 2-Chioroethyl Vinyl Ether 2.5 0.27 Chloroform Dichlorobromomethane 1,2-Dichloroethane 1,2-Dichloroethane 1,1-Dichloroethylene 1,2-Dichloroptopane 1,3-Dichloroptopylene 1,4-Dioxane Group 3 1.4-Dioxane Ethylbenzene Methyl Bromide Methyl Chloride Methylene Chloride 1.1.2.2-Tetrachioroethane Tetrachioroethylene Toluene 1.2.trans_Plusborethylene ру/L « Toluene 1,2-trans-Dichloroethylene 1,1,1-Trichloroethane
 µg/L
 «

 µg/L
 «
 1,1,1-Trichloroethane 1,1,2-Trichloroethane Trichloroethylene Vingi Chloride 2-Chlorophenol 2,4-Dichlorophenol 2,4-Dimethylphenol 4,6-Dinitro-o-Cresol 2,4-Dintro-ohenol 2.4-Dinitrophenol 2-Nitrophenol 4-Nitrophenol p-Chioro-m-Cresol Pentachiorophenol Desec Group 4 1.5 0.29 Phenol 2,4,6-Trichiorophenol Acenaphthene Acenaphthylene Anthracene ру/с µg/L µg/L µg/L µg/L µg/L µg/L µg/L V V V Anthracené Benzola/Anthracene Benzola/Anthracene Benzola/Pyrene 3.4-Benzofluoranthene Benzola/IPenylene Benzola/IPenylene Bis(2-Chioroethoxy)/Ether Bis(2-Chioroethoxy)/Ether Bis(2-Chioroisopropy)/Ether Bis(2-Chioroisopropy)/Ether Bis(2-Chiorosphenyl Phenyl Ether Bis(2-Chiorophenyl Phenyl Ether Chiorophenyl Phenyl Ether Chiorophenyl Phenyl Ether Chiorophenyl Phenyl Ether Chiorophenene I.2-Dichiorobenzene 1.3-Dichiorobenzene 1.4-Dichiorobenzene μg/L « ру/L 0.93 v v v v A A µg/L « 1.4-Dichlorobenzene 3.3-Dichlorobenzidine Diethyi Phthalate Dimethyi Phthalate Di-n-Butyi Phthalate Group 5

2,4-Dinitro Discharge Information

otoluene

2/8/2024

Toxics Management Spreadsheet Version 1.4, May 2023

Page 1

Page 2

1	2,6-Dinitrotoluene	µg/L		16.8					
I	DI-n-Octyl Phthalate	µg/L	۷						
I	1,2-Diphenyihydrazine	µg/L	۷						
1	Fluoranthene	µg/L	<						
1	Fluorene	µg/L	<						
1	Hexachiorobenzene	U0/L	<						
1	Hexachlorobutadlene	- ug/l	-		 				
1	Hexachiorocyclopentadiene	100/1	-				 		
1	Hexachloroofbane	pg/c	-						
1	Indeped 2.2 ed/Durane	Pg/L	<		 	 	 		
1	Indeno(1,2,3-0d)=yrene	pg/L	~		 	 			
1	Isophorone	pg/L	<						
1	Naphthalene	µg/L	<			 			
1	Nitrobenzene	µg/L	<						
1	n-Nitrosodimethylamine	µg/L	<						
1	n-Nitrosodi-n-Propylamine	µg/L	<						
I	n-Nitrosodiphenylamine	µg/L	<						
I	Phenanthrene	µg/L	۷						
I	Pyrene	µg/L	٨						
I	1,2,4-Trichlorobenzene	µg/L	۷						
	Aldrin	µg/L	<						
1	alpha-BHC	µg/L	<						
1	beta-BHC	ug/L	<						
1	gamma-BHC	UQ/L	<						
1	delta BHC	UQ/L	<						
1	Chiordane	100/1	-						
1	4.4.007	pg, c							
1	4,4-001	pg/L	-		 	 			
1	4,4-00E	pg/L	<						
1	4,4-000	µg/L	<						
1	Dielann	µg/L	<						
1	alpha-Endosulfan	µg/L	<		 	 	 		
	beta-Endosulfan	µg/L	<						
8	Endosulfan Sulfate	µg/L	<						
18	Endrin	µg/L	۷						
6	Endrin Aldehyde	µg/L	۷						
1	Heptachlor	µg/L	<						
1	Heptachlor Epoxide	µg/L	۷						
1	PCB-1016	µg/L	٨						
1	PCB-1221	µg/L	۷						
1	PCB-1232	µg/L	<						
1	PCB-1242	ug/L	<						
1	PCB-1248	UO/L	<						
1	PCB-1254	- ug/l	<				 		
1	PCB-1260	100/1	-				 		
I	DOBC Total	pgrc.							
1	Toyanhana	Pg/L	~						
1	2378.7000	pyre	-						
<u> </u>	2,3,7,0-1000	ngru	<						
1	Gross Alpha	PCUL					 		
	Total Beta	pel/L	<						
	Radium 226/228	PCI/L	<						
1 S	Total Strontium	µg/L	<						
	Total Uranium	µg/L	<						
	Osmotic Pressure	mOs/kg							

Discharge Information

2/8/2024

Page 3

Pennsylvania Department of environmental.

Stream / Surface Water Information

NPDES Permit No. PA0088781

Toxics Management Spreadsheet Version 1.4, May 2023

water mormation capite and a

Calpine Mid Merit, LLC-York Energy Center, NPDES Permit No. PA0088781, Outfall 001

tructions Discharge Stream No. Reaches to Model: 1 Statewide Criteria Great Lakes Criteria Receiving Surface Water Name: Susquehanna River PWS Withdrawal (MGD) Apply Fish Criteria* ORSANCO Criteria Elevation Location Stream Code* RMI* DA (mi²)* Slope (ft/ft) (ft)* Point of Discharge End of Reach 1 006685 19.25 26900 Yes 99 006685 15.001 96.76 27000 Yes Q 7-10 Flow (cfs) Stream Tributary LFY W/D Ratio Depth (ft) 10 Tributary Stream Velocit y (fps) Analysis Width Time Location RMI (cfs/mi²)* 0.13 (ft) 5620 Hardness pH Hardness' pH' Hardness pH 159 8.2 Point of Discharge End of Reach 1 19.25 15.001 0.13 5620 10 159 8.2 Q, LFY Tributary Stream Flow (cfs) W/D Width Depth (ft) Veloci Analysis Location RMI Time Ratio (cfs/mi²) Stream Tributary Hardness pH Hardness pH Hardness pH (ft) y (fps) Point of Discharge End of Reach 1 19.25 15.001

an / Surface water mornation					2/8/	2024			-
DEPARTMENT OF ENVIRONMENTA PROTECTION	ıL.							Toxics Management Spreadsheet Version 1.4, May 2023	
Model Results					Calpine M	Mid Merit, L	LC-York Energ	gy Center, NPDES Permit No. PA0088781, Outfall 001	
Instructions Results	RETURN	I TO INPU	лз [SAVE AS	PDF	PRIN	r) ® A	ll 🔿 Inputs 🔿 Results 🔿 Limits	
Hydrodynamics									
Wasteload Allocations									
AFC CC	T (min):	15	PMF:	0.010	Ana	lysis Hardne	ss (mg/l):	211.37 Analysis pH: 7.94	
Pollutants	Conc	Stream CV	Trib Conc (ua/L)	Fate Coef	WQC (µg/L)	WQ Obj (µa/L)	WLA (µg/L)	Comments	
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A		
Chloride (PWS)	0	0		0	N/A	N/A	N/A		
Sulfate (PWS)	0	0		0	N/A	N/A	N/A		
Fluoride (PWS)	0	0		0	N/A	N/A	N/A		
Total Aluminum	0	0		0	750	750	3,710		
Total Antimony	ő	ŏ		ŏ	1,100	1,100	5,441		
Total Arsenic	0	0		ō	340	340	1.682	Chem Translator of 1 applied	
Total Barium	0	0		0	21.000	21.000	103.867		
Total Boron	ō	Ō		Ō	8,100	8,100	40,063		
Total Chromium (III)	0	0		0	1051.712	3,328	16,461	Chem Translator of 0.316 applied	
Hexavalent Chromium	0	0		0	16	16.3	80.6	Chem Translator of 0.982 applied	
Total Cobalt	0	10		Ō	95	95.0	470		
Total Copper	ō	Ō		Ō	27.203	28.3	140	Chem Translator of 0.96 applied	
Dissolved Iron	0	0		0	N/A	N/A	N/A		
Total Iron	0	0		0	N/A	N/A	N/A		
Total Lead	0	0		0	144.361	212	1.047	Chem Translator of 0.682 applied	
Total Manganese	ō	Ō		Ō	N/A	N/A	N/A		
Total Mercury	0	0		0	1,400	1.65	8.15	Chem Translator of 0.85 applied	
Total Nickel	0	10		ō	881.948	884	4.371	Chem Translator of 0.998 applied	
Total Phenols (Phenolics) (PWS)	0	1 ŏ		ŏ	N/A	N/A	N/A	energy management and applied	
Total Selenium	ŏ	1 ŭ		ŏ	N/A	N/A	N/A	Chem Translator of 0.922 applied	
Total Zinc	ő	+ ŏ		ŏ	220.931	226	1 117	Chem Translator of 0.022 applied	
Chloroform	0	+ ŏ		ŏ	1 000	1 000	0.307	onem manatator or oter o applied	
Dichlorobromomothano	0			6	T, JUU	1,800	0,001		
Dianorobromomentarie	4 44						- N UA		
2-Nitrophonol	0	1 ñ		N N	8,000	8.000	N/A 30.569		

2.4.6-Trichlorophenol	0	0		0	460	460	2.275	
Bis(2-Ethylhexyl)Phthalate	0	0		0	4,500	4,500	22,257	
2,6-Dinitrotoluene	0	0		0	990	990	4,897	
	_							
CFC CC	T (min): 7	20	PMF:	0.073	Ana	ilysis Hardne	ess (mg/l):	168.14 Analysis pH: 8.14
	-			·`				
Ballutaate	Cono	Stream	Trib Conc	Fate	WQC	WQ Obj	MI A (unit)	Comments
Foliatants	(ug/L)	CV	(µg/L)	Coef	(µg/L)	(µg/L)	(pg/c)	Continents
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A	
Chloride (PWS)	0	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
Eluorido (PMS)	0	0		0	NI/A	NIA	NI/A	
Fluonde (FWS)		0		0	INVA	INA	INA	
Total Aluminum	U	U		U	N/A	NVA	N/A	
Total Antimony	0	0		0	220	220	6,235	
Total Arsenic	0	0		0	150	150	4,251	Chem Translator of 1 applied
Total Barium	0	0		0	4,100	4,100	116,190	
Total Boron	0	0		0	1.600	1.600	45 342	
Tatal Characters (III)				ŏ	112 420	1000	2,720	Cham Translates of 0.08 continue
Total Chromium (III)	<u> </u>	U		U U	113.430	132	3,738	Chem Translator of 0.80 applied
Hexavalent Chromium	0	U		0	10	10.4	295	Chem Translator of 0.962 applied
Total Cobalt	0	0		0	19	19.0	538	
Total Copper	0	0		0	13.962	14.5	412	Chem Translator of 0.96 applied
Dissolved Iron	0	0		0	N/A	N/A	N/A	
Total Imn	0	0		0	1 500	1.500	565 686	WOC = 20 day average: PME = 1
Tatalland		~		, in the second	4,440	0.40	475	Woo - Jo day average, Film - 1
I otal Lead	U	U		U	4.410	0.10	1/5	Chem Translator of 0.715 applied
lotal Manganese	0	0		0	N/A	N/A	N/A	
Total Mercury	0	0		0	0.770	0.91	25.7	Chem Translator of 0.85 applied
Total Nickel	0	0		0	80.719	81.0	2,294	Chem Translator of 0.997 applied
Total Phenols (Phenolics) (PWS)	0	0		0	N/A	N/A	N/A	
Total Salanium	0	0		0	4 800	4 00	141	Chem Translator of 0.022 applied
Tatel Zee		0			102.408	100	5.074	Chem Translator of 0.002 applied
i otal Zinc		U		U	103.480	180	3,2/4	Criem Translator of 0.886 applied
Chloroform	0	0		0	390	390	11,052	
Dichlorobromomethane	0	0		0	N/A	N/A	N/A	
2-Nitrophenol	0	0		0	1,600	1,600	45,342	
Phenol	0	0		0	N/A	N/A	N/A	
24 B Trichlerenhand	-	0		0	01	01.0	2 670	
2,4,0-monorophenol	2				81	81.0	2,079	
bis(2-Ethylnexyl)Phthalate	U	0		U	810	910	25,788	
2,6-Dinitrotoluene	0	0		0	200	200	5,668	
THH CC	T (min): 7	20	PMF:	0.073	Ana	ilysis Hardne	ess (mg/l):	N/A Analysis pH: N/A
	· · ·					-		
	Stream	Stream	Trib Conc	Eate	WOC	WO Obi		
Pollutants	Conc	CV	(unl)	Coof	(unl)	(und)	WLA (µg/L)	Comments
Total Disselved Colids (DWC)	(ug/l)	0	(Pg/L)	0000	(Pg/L)	(Pg/L)	NI/A	
Total Dissolved Solids (FWS)	U U	U		U	500,000	500,000	INA	
Chlonde (PWS)	0	0		0	250,000	250,000	N/A	
Sulfate (PWS)	0	0		0	250,000	250,000	N/A	
Fluoride (PWS)	0	0		0	2,000	2,000	N/A	
								1
Total Aluminum	0	0		0	N/A	N/A	N/A	I
Total Aluminum Total Antimony	0	0		0	N/A 5.6	N/A 5.6	N/A 159	
Total Aluminum Total Antimony Total Arsenic	0	0		0	N/A 5.6	N/A 5.6	N/A 159 283	
Total Aluminum Total Antimony Total Arsenic	0	0		0	N/A 5.6 10	N/A 5.6 10.0	N/A 159 283	
Total Aluminum Total Antimony Total Arsenic Total Barium	0 0 0	0 0 0 0 0		0 0 0 0 0	N/A 5.6 10 2,400	N/A 5.6 10.0 2,400	N/A 159 283 68,013	
Total Aluminum Total Antimony Total Arsenic Total Barium Total Boron	0 0 0 0	0 0 0 0		0 0 0 0 0 0	N/A 5.6 10 2,400 3,100	N/A 5.6 10.0 2,400 3,100	N/A 159 283 68,013 87,851	
Total Aluminum Total Antimony Total Arsenic Total Baron Total Boron Total Chromium (III)	0 0 0 0 0	0 0 0 0		0 0 0 0 0	N/A 5.6 10 2,400 3,100 N/A	N/A 5.6 10.0 2,400 3,100 N/A	N/A 159 283 68,013 87,851 N/A	
Total Aluminum Total Antimony Total Arsenic Total Barium Total Boron Total Chromium (III) Hexavalent Chromium	0 0 0 0 0 0	0 0 0 0 0		0 0 0 0 0	N/A 5.6 10 2,400 3,100 N/A N/A	N/A 5.6 10.0 2,400 3,100 N/A N/A	N/A 159 283 68,013 87,851 N/A N/A	
Total Aluminum Total Antimony Total Arsenic Total Barium Total Boron Total Chromium (III) Hexavalent Chromium Total Cobat	0 0 0 0 0 0 0	0 0 0 0 0 0		0 0 0 0 0 0	N/A 5.6 10 2,400 3,100 N/A N/A N/A	N/A 5.6 10.0 2,400 3,100 N/A N/A N/A	N/A 159 283 68,013 87,851 N/A N/A N/A	
Total Aluminum Total Antimony Total Arsenic Total Baron Total Boron Total Chromium (III) Hexavalent Chromium Total Cobalt Total Copper	0 0 0 0 0 0 0	0 0 0 0 0 0 0		0 0 0 0 0 0 0	N/A 5.6 10 2,400 3,100 N/A N/A N/A N/A	N/A 5.6 10.0 2,400 3,100 N/A N/A N/A	N/A 159 283 68,013 87,851 N/A N/A N/A N/A	
Total Aluminum Total Antimony Total Arsenic Total Barium Total Boron Total Chromium (III) Hexavalent Chromium Total Cobalt Total Copper Disached Jose		0 0 0 0 0 0 0 0		0 0 0 0 0 0 0 0	N/A 5.6 10 2,400 3,100 N/A N/A N/A N/A	N/A 5.6 10.0 2,400 3,100 N/A N/A N/A N/A	N/A 159 283 68,013 87,851 N/A N/A N/A N/A	
Total Aluminum Total Antimony Total Arsenic Total Baron Total Boron Total Chromium (III) Hexavalent Chromium Total Cobalt Total Copper Dissolved Iron		0 0 0 0 0 0 0 0 0		0 0 0 0 0 0 0 0 0 0	N/A 5.6 10 2.400 3.100 N/A N/A N/A N/A N/A 300	N/A 5.6 10.0 2,400 3,100 N/A N/A N/A N/A N/A N/A	N/A 159 283 68,013 87,851 N/A N/A N/A N/A N/A N/A N/A	
Total Aluminum Total Antimony Total Arsenic Total Barium Total Boron Total Chromium (III) Hexavalent Chromium Total Cobalt Total Copper Dissolved Iron Total Iron					N/A 5.6 10 2,400 3,100 N/A N/A N/A N/A N/A 300 N/A	N/A 5.6 10.0 2,400 3,100 N/A N/A N/A N/A N/A 300 N/A	N/A 159 283 68,013 87,851 N/A N/A N/A N/A 8,502 N/A	
Total Aluminum Total Antimony Total Arsenic Total Boron Total Chromium (III) Hexavalent Chromium Total Cobalt Total Copper Dissolved Iron Total Iron Total Lead		0 0 0 0 0 0 0 0 0 0		0 0 0 0 0 0 0 0 0 0	N/A 5.6 10 2,400 3,100 N/A N/A N/A N/A N/A N/A	N/A 5.6 10.0 2,400 3,100 N/A N/A N/A N/A N/A N/A N/A	N/A 159 283 68,013 87,851 N/A N/A N/A N/A 8,502 N/A N/A	
Total Aluminum Total Antimony Total Arsenic Total Baron Total Boron Total Chromium (III) Hexavalent Chromium Total Cobalt Total Copper Dissolved Iron Total Iron Total Iron Total Iron Total Anganese		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	N/A 5.6 10 2,400 3,100 N/A N/A N/A N/A 300 N/A N/A 1,000	N/A 5.6 10.0 2,400 3,100 N/A N/A N/A N/A 300 N/A N/A 1,000	N/A 159 283 68,013 87,851 N/A N/A N/A N/A 8,502 N/A N/A 28,339	
Total Aluminum Total Antimony Total Arsenic Total Barium Total Boron Total Chromium (III) Hexavalent Chromium Total Cobalt Total Cobalt Total Copper Dissolved Iron Total Iron Total Lead Total Manganese Total Mercurv				0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	N/A 5.6 10 2,400 3,100 N/A N/A N/A N/A N/A N/A 0.00 0.050	N/A 5.6 10.0 2,400 N/A N/A N/A N/A N/A N/A N/A 1,000 0.05	N/A 159 283 68,013 87,851 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	
Total Aluminum Total Antimony Total Arsenic Total Boron Total Boron Total Chromium (III) Hexavalent Chromium Total Copper Dissolved Iron Total Copper Dissolved Iron Total Iron Total Lead Total Manganese Total Mickel	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				N/A 5.6 10 2.400 3.100 N/A N/A N/A N/A N/A 1.000 0.050 810	N/A 5.6 10.0 3,100 N/A N/A N/A N/A N/A 1,000 0.05 610	N/A 159 283 68,013 87,851 N/A N/A N/A N/A N/A 28,339 1.42 28,339 1.42 27,287	
Total Aluminum Total Antimony Total Arsenic Total Barium Total Boron Total Chromium (III) Hexavalent Chromium Total Cobalt Total Cobalt Total Copper Dissolved Iron Total Iron Total Iron Total Iron Total Iron Total Manganese Total Mercury Total Mercury					N/A 5.6 10 2,400 3,100 N/A N/A N/A N/A N/A 1,000 0.050 810 6	N/A 5.6 10.0 2,400 3,100 N/A N/A N/A N/A N/A N/A 1,000 0.05 610	N/A 159 283 68,013 87,851 N/A N/A N/A N/A N/A 8,502 N/A N/A 28,302 N/A 1,42 17,287 N/A	
Total Aluminum Total Antimony Total Arsenic Total Barium Total Boron Total Chromium (III) Hexavalent Chromium Total Cobalt Total Copper Dissolved Iron Total Copper Dissolved Iron Total Lead Total Manganese Total Mercury Total Nickel Total Mercury Total Nickel					N/A 5.6 10 2,400 3,100 N/A N/A N/A N/A N/A N/A N/A 1,000 0.050 810 5	N/A 5.6 10.0 2,400 3,100 N/A N/A N/A N/A N/A N/A 1,000 0.05 610 5.0	N/A 159 283 68,013 87,851 N/A N/A N/A N/A N/A 28,339 1.42 28,339 1.42 28,339 1.42 28,339 1.42 28,339 1.42 28,339 1.42 28,339 1.42 28,339 1.42 28,339 28,013 28,01428,014 28,014 28,014 28,014 28,014 28,01428,014 28,014 28,0140	
Total Aluminum Total Antimony Total Arsenic Total Barium Total Boron Total Chromium (III) Hexavalent Chromium Total Cobalt Total Cobalt Total Copper Dissolved Iron Total Iron Total Iron Total Iron Total Iron Total Manganese Total Mercury Total Mercury Total Mercury Total Phenols (Phenolics) (PWS) Total Selenium					N/A 5.6 10 2,400 3,100 N/A N/A N/A N/A N/A 1,000 0,050 610 5 N/A	N/A 5.6 10.0 2,400 N/A N/A N/A N/A N/A 300 N/A 1,000 0.05 610 5.0 N/A	N/A 159 283 68,013 87,851 N/A N/A N/A N/A N/A 28,339 1,42 28,339 1,42 17,287 N/A N/A	
Total Aluminum Total Antimony Total Arsenic Total Barium Total Boron Total Chromium (III) Hexavalent Chromium Total Cobalt Total Copper Dissolved Iron Total Copper Dissolved Iron Total Lead Total Manganese Total Manganese Total Mercury Total Nickel Total Phenols (Phenolics) (PWS) Total Selenium Total Zinc	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				N/A 5.8 10 3.100 N/A N/A N/A N/A 1.000 0.050 610 5 N/A N/A	N/A 5.6 10.0 2,400 N/A N/A N/A N/A N/A 1,000 N/A N/A 1,000 0.05 610 5.0 N/A N/A	N/A 159 283 68,013 87,851 N/A N/A N/A N/A N/A 28,339 1.42 17,287 N/A N/A N/A	
Total Aluminum Total Antimony Total Arsenic Total Barium Total Boron Total Chromium (III) Hexavalent Chromium Total Cobalt Total Cobalt Total Cobalt Total Iron Total Iron Total Iron Total Iron Total Manganese Total Manganese Total Manganese Total Manganese Total Manganese Total Manganese Total Manganese Total Selenium Total Selenium Total Zinc Chioroform					N/A 5.6 10 2,400 3,100 N/A N/A N/A N/A N/A 1,000 0.050 810 5 N/A N/A 5,7	N/A 5.6 10.0 2,400 N/A N/A N/A N/A N/A 1,000 0.05 610 5.0 N/A N/A 5.7	N/A 159 283 68,013 87,851 N/A N/A N/A N/A N/A 28,339 1.42 17,287 N/A N/A N/A N/A N/A N/A 162	
Total Aluminum Total Antimony Total Arsenic Total Barium Total Boron Total Chromium (III) Hexavalent Chromium Total Cobalt Total Cobalt Total Copper Dissolved Iron Total Iron Total Iron Total Iron Total Inon Total Manganese Total Mercury Total Mickel Total Mercury Total Nickel Total Phenolis (Phenolics) (PWS) Total Selenium Total Zinc Chloroform Dichlorobromomethane					N/A 5.6 10 2.400 3.100 N/A N/A N/A N/A N/A N/A 5.7 N/A	N/A 5.6 10.0 2,400 3,100 N/A N/A N/A N/A N/A 1,000 0.05 610 5.0 N/A N/A 5.7 N/A	N/A 159 283 68,013 87,851 N/A N/A N/A N/A N/A 28,339 1.42 17,287 N/A N/A 1.42 17,287 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	
Total Aluminum Total Antimony Total Arsenic Total Barium Total Boron Total Chromium (III) Hexavalent Chromium Total Cobalt Total Cobalt Total Copper Dissolved Iron Total Colalt Total Iron Total Lead Total Manganese Total Manganese Total Mercury Total Nickel Total Phenolis (Phenolics) (PWS) Total Selenium Total Selenium Total Zino Chiloroform Dichlorobromomethane 2-Nitmohenol					N/A 5.6 10 2,400 3,100 N/A N/A N/A N/A 1,000 0,050 810 5 N/A 5,7 N/A N/A N/A	N/A 5.6 10.0 2,400 N/A N/A N/A N/A N/A 1,000 0.05 610 5.0 N/A 5.7 N/A N/A	N/A 159 283 68,013 87,851 N/A N/A N/A N/A N/A 28,330 1.42 17,287 N/A N/A N/A N/A N/A N/A N/A N/A	
Total Aluminum Total Antimony Total Arsenic Total Barium Total Boron Total Boron Total Chromium (III) Hexavalent Chromium Total Cobalt Total Cobalt Total Cobalt Total Cobalt Total Cobalt Total Cobalt Total Phenols (Phenolics) Total Mercury Total Mercury Total Phenols (Phenolics) Total Selenium Total Selenium Total Selenium Total Selenium Total Selenium Total Selenium Total Selenium Total Selenium					N/A 5.6 10 2,400 3,100 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A 5.6 10.0 3.100 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A 159 283 68,013 87,851 N/A N/A N/A N/A N/A N/A 1,42 17,287 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	
Total Aluminum Total Antimony Total Arsenic Total Baron Total Boron Total Chromium (III) Hexavalent Chromium Total Cobalt Total Cobalt Total Copper Dissolved Iron Total Lead Total Manganese Total Manganese Total Mercury Total Nickel Total Nickel Total Nickel Total Selenium Total Zinc Chioroform Dichlorobornomethane 2.4.Pitophenol Phenol 2.4.Fitophenethanel					N/A 5.8 10 2.400 3.100 N/A N/A N/A N/A N/A 1.000 0.050 610 5 N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A 5.6 10.0 2,400 N/A N/A N/A N/A N/A 1,000 N/A N/A 1,000 0.05 610 5.0 N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A 159 283 68,013 87,851 N/A N/A N/A N/A N/A 28,339 1.42 28,339 1.42 N/A N/A N/A N/A N/A N/A N/A N/A	
Total Aluminum Total Antimony Total Arsenic Total Barium Total Barium Total Boron Total Chromium (III) Hexavalent Chromium Total Cobalt Total Cobalt Total Cobalt Total Cobalt Total Iron Total Iron Total Iron Total Iron Total Manganese Total Mercury Total Need Total Selenium Total Selenium Total Selenium Total Selenium Total Selenium Dichlorobromomethane 2-Nitrophenol Phenol 24,6-Trichlorophenol					N/A 5.8 10 2,400 3,100 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A 5.6 10.0 2,400 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A 159 283 68,013 87,851 N/A N/A N/A N/A N/A N/A 28,339 1.42 17,287 N/A N/A N/A N/A 17,287 N/A N/A N/A N/A N/A N/A 1,12 N/A N/A N/A N/A N/A N/A N/A N/A	
Total Aluminum Total Antimony Total Arsenic Total Barium Total Boron Total Chromium (III) Hexavalent Chromium Total Cobalt Total Cobalt Total Cobalt Total Coper Dissolved Iron Total Iron Total Iron Total Iron Total Inon Total Manganese Total Mercury Total Mickel Total Mercury Total Alelenium Total Selenium Total Zinc Chloroform Dichlorobromomethane 2-Nitrophenol Phenol 24,6-Trichlorophenol Bis(2-Ethylhexyl)Phthalate					N/A 5.6 10 2.400 3.100 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A 5.6 10.0 2,400 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A 159 283 68,013 87,851 N/A N/A <td></td>	
Total Aluminum Total Antimony Total Arsenic Total Barium Total Boron Total Boron Total Chromium (III) Hexavalent Chromium Total Cobalt Total Cobalt Total Cobalt Total Iron Total Iron Total Iron Total Iron Total Manganese Total Manganese Total Manganese Total Mickel Total Phenols (Phenolics) (PWS) Total Selenium Total Zinc Chloroform Dichlorobromomethane 2-Nitrophenol Phenol 24,6-Trichlorophenol Bis(2-Etyhlexy)(Phihalate 2,6-Dinitrotoluene		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			N/A 5.6 10 2.400 3.100 N/A N/A N/A N/A 1.000 0.050 810 5 N/A 5.7 N/A 4.000 N/A N/A N/A N/A	N/A 5.6 10.0 2,400 N/A N/A N/A N/A N/A 1,000 0.05 610 5.0 N/A N/A 5.7 N/A N/A N/A N/A N/A	N/A 159 283 68,013 87,851 N/A N/A N/A N/A N/A 28,330 1.42 17,287 N/A N/A N/A 162 N/A 113,356 N/A N/A N/A N/A N/A N/A N/A N/A	
Total Aluminum Total Antimony Total Arsenic Total Barium Total Boron Total Boron Total Chromium (III) Hexavalent Chromium Total Cobalt Total Cobalt Total Cobalt Total Cobalt Total Cobalt Total Cobalt Total Phenol Total Manganese Total Manganese Total Mercury Total Nercury Total Selenium Total Selenium Total Selenium Total Selenium Total Selenium Total Zinc Chloroform Dichlorobromomethane 2.4,0-Trichlorophenol Bis(2-Ethylhexyl)Phthalate 2,0-Dinitrotoluene					N/A 5.8 10 2.400 3.100 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A 5.6 10.0 2,400 3,100 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A 159 283 68,013 87,851 N/A	
Total Aluminum Total Antimony Total Arsenic Total Barnium Total Barnium Total Barnium Total Chromium (III) Hexavalent Chromium (III) Hexavalent Chromium Total Cobalt Total Copper Dissolved Iron Total Cobalt Total Anganese Total Marganese Total Marganese Total Mercury Total Nickel Total Nickel Total Phenols (Phenolics) (PWS) Total Selenium Total Zinc Chioroform Dichlorobromomethane 2.4.0ETrichlorophenol Bis(2-Ettrylhexyl)Phthalate 2.0-Dinitrotoluene CRL CCC	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		PMF:		N/A 5.8 10 2.400 3.100 N/A N/A N/A N/A N/A 1.000 0.050 610 5 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A 5.6 10.0 2,400 N/A N/A N/A N/A N/A N/A 1,000 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A 159 283 68.013 87.851 N/A N/A N/A N/A 28.339 1.42 28.339 1.42 N/A N/A N/A 113.356 N/A N/A N/A N/A Solowick N/A N/A N/A N/A N/A N/A N/A N/A	N/A Analysis pH: N/A
Total Aluminum Total Antimony Total Arsenic Total Barium Total Borion Total Borion Total Chromium (III) Hexavalent Chromium Total Cobalt Total Cobalt Total Cobalt Total Cobalt Total Cobalt Total Cobalt Total Cobalt Total Cobalt Total Cobalt Total Phenol S(Phenolics) (PWS) Total Selenium Total Selenium Total Selenium Total Selenium Total Selenium Dichlorobromomethane 2.Nitrophenol Phenol 2.4,8-Trichlorophenol Bis(2.Ettrylhexyl)Phthalate 2.6-Dinitrotoluene	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		PMF:	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	N/A 5.6 10 2.400 3.100 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A 5.6 10.0 2,400 3,100 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A 159 283 68,013 87,851 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A Analysis pH: N/A
Total Aluminum Total Antimony Total Arsenic Total Barium Total Boron Total Chromium (III) Hexavalent Chromium Total Cobalt Total Cobalt Total Copper Dissolved Iron Total Iron Total Iron Total Lead Total Manganese Total Mercury Total Nickel Total Phenols (Phenolics) (PWS) Total Zinc Chioroform Dichlorobromomethane 2.4,6-Trichlorophenol Bis(2-Ethylhexyl)Phthalate 2.6-Dinitrotoluene	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	PMF:	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	N/A 5.6 10 2.400 3.100 N/A N/A N/A N/A N/A N/A 5.7 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A 5.6 10.0 2,400 3,100 N/A N/A	N/A 159 283 68,013 87,851 N/A N/A N/A N/A N/A 17,287 N/A N/A 17,287 N/A N/A 17,287 N/A N/A N/A N/A N/A N/A N/A N/A	N/A Analysis pH: N/A
Total Aluminum Total Antimony Total Arsenic Total Barium Total Boron Total Boron Total Chromium (III) Hexavalent Chromium Total Cobalt Total Cobalt Total Cobalt Total Copper Dissolved Iron Total Iron Total Iron Total Iron Total Iron Total Nanganese Total Manganese Total Mercury Total Selenium Total Selenium Total Selenium Total Selenium Total Selenium Dichlorobromomethane 2.4,6-Trichlorophenol Bis(2-Ethylhexyl)Phthalate 2,6-Dinitrotoluene Chlorate CCRL CCC Pollutants	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	PMF:	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	N/A 5.6 10 2,400 3,100 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A 5.6 10.0 2,400 N/A N/A N/A N/A N/A N/A N/A N/A	N/A 159 283 68,013 87,851 N/A N/A N/A N/A N/A 28,339 1.42 17,287 N/A N/A N/A N/A N/A N/A N/A N/A	N/A Analysis pH: N/A
Total Aluminum Total Antimony Total Antimony Total Arsenic Total Barium Total Barium Total Boron Total Chromium (III) Hexavalent Chromium Total Cobalt Total Copper Dissolved Iron Total Cobalt Total Iron Total Iron Total Iron Total Manganese Total Mercury Total Nercury Total Selenium Chiloroform Dichloroform Dichloroform Dichloroform Bis(2-Ethylhexyl)Phthalate 2,6-Dinitrotoluene CRL CC Pollutants Total Picolutants	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	PMF: Trib Conc (µg/L)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	N/A 5.6 10 2.400 3.100 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A 5.6 10.0 2,400 N/A N/A N/A N/A N/A N/A N/A N/A	N/A 159 283 68,013 87,851 N/A N/A <td></td>	
Total Aluminum Total Antimony Total Arsenic Total Arsenic Total Barium Total Boron Total Chromium (III) Hexavalent Chromium Total Cobait Total Cobait Total Cobait Total Copper Dissolved Iron Total Iron Total Iron Total Iron Total Nanganese Total Manganese Total Mencury Total Selenium Total Selenium Total Selenium Total Selenium Total Selenium Total Selenium Dichlorobromomethane 2.Nitrophenol Phenol 2.4,6-Trichlorophenol Bis(2.Ethylhexyl)Phthalate 2.6-Dinitrotoluene Chiates CCC Pollutants Total Dissolved Solids (PWS)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	PMF: Trib Conc (µg/L)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	N/A 5.6 10 2,400 3,100 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A 5.6 10.0 2,400 3,100 N/A	N/A 159 283 68,013 87,851 N/A N/A N/A N/A N/A 28,339 1.42 17,287 N/A N/A N/A 162 N/A N/A 113,356 N/A N/A Sological N/A N/A N/A N/A N/A N/A N/A N/A	N/A Analysis pH: N/A Comments
Total Aluminum Total Antimony Total Arsenic Total Arsenic Total Barium Total Boron Total Chromium (III) Hexavalent Chromium Total Cobalt Total Cobalt Total Cobalt Total Cobalt Total Iron Total Iron Total Iron Total Nercury Total Nercury Total Nercury Total Nercury Total Selenium Total Selenium Total Selenium Total Selenium Total Selenium Total Zne Chloroform Dichlorobromomethane 2.4,8-Trichlorophenol Bis(2-Ethylhexyl)Phthalate 2,8-Dinitrotoluene CRL CC Pollutants Total Dissolved Solids (PWS) Chloride (PWS)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	PMF: Trib Conc (µg/L)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	N/A 5.6 10 2.400 3.100 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A 5.6 10.0 2,400 3,100 N/A N/A N/A N/A N/A N/A N/A N/A	N/A 159 283 68,013 87,851 N/A WLA (µg/L) N/A	N/A Analysis pH: N/A Comments
Total Aluminum Total Antimony Total Arsenic Total Arsenic Total Barium Total Boron Total Chromium (III) Hexavalent Chromium Total Cobalt Total Cobalt Total Cobalt Total Copper Dissolved Iron Total Lead Total Manganese Total Mencury Total Chloroform Dichlorobromomethane 2-Nitrophenol Bis(2-Etyhlexy)(Phthalate 2,6-Dinitrotoluene C Pollutants Total Dissolved Solids (PWS) Chloride (PWS) Suifate (PWS)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	PMF: Trib Conc (µg/L)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	N/A 5.6 10 2.400 3.100 N/A N/A N/A N/A N/A 1.000 0.050 610 5 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A 5.6 10.0 2,400 3,100 N/A	N/A 159 283 68.013 87.851 N/A N/A N/A N/A 28.339 1.42 28.339 1.42 N/A N/A N/A N/A N/A N/A N/A N/A	N/A Analysis pH: N/A Comments
Total Aluminum Total Antimony Total Arsenic Total Arsenic Total Barium Total Boron Total Boron Total Chromium (III) Hexavalent Chromium Total Cobalt Total Cobalt Total Cobalt Total Cobalt Total Iron Total Iron Total Iron Total Nercury Total Nercury Total Nercury Total Selenium Total Selenium Total Selenium Total Selenium Total Selenium Total Selenium Total Zne Chlorobromomethane 2Nitrophenol Bis(2-Ethylhesyf)Phthalate 2.6-Dinitrotoluene Chlorobromomethane C.6-Dinitrotoluene CRL CC Pollutants Total Dissolved Solids (PWS) Suffate (PWS) Suffate (PWS)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	PMF: Trib Conc (µg/L)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	N/A 5.6 10 2,400 3,100 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A 5.6 10.0 2,400 N/A N/A N/A N/A N/A N/A N/A N/A	N/A 159 283 68,013 87,851 N/A N/A <td>N/A Analysis pH: N/A Comments</td>	N/A Analysis pH: N/A Comments
Total Aluminum Total Antimony Total Arsenic Total Arsenic Total Barium Total Boron Total Chromium (III) Hexavalent Chromium ITotal Cobalt Total Cobalt Total Cobalt Total Cobalt Total Cobalt Total Anganese Total Manganese Total Mercury Total Nickel Total Phenols (Phenolics) (PWS) Total Zinc Chioroform Dicklorobromomethane 2Nitrophenol Phenol 2.4.0-Tichlorophenol Bis(2-Ethylhexyl)Phthalate 2.6-Dinitrotoluene ✓ CRL CC Pollutants Total Dissolved Solids (PWS) Chioride (PWS) Sulfate (PWS) Fluoride (PWS)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	PMF: Trib Conc (µg/L)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	N/A 5.6 10 2.400 3.100 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A 5.6 10.0 2,400 3,100 N/A N/A	N/A 159 283 68,013 87,851 N/A N/A <td>N/A Analysis pH: N/A Comments</td>	N/A Analysis pH: N/A Comments
Total Aluminum Total Antimony Total Arsenic Total Arsenic Total Borin Total Borin Total Chromium (III) Hexavalent Chromium Total Cobalt Total Cobalt Total Cobalt Total Cobalt Total Cobalt Total Iron Total Iron Total Iron Total Iron Total Versenic Total Manganese Total Manganese Total Mercury Total Selenium Total Selenium Total Selenium Total Selenium Dichlorobromomethane 2.Nitrophenol Phenol 2.4,8-Trichlorophenol Bis(2.Ettylhexyl)Phthalate 2.6-Dinitrotoluene Chloride (PWS) Chloride (PWS) Sulfate (PWS) Total Aluminum Total Aurinem	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	PMF: Trib Conc (µg/L)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	N/A 5.6 10 2,400 3,100 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A 5.6 10.0 2,400 N/A N/A N/A N/A N/A N/A N/A N/A	N/A 159 283 68,013 87,851 N/A N/A <td>N/A Analysis pH: N/A Comments</td>	N/A Analysis pH: N/A Comments
Total Aluminum Total Antimony Total Antimony Total Arsenic Total Barium Total Boron Total Chromium (III) Hexavalent Chromium Total Cobalt Total Cobalt Total Cobalt Total Cobalt Total Cobalt Total Iron Total Lead Total Manganese Total Mercury Total Nickel Total Phenols (Ptenolics) (PWS) Total Selenium Total Zinc Chloroform Dichlorobromomethane 2Nitrophenol Phenol Bis(2-Ethylhexyl)Phthalate 2,8-Dinitrotoluene CRL CCC Pollutants Total Aluminum Total Aluminum Total Aluminum Total Aluminum Total Antimony	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	PMF: Trib Conc (µg/L)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	N/A 5.6 10 2.400 3.100 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A 5.6 10.0 2,400 3,100 N/A N/A	N/A 159 283 68,013 97,851 N/A N/A <td>N/A Analysis pH: N/A Comments</td>	N/A Analysis pH: N/A Comments
Total Aluminum Total Antimony Total Arsenic Total Barium Total Boron Total Boron Total Chromium (III) Hexavalent Chromium Total Cobalt Total Cobalt Total Cobalt Total Cobalt Total Iron Total Iron Total Lead Total Manganese Total Manganese Total Selenium Total Selenium Total Selenium Total Selenium Total Selenium Dichlorobromomethane 2Nitrophenol Bis(2-Ethylhexyl)Phthalate 2.6-Dinitrotoluene Chloride (PWS) Chloride (PWS) Sulfate (PWS) Fluoride (PWS) Total Aluminum Total Aluminum Total Aluminum	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	PMF:	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	N/A 5.6 10 2,400 3,100 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A 5.6 10.0 2,400 3,100 N/A N/A	N/A 159 283 68,013 87,851 N/A N/A <td>N/A Analysis pH: N/A</td>	N/A Analysis pH: N/A
Total Aluminum Total Antimony Total Arsenic Total Arsenic Total Barium Total Barium Total Chromium (III) Hexavalent Chromium III) Hexavalent Chromium Total Cobalt Total Copper Dissolved Iron Total Iron Total Iron Total Iron Total Antimony Total Selenium Total Selenium Total Selenium Total Selenium Total Selenium Chloroform Dichloroform Dichloroform Dichloroform Bis(2-Ethylhexyl)Phthalate 2,6-Dinitrotoluene CRL CC Pollutants Total Auminum Total Antimony Total Antimony Total Antimony Total Antimony Total Antimony Total Arsenic Total Barium	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	PMF: Trib Conc (µg/L)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	N/A 5.6 10 2.400 3.100 N/A N/A <	N/A 5.6 10.0 2,400 3,100 N/A N/A	N/A 159 283 68,013 87,851 N/A N/A <td>N/A Analysis pH: N/A Comments </td>	N/A Analysis pH: N/A Comments
Total Aluminum Total Antimony Total Ansenic Total Ansenic Total Boron Total Boron Total Chromium (III) Hexavalent Chromium Total Cobat Total Cobat Total Copper Dissolved Iron Total Iron Total Iron Total Iron Total Iron Total Nanganese Total Manganese Total Manganese Total Selenium Total Selenium Total Selenium Total Selenium Dichlorobromomethane 2Nitrophenol Phenol 2.4,6-Trichlorophenol Bis(2-Ethylhext)(Phthalate 2.6-Dinitrotoluene Chloride (PWS) Chloride (PWS) Sulfate (PWS) Sulfate (PWS) Fluoride (PWS) Total Aluminum Total Antimony Total Antimony Total Antimony Total Antimony Total Antimon Total Boron	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	PMF: Trib Conc (µg/L)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	N/A 5.6 10 2,400 3,100 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A 5.6 10.0 2,400 3,100 N/A N/A	N/A 159 283 68,013 87,851 N/A N/A N/A N/A 28,339 1,42 28,339 1,42 28,339 1,42 17,287 N/A N/A N/A N/A N/A N/A N/A N/A	N/A Analysis pH: N/A Comments
Total Aluminum Total Antimony Total Arsenic Total Arsenic Total Barium Total Boron Total Chromium (III) Hexavalent Chromium Total Cobalt Total Cobalt Total Cobalt Total Cobalt Total Cobalt Total Cobalt Total Iron Total Iron Total Anganese Total Manganese Total Mercury Total Nercury Total Nercury Total Chloroform Dichlorobromomethane 2.Nitrophenol Phenol 2.4,0-Trichlorophenol Bis(2-Ethylhexyl)Phthalate 2.6-Dinitrotoluene CRL CC Pollutants Total Dissolved Solids (PWS) Chloride (PWS) Sulfate (PWS) Sulfate (PWS) Total Arsenic Total Arsenic Total Arsenic Total Barium Total Arsenic Total Barium Total Barium Total Barium Total Barium Total Boron Total Chromium (III)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	PMF: Trib Conc (µg/L)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	N/A 5.6 10 2.400 3.100 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A 5.6 10.0 2,400 3,100 N/A N/A	N/A 159 283 68,013 87,851 N/A N/A <td>N/A Analysis pH: N/A Comments </td>	N/A Analysis pH: N/A Comments
Total Aluminum Total Antimony Total Ansenic Total Arsenic Total Barium Total Boron Total Chromium (III) Hexavalent Chromium Total Cobait Total Cobait Total Cobait Total Cobait Total Iron Total Iron Total Iron Total Iron Total Cobait Total Anganese Total Manganese Total Nickel Total Phenol (Phenolics) (PWS) Total Selenium Total Zine Chioroform Dichlorobromomethane 2Nitrophenol Bis(2-Etrythexyl)Phthalate 2.6-Dinitrotoluene Choride (PWS) Chioride (PWS) Chioride (PWS) Chioride (PWS) Fluoride (PWS) Fluoride (PWS) Total Antimony Total Antimony Total Antimony Total Antimony Total Antimony Total Barium Total Boron Total Boron Total Chromium (III) Heyavalent Chromium	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	PMF:	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	N/A 5.6 10 2.400 3.100 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A 5.6 10.0 2,400 3,100 N/A N/A	N/A 159 283 68,013 87,851 N/A N/A <td>N/A Analysis pH: N/A Comments </td>	N/A Analysis pH: N/A Comments
Total Aluminum Total Antimony Total Arsenic Total Arsenic Total Borin Total Borin Total Chromium (III) Hexavalent Chromium Total Cobalt Total Cobalt Total Cobalt Total Cobalt Total Cobalt Total Iron Total Cobalt Total Manganese Total Mercury Total Nercury Total Nercury Total Selenium Total Selenium Total Selenium Total Selenium Total Selenium Total Cobalt Selenium Total Cobalt Chloroform Dichloroform Dichloroform Dichloroform Dichloroform Dichloroform Dichloroform Chloroform Dichloroform Chloride (PWS) Suffate (PWS) Suffate (PWS) Suffate (PWS) Total Arsenic Total Arsenic Total Barium Total Arsenic Total Barium Total Barium Total Barium Total Barium Total Com	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	PMF: Trib Conc (µg/L)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	N/A 5.6 10 2,400 3,100 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A 5.6 10.0 2,400 3,100 N/A N/A	N/A 159 283 68,013 87,851 N/A N/A <td>N/A Analysis pH: N/A Comments </td>	N/A Analysis pH: N/A Comments
Total Aluminum Total Antimony Total Arsenic Total Arsenic Total Barium Total Chromium (III) Hexavalant Chromium Total Cobalt Total Copper Dissolved Iron Total Copper Dissolved Iron Total Lead Total Manganese Total Menous Total Chromium Total Chenolics) (PWS) Total Selenium Total Zinc Chloroform Dichlorobromomethane 2.Nitrophenol Bis(2-Etyhlexy)(Phthalate 2,6-Dinitrotoluene CRL CC Pollutants Total Dissolved Solids (PWS) Chloride (PWS) Fluoride (PWS) Fluoride (PWS) Fluoride (PWS) Fluoride (PWS) Total Antimony Total Antimony Total Antimony Total Antimony Total Antimony Total Antimony Total Chromium (III) Hexavalent Chromium (III) Hexavalent Chromium Total Cobalt	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	PMF: Trib Cone (µg/L)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	N/A 5.6 10 2.400 3.100 N/A N/A <	N/A 5.6 10.0 2,400 3,100 N/A N/A	N/A 159 283 68,013 87,851 N/A N/A <td>N/A Analysis pH: N/A Comments</td>	N/A Analysis pH: N/A Comments
Total Aluminum Total Antimony Total Arsenic Total Barium Total Boron Total Boron Total Chromium (III) Hexavalent Chromium Total Cobalt Total Cobalt Total Cobalt Total Cobalt Total Iron Total Lead Total Manganese Total Manganese Total Selenium Total Selenium Total Selenium Total Selenium Total Selenium Dichlorobromomethane 2Nitrophenol Bis(2-Ethylhexyl)Phthalate 2.6-Dinitrotoluene Chloride (PWS) Chloride (PWS) Chloride (PWS) Sulfate (PWS) Sulfate (PWS) Sulfate (PWS) Stufate (PWS) Total Aluminum Total Antimony Total Antimony Total Antimony Total Antimony Total Boron Total Cobalt	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	PMF:	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	N/A 5.6 10 2,400 3,100 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A 5.6 10.0 2,400 3,100 N/A N/A	N/A N/A 159 283 68,013 87,851 N/A N/A <td>N/A Analysis pH: N/A</td>	N/A Analysis pH: N/A
Total Aluminum Total Antimony Total Antimony Total Arsenic Total Barium Total Barium Total Boron Total Chromium (III) Hexavalent Chromium Total Cobalt Total Cobalt Total Cobalt Total Iron Total Iron Total Iron Total Anganese Total Manganese Total Mercury Total Selenium Chloroform Dichlorobromomethane 2Nitrophenol Bis(2-Ethylhexyl)Phthalate 2,6-Dinitrotoluene CRL CC Pollutants Total Antimony Total Antimony Total Arsenic Total Barium Total Arsenic Total Barium Total Chomium (III) Hexavalent Chromium Total Cobalt Total Cobalt Total Cobalt Total Copper Dissolved Iron	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	PMF: Trib Conc (µg/L)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	N/A 5.6 10 2.400 3.100 N/A N/A	N/A 5.6 10.0 2,400 3,100 N/A N/A	N/A 159 283 68,013 87,851 N/A N/A <td>N/A Analysis pH: N/A Comments </td>	N/A Analysis pH: N/A Comments
Total Aluminum Total Antimony Total Antimony Total Arsenic Total Borin Total Borin Total Chromium (III) Hexavalent Chromium Total Cobalt Total Copper Dissolved Iron Total Copper Dissolved Iron Total Copper Total Manganese Total Manganese Total Mercury Total Network Total Selenium Phenol 2.4,6-Trichlorophenol Bis(2-Ethylhexyl)Phthalate 2.6-Dinitrotoluene 2.6-Dinitrotoluene 2.6-Dinitrotoluene 2.6-Dinitrotoluene 2.6-Dinitrotoluene 2.6-Dinitrotoluene 2.6-Dinitrotoluene Total Aluminum Total Aluminum Total Aluminum Total Antimony	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	PMF:	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	N/A 5.6 10 2,400 3,100 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A 5.6 10.0 2,400 3,100 N/A N/A	N/A N/A 159 283 68,013 87,851 N/A N/A <td>N/A Analysis pH: N/A Comments </td>	N/A Analysis pH: N/A Comments

Model Results

Page 7

Total Lead	0	0	0	N/A	N/A	N/A	
Total Manganese	0	0	0	N/A	N/A	N/A	
Total Mercury	0	0	0	N/A	N/A	N/A	
Total Nickel	0	0	0	N/A	N/A	N/A	
Total Phenols (Phenolics) (PWS)	0	0	0	N/A	N/A	N/A	
Total Selenium	0	0	0	N/A	N/A	N/A	
Total Zinc	0	0	0	N/A	N/A	N/A	
Chloroform	0	0	0	N/A	N/A	N/A	
Dichlorobromomethane	0	0	0	0.95	0.95	96.0	
2-Nitrophenol	0	0	0	N/A	N/A	N/A	
Phenol	0	0	0	N/A	N/A	N/A	
2,4,6-Trichlorophenol	0	0	0	1.5	1.5	152	
Bis(2-Ethylhexyl)Phthalate	0	0	0	0.32	0.32	32.3	
2,6-Dinitrotoluene	0	0	0	0.05	0.05	5.05	

Recommended WQBELs & Monitoring Requirements

No. Samples/Month: 4

	Mass	Limits	Concentration Limits						
Pollutants	AML (lbs/day)	MDL (lbs/day)	AML	MDL	IMAX	Units	Governing WQBEL	WQBEL Basis	Comments
Total Copper	Report	Report	Report	Report	Report	µg/L	89.8	AFC	Discharge Conc > 10% WQBEL (no RP)
Total Dinitrotoluene	0.25	0.4	5.05	7.89	12.6	µg/L	5.05	CRL	Discharge Conc ≥ 50% WQBEL (RP)

Other Pollutants without Limits or Monitoring

The following pollutants do not require effluent limits or monitoring based on water quality because reasonable potential to exceed water quality criteria was not determined and the discharge concentration was less than thresholds for monitoring, or the pollutant was not detected and a sufficiently sensitive analytical method was used (e.g., <= Target QL).

Pollutants	Governing WQBEL	Units	Comments
Total Dissolved Solids (PWS)	N/A	N/A	PWS Not Applicable
Chloride (PWS)	N/A	N/A	PWS Not Applicable
Bromide	N/A	N/A	No WQS
Sulfate (PWS)	N/A	N/A	PWS Not Applicable
Fluoride (PWS)	N/A	N/A	PWS Not Applicable
Total Aluminum	2,378	µg/L	Discharge Conc ≤ 10% WQBEL
Total Antimony	159	µg/L	Discharge Conc ≤ 10% WQBEL
Total Arsenic	283	µg/L	Discharge Conc ≤ 10% WQBEL
Total Barium	66,574	µg/L	Discharge Conc ≤ 10% WQBEL
Total Beryllium	N/A	N/A	No WQS
Total Boron	25,679	µg/L	Discharge Conc ≤ 10% WQBEL
Total Chromium (III)	3,738	µg/L	Discharge Conc ≤ 10% WQBEL
Hexavalent Chromium	51.7	µg/L	Discharge Conc ≤ 10% WQBEL

Model Results

.

2/8/2024

Page 8

-

Total Cobalt	301	µg/L	Discharge Conc ≤ 10% WQBEL
Total Cyanide	N/A	N/A	No WQS
Dissolved Iron	8,502	µg/L	Discharge Conc ≤ 10% WQBEL
Total Iron	565,686	µg/L	Discharge Conc ≤ 10% WQBEL
Total Lead	175	µg/L	Discharge Conc ≤ 10% WQBEL
Total Manganese	28,339	µg/L	Discharge Conc ≤ 10% WQBEL
Total Mercury	1.42	µg/L	Discharge Conc ≤ 10% WQBEL
Total Nickel	2,294	µg/L	Discharge Conc ≤ 10% WQBEL
Total Phenols (Phenolics) (PWS)		µg/L	PWS Not Applicable
Total Selenium	141	µg/L	Discharge Conc ≤ 10% WQBEL
Total Zinc	716	µg/L	Discharge Conc ≤ 10% WQBEL
Total Molybdenum	N/A	N/A	No WQS
Chloroform	162	µg/L	Discharge Conc ≤ 25% WQBEL
Dichlorobromomethane	96.0	µg/L	Discharge Conc ≤ 25% WQBEL
2-Nitrophenol	25,362	µg/L	Discharge Conc ≤ 25% WQBEL
Phenol	113,356	µg/L	Discharge Conc ≤ 25% WQBEL
2,4,6-Trichlorophenol	152	µg/L	Discharge Conc ≤ 25% WQBEL
Bis(2-Ethylhexyl)Phthalate	32.3	µg/L	Discharge Conc ≤ 25% WQBEL

Existing Effluent Limitations and Monitoring Requirements

Outfall 001

			Effluent	Limitations			Monitoring Requirements	
Parameter	Mass Units	(lbs/day) ⁽¹⁾		Concentra		Minimum ⁽²⁾	Required	
Farameter	Average Monthly	Average Weekly	Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report Daily Max	xxx	XXX	xxx	xxx	Continuous	Measured
pH (S.U.)	XXX	xxx	6.0	XXX	XXX	9.0	1/day	Grab
Free Available Chlorine (3)	xxx	xxx	xxx	XXX	0.2	0.5	1/day	Grab
Temperature (°F)	xxx	xxx	xxx	XXX	Report	110	Continuous	I-S
Total Suspended Solids Effluent Net ⁽⁴⁾	XXX	XXX	xxx	30.0	60.0	75	2/month	Grab
Total Dissolved Solids	XXX	XXX	XXX	XXX	Report	XXX	1/quarter	Grab
Aluminum, Total	Report Avg Qrtly	Report Daily Max	XXX	Report Avg Qrtly	Report	XXX	1/quarter	Grab
Sulfate, Total	XXX	XXX	XXX	XXX	Report	XXX	1/quarter	Grab
Chloride	xxx	xxx	xxx	XXX	Report	xxx	1/quarter	Grab
Bromide	XXX	xxx	XXX	XXX	Report	xxx	1/quarter	Grab

(3) The term maximum daily concentration, as it relates to discharges of chlorine, means the average chlorine concentration over a period of chlorine release which does not exceed two hours per power block per day. The term "free available chlorine" shall mean the value obtained using any of the "chlorine-free available" methods in Table IB in 40 CFR 136.3(a) where the method has the capacity of measuring free available chlorine, or other methods approved by the permitting authority.

(4) To determine compliance with the net limitations for TSS and Oil and Grease, perform the following:

- a. Measure the influent and effluent concentration(s) from grab samples taken at the same time of day, and record the influent and effluent flow(s) in MGD at the same time when grab samples were collected.
- b. For both the influent and effluent, calculate the mass by multiplying the concentration (mg/L) x flow (MGD) x 8.34 lb/gal, and then calculate the net mass by subtracting the influent mass from the effluent mass.
- c. Calculate the net concentration by dividing the net mass by the product of the discharge flow (MGD) and 8.34 lb/gal.

Existing Effluent Limitations and Monitoring Requirements

Outfall 100

		Effluent Limitations								
Paramotor	Mass Units	(lbs/day) ⁽¹⁾		Concentrat	Minimum ⁽²⁾	Required				
Falameter	Average Monthly	Average Weekly	Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Measurement Frequency	Sample Type		
Flow (MGD)	Report	Report Daily Max	xxx	xxx	xxx	XXX	Continuous	Measured		
Total Suspended Solids Effluent Net ⁽⁴⁾	XXX	xxx	xxx	30	100	XXX	2/month	Grab		
Oil and Grease Effluent Net ⁽⁴⁾	XXX	XXX	XXX	15	20	30	2/month	Grab		

Existing Effluent Limitations and Monitoring Requirements

Outfall 002

			Monitoring Requirements					
Parameter	Mass Units	; (lbs/day) ⁽¹⁾		Concentrati	Minimum ⁽²⁾	Required		
Falameter	Average Monthly	Average Weekly	Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Measurement Frequency	Sample Type
pH (S.U.)								
Other Stormwater	XXX	XXX	XXX	XXX	Report	XXX	1/year	Grab
Total Suspended Solids								
Other Stormwater	XXX	XXX	XXX	XXX	Report	XXX	1/year	Grab
Oil and Grease								
Other Stormwater	XXX	XXX	XXX	XXX	Report	XXX	1/year	Grab
Copper, Total Other Stormwater	xxx	xxx	xxx	XXX	Report	xxx	1/year	Grab
Iron, Total								
Other Stormwater	XXX	XXX	XXX	XXX	Report	XXX	1/year	Grab
Nickel, Total								
Other Stormwater	XXX	XXX	XXX	XXX	Report	XXX	1/year	Grab
Zinc, Total								
Other Stormwater	XXX	XXX	XXX	XXX	Report	XXX	1/year	Grab

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (386-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

			Effluent L	imitations			Monitoring Re	quirements
Baramotor	Mass Units	(lbs/day) ⁽¹⁾		Concentrat	ions (mg/L)		Minimum ⁽²⁾	Required
Farameter	Average Quarterly	Daily Maximum	Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Measurement Frequency	Sample
	Report	maximum		Monthly	Maximam	Maximan	Trequency	Type
Flow (MGD)	Avg Mo	Report	XXX	XXX	XXX	XXX	Continuous	Measured
			6.0					
pH (S.U.)	XXX	XXX	Daily Min	XXX	XXX	9.0	1/day	Grab
Free Available Chlorine	XXX	XXX	XXX	xxx	0.2	0.5	1/day	Grab
Temperature (°F)	ХХХ	XXX	XXX	XXX	Report	110	Continuous	I-S
TSS								
Effluent Net	XXX	XXX	XXX	30.0	60.0	75.0	2/month	Grab
Oil and Grease Effluent Net	ХХХ	XXX	XXX	15.0	20.0	30.0	2/month	Grab
Total Dissolved Solids	XXX	XXX	XXX	XXX	Report	XXX	1/quarter	Grab
Total Aluminum	Report	Report	XXX	Report	Report	xxx	1/quarter	Grah
	Кероп	Кероп		Report	Кероп		i/quarter	Clab
Total Copper	Report	Report	XXX	Avg Qrtly	Report	XXX	1/quarter	Grab
Sulfate	XXX	XXX	XXX	XXX	Report	XXX	1/quarter	Grab
				Report				
Total Dinitrotoluene	Report	Report	XXX	Avg Qrtly	Report	XXX	1/quarter	Grab
Chloride	XXX	XXX	XXX	xxx	Report	xxx	1/quarter	Grab
Bromide	XXX	XXX	XXX	XXX	Report	XXX	1/quarter	Grab

Compliance Sampling Location:

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (386-0400-001), SOPs and/or BPJ.

Outfall 002, Effective Period: Permit Effective Date through Permit Expiration Date.

			Effluent L	imitations			Monitoring Requirements	
Parameter	Mass Units	(lbs/day) ⁽¹⁾		Concentrat	Minimum ⁽²⁾	Required		
	Average Monthly	Average Weekly	Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Measurement Frequency	Sample Type
pH (S.U.)	XXX	XXX	xxx	XXX	Report	xxx	1/year	Grab
TSS	XXX	XXX	XXX	XXX	Report	XXX	1/year	Grab
Oil and Grease	XXX	XXX	xxx	XXX	Report	XXX	1/year	Grab
Total Copper	xxx	XXX	XXX	XXX	Report	XXX	1/year	Grab
Total Iron	XXX	XXX	xxx	XXX	Report	xxx	1/year	Grab
Total Nickel	XXX	XXX	xxx	XXX	Report	XXX	1/year	Grab
Total Zinc	xxx	XXX	XXX	XXX	Report	XXX	1/year	Grab

Compliance Sampling Location:

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (386-0400-001), SOPs and/or BPJ.

Outfall 100, Effective Period: Permit Effective Date through Permit Expiration Date.

		Effluent Limitations							
Parameter	Mass Units (Ibs/day) ⁽¹⁾			Concentrat	Minimum ⁽²⁾	Required			
Faidilielei	Average	Average		Average	Daily	Instant.	Measurement	Sample	
	Monthly	weekiy	winimum	Monthly	waximum	Maximum	Frequency	туре	
		Report							
Flow (MGD)	Report	Daily Max	XXX	XXX	XXX	XXX	Continuous	Measured	
TSS									
Effluent Net	XXX	XXX	XXX	30.0	100	XXX	2/month	Grab	
Oil and Grease									
Effluent Net	XXX	XXX	XXX	15.0	20.0	30.0	2/month	Grab	

Compliance Sampling Location:

	Tools and References Used to Develop Permit
	Tavias Managament Spreadehast (ass Attachment)
	Temperature Medel Spreadsheet (see Attachment)
	We ten Quelita Tables Management Otestana 201 0100 000 1/00
	Water Quality Toxics Management Strategy, 361-0100-003, 4/06.
	Technical Guidance for the Development and Specification of Effluent Limitations, 386-0400-001, 10/97.
	Policy for Permitting Surface Water Diversions, 386-2000-019, 3/98.
	Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 386-2000-018, 11/96.
	Lechnology-Based Control Requirements for Water Treatment Plant Wastes, 386-2183-001, 10/97.
	12/97.
<u> </u>	Pennsylvania CSO Policy, 386-2000-002, 9/08.
	Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.
	Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 386- 2000-008, 4/97.
\square	Determining Water Quality-Based Effluent Limits, 386-2000-004, 12/97.
	Implementation Guidance Design Conditions, 386-2000-007, 9/97.
	Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 386-2000-016, 6/2004.
	Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 386-2000-012, 10/1997.
	Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 386-2000-009, 3/99.
\boxtimes	Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 386-2000-015, 5/2004.
	Implementation Guidance for Section 93.7 Ammonia Criteria, 386-2000-022, 11/97.
	Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 386-2000-013, 4/2008.
\boxtimes	Implementation Guidance Total Residual Chlorine (TRC) Regulation, 386-2000-011, 11/1994.
\boxtimes	Implementation Guidance for Temperature Criteria, 386-2000-001, 4/09.
	Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 386-2000-021, 10/97.
	Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 386-2000-020, 10/97.
	Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 386-2000-005, 3/99.
	Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 386-2000-010, 3/1999.
	Design Stream Flows, 386-2000-003, 9/98.
	Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 386-2000-006, 10/98.
	Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 386-3200-001, 6/97.
\square	Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.
	SOP:
	Other: