

Northwest Regional Office CLEAN WATER PROGRAM

Application Type Renewal Non-Municipal Facility Type Major / Minor Minor

NPDES PERMIT FACT SHEET **INDIVIDUAL SEWAGE**

Application No. PA0093131 APS ID 1068772 Authorization ID 1405475

Applicant and Facility Information

Applicant Name	Prebula Family Ventures, LLC	Facility Name	Slippery Rock Golf Club & Event Center
Applicant Address	160 Ralston Road	Facility Address	160 Ralston Road
	Slippery Rock, PA 16057-3528		Slippery Rock, PA 16057-3528
Applicant Contact	Eric Prebula (eric@prebulafamilyagency.com)	Facility Contact	Marvin McAfoose, STP Operator (mcafoose92@hotmail.com)
Applicant Phone	(323) 371-4401	Facility Phone	(724) 699-4070
Client ID	355448	Site ID	264296
Ch 94 Load Status	Not Overloaded	Municipality	Slippery Rock Township
Connection Status	No Limitations	County	Butler
Date Application Rece	vivedJuly 29, 2022	EPA Waived?	Yes
Date Application Acce	pted August 5, 2022	If No, Reason	-

Summary of Review

Act 14 - Proof of Notification was submitted and received.

A Part II Water Quality Management permit is not required at this time.

The Permittee should be able to meet the limits of this permit, which will protect the uses of the receiving stream.

I. OTHER REQUIREMENTS:

- A. Stormwater into sewers
- B. Right of way
- C. Solids handling
- D. Public Sewerage Availability
- E. Effluent Chlorine Optimization and Minimization

There are no open violations in efacts for Client ID (355448) as of 4/5/2024.

Approve	Deny	Signatures	Date
v		Stephen A. McCauley	4/5/2024
^		Stephen A. McCauley, E.I.T. / Environmental Engineering Specialist	4/3/2024
v			Okay to Draft
^		(Vacant) / Environmental Engineer Manager	JCD 4/8/2024

SPECIAL CONDITIONS:

П. Solids Management

Discharge, Receivi	ng Wate	rs and Water Supply Info	rmation	
Quad Name	02' 14.60		Design Flow (MGD) Longitude Quad Code	0.011 -80º 01' 3.50" -
Wastewater Desc	ription:	Sewage Effluent		
Receiving Waters NHD Com ID	Slipp 1262	med Tributary to the ery Rock Creek (CWF) 21981	Stream Code	<u>34441</u> 0.284
Drainage Area	1.95			0.119
Q ₇₋₁₀ Flow (cfs)	0.23		Q7-10 Basis	
Elevation (ft)	1150			0.00335
Watershed No.	<u>20-C</u>		Chapter 93 Class.	CWF
Existing Use				_ _
Exceptions to Use Assessment Statu		Impaired*	Exceptions to Criteria	
Cause(s) of Impai	-	Siltation		
Source(s) of Impa			evelopment or Redevelopment)	
TMDL Status	innent		Name -	
INDE Olalus				
Background/Ambi pH (SU)	ent Data		Data Source -	
Temperature (°F)		-	-	
Hardness (mg/L)		-	-	
Other:				
Nearest Downstre PWS Waters	am Publ Beaver	ic Water Supply Intake River	Pennsylvania American Wate Flow at Intake (cfs)	r Company - Ellwood City 292.5
PWS RMI	13.0		Distance from Outfall (mi)	40.0

 * - The receiving stream is impaired by siltation. Since this discharge utilizes a holding pond, it is not likely to be adding to the impairment. In addition, since total suspended solids limits are in place, so no further monitoring or limits are necessary.

Sludge use and disposal description and location(s): Sludge is disposed of at an approved landfill.

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Narrative: This Fact Sheet details the determination of draft NPDES permit limits for an existing discharge of 0.011 MGD of treated sewage from a non-municipal STP in Slippery Rock Township, Butler County.

Existing treatment permitted under WQM Permit no. 366S007 consists of:

A comminutor w/ bypass bar screen, extended aeration tank, final settling tank, tablet chlorine disinfection with a contact tank, and a holding pond.

1. Streamflow:

Slippery Rock Creek at Wurtemberg, PA - Streamgage No. 03106500 (1971-2008):

Drainage Area:	<u>398</u>	sq. mi.	(from StreamStats)
Q 7-10:	<u>47.5</u>	cfs	(from StreamStats)
Yieldrate:	<u>0.119</u>	cfsm	(calculated)

Slippery Rock Creek at Outfall 001:

Yieldrate:	<u>0.119</u>	cfsm	(calculated above)
Drainage Area:	<u>1.95</u>	sq. mi.	(from StreamStats)
% of stream allocated:	<u>100%</u>	Basis:	no nearby discharges
Q7-10:	<u>0.23</u>	cfs	(Calculated)

2. Wasteflow:

Maximum discharge: 0.011 MGD = 0.017 cfs

Runoff flow period: 24 hours Basis: Runoff flow for this facility

The calculated stream flow (Q7-10) is greater than 3 times the permitted discharge flow. In accordance with the SOP, the treatment requirements in document number 391-2000-014, titled, "Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers", dated April 12, 2008, were not evaluated for this facility.

Flow will be required to be monitored as authorized under Chapter 92a.61, and as recommended in the SOP.

3. Parameters:

The following parameters were evaluated: pH, Total Suspended Solids, Fecal Coliform, Phosphorus, NH₃-N, CBOD₅, Dissolved Oxygen, and Disinfection.

а. <u>pH</u>

Between 6.0 and 9.0 at all times

Basis: Application of Chapter 93.7 technology-based limits.

<u>The measurement frequency was previously set to 1/day as recommended in the SOP, based on</u> <u>Table 6-3 in the "Technical Guidance for the Development and Specification of Effluent</u> <u>Limitations" (362-0400-001), which will be retained.</u>

b. <u>Total Suspended Solids</u>

Limits are 30.0 mg/l as a monthly average and 60.0 as an instantaneous maximum.

Basis: Application of Chapter 92a47 technology-based limits.

c. Fecal Coliform

05/01 - 09/30:	<u>200/100ml</u>	(monthly average geometric mean)
	<u>1,000/100ml</u>	(instantaneous maximum)
10/01 - 04/30:	<u>2,000/100ml</u> <u>10,000/100ml</u>	(monthly average geometric mean) (instantaneous maximum)
Basis:	Application of C	hapter 92a47 technology-based limits.

d. <u>E. Coli</u>

Monitoring was added for E. Coli at a frequency of 1/year.

Basis: Application of Chapter 92a.61 as recommended by the SOP for flows between 0.002 MGD and 0.05 MGD.

e. <u>Total Phosphorus</u>

Total Phosphorus and Total Nitrogen monitoring was not included in the previous permit since the facility was only open during the summer months, the average operating flow was less than 1,000 GPD, and the Slippery Rock Creek was not nutrient enriched.

However, since ownership of this facility was transferred on May 7, 2021, eDMR data shows that flow is reported all year long, and the average flow reported since the transfer is 2,620 gallons.

Monitoring for Total Phosphorus will be added with this renewal in accordance with the SOP, based on Chapter 92a.61. Since the stream is not impaired for nutrients, quarterly monitoring will be used.

f. Total Nitrogen

Monitoring for Total Nitrogen will be added with this renewal in accordance with the SOP, based on Chapter 92a.61.

g. <u>Ammonia-Nitrogen (NH₃-N)</u>

Median discharge pH to be used:	<u>6.4</u>	Standard Units (S.U.)
	В	asis: Average pH value from DMR summary
Discharge temperature:	<u>25°C</u>	(default value used in the absence of data)
Median stream pH to be used:	<u>7.0</u>	Standard Units (S.U.)
	В	asis: Default value used in the absence of data
Stream Temperature:	<u>25°C</u>	(default value used for CWF modeling)
Background NH ₃ -N concentration:	<u>0.1</u>	mg/l
	В	asis: Default value used in the absence of data

4

calculated summer NH ₃ -N limits:	<u>25.0</u> 50.0	mg/l (monthly average) mg/l (instantaneous maximum)
calculated winter NH ₃ -N limits:	<u>25.0</u> 50.0	mg/l (monthly average) mg/l (instantaneous maximum)

Result: <u>WQ modeling resulted in the calculated summer limits above (see Attachment 1), which are less</u> restrictive than in the previous NPDES Permit. The winter limits are calculated as three times the summer limits, but since the technology-based limits would govern, they will be used. Based on the eDMR data, the previous, more restrictive, limits are attainable so they will be retained.

```
h. <u>CBOD₅</u>
```

Median discharge pH to be used:	<u>6.4</u>	Standard Units (S.U.)
	Ba	asis: <u>Average pH value from DMR summary</u>
Discharge temperature:	<u>25°C</u>	(default value used in the absence of data)
Median stream pH to be used:	<u>7.0</u>	Standard Units (S.U.)
	B	asis: Default value used in the absence of data
Stream Temperature:	<u>25°C</u>	(default value used for CWF modeling)
Background CBOD5 concentration:	<u>2.0</u>	mg/l
	Ba	asis: Default value used in the absence of data
calculated CBOD ₅ limits:	<u>25.0</u> 50.0	mg/l (monthly average) mg/l (instantaneous maximum)

- Result: WQ modeling resulted in the calculated CBOD5 limits above (see Attachment 1), which are less restrictive than the previous NPDES Permit. Based on the eDMR data, the previous, more restrictive limits of 20.0 mg/l as a monthly average and 40.0 as an instantaneous maximum are attainable so they will be retained. Per the SOP, the previous seasonal limits for CBOD5 will be changed to year round.
- i. <u>Dissolved Oxygen (DO)</u>

The technology-based minimum of 4.0 mg/l is recommended by the WQ Model (see Attachment 1) and the SOP based on Chapter 93.7, under the authority of Chapter 92a.61. The limits are the same as in the previous NPDES Permit and will be retained.

The measurement frequency was previously set to 1/day as recommended in the SOP, based on Table 6-3 in the "Technical Guidance for the Development and Specification of Effluent Limitations" (362-0400-001), which will be retained.

- j. <u>Disinfection</u>
 - Ultraviolet (UV) light monitoring
 - Total Residual Chlorine (TRC):

0.5 mg/l (monthly average) 1.6 mg/l (instantaneous maximum)

Basis: <u>The TRC limits above were calculated using the Department's TRC Calculation Spreadsheet</u> (see Attachment 2). The limits are the same as in the previous NPDES Permit and will be retained. The measurement frequency will be set to 1/day as recommended in the SOP, based on Table 6-3 in the "Technical Guidance for the Development and Specification of Effluent Limitations" (362-0400-001).

4. Reasonable Potential Analysis for Receiving Stream:

A Reasonable Potential Analysis was not performed in accordance with State practices using the Department's Toxics Management Spreadsheet since no sampling other than sewage-related parameters was performed for this facility with the renewal application.

5. Reasonable Potential for Downstream Public Water Supply (PWS):

The Department's Toxics Management Spreadsheet does not calculate limits for parameters that are based on PWS criteria (TDS, Chloride, Bromide, and Sulfate). However, since no sample data was provided, mass-balance calculations were not performed.

Nearest Downstream potable water supply (PWS):Pennsylvania American Water Company - Ellwood CityDistance downstream from the point of discharge:40.0miles (approximate)

Result: No limits are necessary as significant dilution is available

6. Anti-Backsliding:

Since all the permit limits in this renewal are the same or more restrictive than the previous NPDES Permit, antibacksliding is not applicable.

7. Attachment List:

Attachment 1 - WQ Modeling Printouts Attachment 2 - TRC_Calc Spreadsheet

(The Attachments above can be found at the end of this document)

Compliance History

DMR Data for Outfall 001 (from March 1, 2023 to February 29, 2024)

Parameter	FEB-24	JAN-24	DEC-23	NOV-23	OCT-23	SEP-23	AUG-23	JUL-23	JUN-23	MAY-23	APR-23	MAR-23
Flow (MGD)												
Average Monthly	0.001	0.001	0.001	0.001	0.005	0.005	0.005	0.003	0.003	0.003	0.003	0.003
pH (S.U.)												
Instantaneous Minimum	6.0	6.0	5.6	6.0	6.3	6.17	6.46	6.0	6.8	6.5	6.5	6.0
pH (S.U.)												
Instantaneous Maximum	8.9	8.7	7.0	7.1	6.64	6.41	6.65	6.89	7.4	6.9	7.6	6.8
DO (mg/L)												
Instantaneous Minimum	4.04	3.14	2.05	4.1	4.01	5.28	4.01	4.01	4.01	5.01	4.06	4.52
TRC (mg/L)												
Average Monthly	0.5	0.2	0.5	0.4	0.1	0.1	0.1	0.02	0.02	0.02	0.03	0.1
TRC (mg/L)												
Instantaneous Maximum	1.34	0.5	0.9	0.9	0.46	0.24	0.29	0.05	0.04	0.03	0.06	0.3
CBOD5 (mg/L)												
Average Monthly	7	< 3	< 5	< 2	< 2	7	19	7	< 10	< 2	< 4	14
TSS (mg/L)												
Average Monthly	< 5	< 7	11	< 5	< 5	< 8	< 5	10	17	< 16	< 5	< 8
Fecal Coliform (No./100 ml)												
Geometric Mean	< 1	< 1	< 1	1	< 4	< 1	< 28	< 1	< 10	< 1	< 1	< 26
Fecal Coliform (No./100 ml)												
Instantaneous Maximum	< 1	< 1	< 1	2	< 5	< 1	770	< 1	1120	1	< 1	687
Ammonia (mg/L)												
Average Monthly	4	6	< 7	< 4	< 2	0.785	1	< 3	< 10	4	< 3	< 1

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (386-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

		Monitoring Requirements						
Parameter	Mass Units	(lbs/day) (1)		Concentrat	Minimum ⁽²⁾	Required		
Farameter	Average Monthly	Average Weekly	Minimum	Average Monthly	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	ххх	ХХХ	XXX	XXX	XXX	1/week	Estimate
рН (S.U.)	xxx	xxx	6.0 Daily Min	xxx	9.0 Daily Max	xxx	1/day	Grab
DO	ххх	xxx	4.0 Daily Min	xxx	xxx	xxx	1/day	Grab
TRC	XXX	XXX	XXX	0.5	XXX	1.6	1/day	Grab
CBOD5	XXX	XXX	XXX	20.0	XXX	40	2/month	8-Hr Composite
TSS	XXX	XXX	XXX	30.0	xxx	60	2/month	8-Hr Composite
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	XXX	xxx	2000 Geo Mean	XXX	10000	2/month	Grab
Fecal Coliform (No./100 ml) May 1 - Sep 30	XXX	XXX	XXX	200 Geo Mean	XXX	1000	2/month	Grab
E. Coli (No./100 ml)	XXX	XXX	XXX	XXX	XXX	Report	1/year	Grab
Total Nitrogen	XXX	ххх	xxx	Report Avg Qrtly	xxx	xxx	1/quarter	8-Hr Composite
Ammonia Nov 1 - Apr 30	XXX	XXX	xxx	12.0	XXX	24	2/month	8-Hr Composite
Ammonia May 1 - Oct 31	XXX	XXX	ххх	4.0	XXX	8	2/month	8-Hr Composite
Total Phosphorus	XXX	XXX	XXX	Report Avg Qrtly	XXX	xxx	1/quarter	8-Hr Composite

Compliance Sampling Location: at Outfall 001, after disinfection.

NPDES Permit Fact Sheet Slippery Rock Golf Club & Event Center

Flow is monitor only based on Chapter 92a.61. The limits for pH and Dissolved Oxygen are technology-based on Chapter 93.7. The Total Residual Chlorine (TRC) limits are technology-based on Chapter 92a.47. The limits for CBOD₅, Total Suspended Solids, and Fecal Coliforms are technology-based on Chapter 92a.47. Monitoring for E. Coli, Total Nitrogen, and Total Phosphorus is based on Chapter 92a.61. The limits for Ammonia-Nitrogen are water quality-based on Chapter 93.7.

Attachment 1

	SWP Basin S	tream Code		Stream Name	<u>9</u>		
	20C	34441	Tri	b 34441 to Slippery F	Rock Creek		
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
0.284	Slippery Golf	PA0093131	0.011	CBOD5	25		
				NH3-N	25	50	
				Dissolved Oxygen			4

WQM 7.0 Effluent Limits

Tuesday, April 2, 2024

Version 1.1

	<u>wq</u>	W 7.U	0.0.5	Imulation	
SWP Basin S	tream Code			Stream Name	
20C	34441		Trib 3444	1 to Slippery Rock	Creek
RMI	Total Discharge	Elow (mad		lysis Temperature (^c	C) Analysis pH
0.284	0.01			20.342	6.919
Reach Width (ft)	Reach De			Reach WDRatio	Reach Velocity (fps)
7.527	0.41			18.319	0.081
Reach CBOD5 (mg/L)	Reach Kc		P	each NH3-N (mg/L)	
3.57	0.65		<u>13</u>	1.71	0.719
Reach DO (mg/L)	Reach Kr (522		Kr Equation	Reach DO Goal (mg/L)
7.953	20.96			Owens	6
Reach Travel Time (days)		Subreach	Reculte		
0.216	TravTime	CBOD5	NH3-N	D.O.	
	(days)	(mg/L)	(mg/L)	(mg/L)	
	0.022	3.52	1.68	8.19	
	0.043	3.47	1.66	8.19	
	0.065	3.42	1.63	8.19	
	0.086	3.37	1.61	8.19	
	0.108	3.32	1.58	8.19	
	0.129	3.28	1.56	8.19	
	0.151	3.23	1.53	8.19	
	0.172	3.18	1.51	8.19	
	0.194	3.14	1.49	8.19	
	0.216	3.09	1.46	8.19	

WQM 7.0 D.O.Simulation

Tuesday, April 2, 2024

Version 1.1

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	\checkmark
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.36	Temperature Adjust Kr	
D.O. Saturation	90.00%	Use Balanced Technology	
D.O. Goal	6		

Tuesday, April 2, 2024

Version 1.1

a	E 1	1110 84	
Innut	Data	WQM	7.0
IIIPML	Dutu		

20C	344	144 T-L A					(ft)	10.000	ni) (ft/ft) (n	ngd)	
		41 I ND 34	4441 to SI	ippery Rocł	(Creek	0.28	34 1150	0.00	1.95 0.	.00000	0.00	✓
				St	ream Dat	a						
LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	<u>Tributa</u> Temp	ary pH	<u>Strea</u> Temp	<u>am</u> pH	
(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C)		
0.119	0.00	0.00	0.000	0.000	0.0	0.00	0.00	20.00	7.00	0.00	0.00	
	0.00	0.00	0.000	0.000								
	0.00	0.00	0.000	0.000								
				Di	ischarge [Data						
		Name	Per	mit Numbe	Disc	Permitte Disc Flow (mgd)	Disc Flow	Reserve Factor	Disc Temp (°C)	Disc pH		
	Slippe	ery Golf	PAC	093131	0.0110	0.000	0 0.0000	0.000	25.0	0 6.40	-	
				Pa	arameter [Data						
1												
				Name Per	Name Permit Numbe	Discharge I Existing Disc Name Permit Number Flow (mgd) Slippery Golf PA0093131 0.0110	Discharge Data Existing Permitte Disc Disc Name Permit Number Flow Flow (mgd) (mgd)	Discharge Data Existing Permitted Design Disc Disc Disc Disc Name Permit Number Flow Flow Flow Slippery Golf PA0093131 0.0110 0.0000 0.0000	Discharge DataDischarge DataExisting Permitted Design Disc Disc Disc Disc Reserve Flow Flow Flow Flow Flow (mgd) (mgd)NamePermit NumberFlow Flow Flow Flow (mgd) (mgd)Flow Flow Flow Flow 0.0000Slippery GolfPA00931310.01100.00000.0000	Discharge DataDischarge DataExisting Permitted Design DiscNamePermit NumberDiscDiscDiscDiscFlowFlowFlowFlowFactor(°C)Slippery GolfPA00931310.01100.00000.000025.0	Discharge DataDischarge DataExisting Permitted DesignDiscDiscDiscDiscDiscDiscDiscNamePermit NumberFlowFlowFlowFlowFlowFlowFlowFlowFlowFlowSlippery GolfPA00931310.01100.00000.00000.00025.006.40	Discharge DataDischarge DataNamePermit NumberExisting Disc FlowPermitted Disc Flow (mgd)Design Disc Flow Flow (mgd)Disc Temp Flow

25.00

4.00

25.00

(mg/L) (mg/L) (mg/L) (1/days)

0.00

0.00

0.00

1.50

0.00

0.70

2.00

8.24

0.00

CBOD5

NH3-N

Dissolved Oxygen

SWP Basin

Apply FC

PWS Withdrawal (mgd)

Slope

(ft/ft)

	прасы		1.0	
Stream Code	Stream Name	RMI	Elevation	Drainage Area
			(ft)	(sq mi)

Input Data WQM 7.0

	20C	344	441 Trib 34	1441 to SI	ippery Roc	k Creek	0.00)0 11	45.00	1.98	0.00000	0.00	
					St	tream Da	ta						
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Tra∨ Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	<u>Tribu</u> Temp	<u>utary</u> pH	<u>Strear</u> Temp	n pH	
Cond.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C)		
Q7-10	0.119	0.00	0.00	0.000	0.000	0.0	0.00	0.00	20.00	7.0	0.00	0.00	
Q1-10		0.00	0.00	0.000	0.000								
Q30-10		0.00	0.00	0.000	0.000								

	Dis	scharge D						
Nam	e Permit Number	Disc	Permitted Disc Flow	Design Disc Flow	Reser Fact	ve T	Disc emp	Disc pH
		(mgd)	(mgd)	(mgd)		((°C)	
		0.0000	0.0000	0.000	0.0	000	25.00	7.00
	Pa	rameter D	ata					
	Parameter Name	Dis Co			ream Conc	Fate Coef		
	Parameter Name	(mg	/L) (mg	/L) (n	ng/L) (1/days)		
CBOD	5	2:	5.00 :	2.00	0.00	1.50	(
Dissol	ved Oxygen	i:	3.00	8.24	0.00	0.00		
NH3-N		2	5.00 (0.00	0.00	0.70		

			<u>wq</u> r	<u>vi 7.0</u>	Hydr	<u>odyn</u>	<u>amic</u>	Outp	outs			
	<u>sw</u>	P Basin	Strea	m Code				Stream	Name			
		20C	3	4441		Т	rib 34441	to Slipp	ery Rock	Creek		
RMI	Stream Flow	PWS With	Net Stream Flow	Disc Analysis Flow	Reach Slope	Depth	Width	W/D Ratio	Velocity	Reach Tra∨ Time	Analysis Temp	Analysis pH
	(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	(°C)	
Q7-10	0 Flow											
0.284	0.23	0.00	0.23	.017	0.00333	.411	7.53	18.32	0.08	0.216	20.34	6.92
Q1-10	0 Flow											
0.284	0.15	0.00	0.15	.017	0.00333	NA	NA	NA	0.06	0.271	20.51	6.88
Q30-	10 Flow	1										
0.284	0.32	0.00	0.32	.017	0.00333	NA	NA	NA	0.09	0.183	20.26	6.94

WQM 7.0 Hydrodynamic Outputs

Tuesday, April 2, 2024

Version 1.1

			n Code			ream Name	- k Casak	
	20C	344	141		1HD 34441 to	Slippery Ro	CK Creek	
NH3-N	Acute Alloca	tions						
RMI	Discharge N		Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
0.2	84 Slippery Golf		17.64	50	17.64	50	0	0
NH3-N	Chronic Allo	catio	ns					
RMI	Discharge Na	me C	aseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
0.2	84 Slippery Golf		1.9	25	1.9	25	0	0
)issolv	ed Oxygen A	llocat	tions			6.167*		
RMI	Discharge	e Name		BOD5 ne Multiple	<u>NH3-N</u> Baseline Mu	<u>Dissol</u> Iltiple Baselir	ved Oxygen ne Multiple	Critical

25

25

(mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L)

25

4

4

0

0

25

Tuesday, April 2, 2024

0.28 Slippery Golf

Version 1.1

Attachment 2

	ite values in A	A3:A9 and D3:D9					
0.232	= Q stream (d	ofs)	0.5	= CV Daily			
	= Q discharg	A		5 = CV Hourly = AFC_Partial Mix Factor			
18.022	= no. sample		25				
		emand of Stream		= CFC_Partial N			
1004		emand of Discharge	1000		Compliance Time (min)		
	= BAT/BPJ V				Compliance Time (min)		
	and the second se	f Safety (FOS)	0	=Decay Coeffic			
Source	Reference	AFC Calculations		Reference	CFC Calculations		
TRC	1.3.2.iii	WLA afc =	and a second second	1.3.2.iii	WLA cfc = 4.251		
PENTOXSD TRG	5.1a	LTAMULT afc =		5.1c	LTAMULT cfc = 0.581		
PENTOXSD TRG	5.1b	LTA_afc=	1.628	5.1d	LTA_cfc = 2.471		
Source		Efflue	nt Limit Calcu	lations			
PENTOXSD TRG	5.1f		AML MULT =				
PENTOXSD TRG	5.1g		LIMIT (mg/l) =		BAT/BPJ		
		INSI MAX	LIMIT (ma/l) =	1.635			
		INST MAX	LIMIT (mg/l) =	1.635			
WLA afc	and a second second second second second	C_tc)) + [(AFC_Yc*Qs*.019	/Qd*e(-k*AFC				
WLA afc	+ Xd + (AFC	C_tc)) + [(AFC_Yc*Qs*.019 C_Yc*Qs*Xs/Qd)]*(1-FOS/10	/Qd*e(-k*AFC				
LTAMULT afc	+ Xd + (AFC EXP((0.5*LN(C_tc)) + [(AFC_Yc*Qs*.019 C_Yc*Qs*Xs/Qd)]*(1-FOS/10 cvh^2+1))-2.326*LN(cvh^2+	/Qd*e(-k*AFC				
	+ Xd + (AFC	C_tc)) + [(AFC_Yc*Qs*.019 C_Yc*Qs*Xs/Qd)]*(1-FOS/10 cvh^2+1))-2.326*LN(cvh^2+	/Qd*e(-k*AFC				
LTAMULT afc LTA_afc	+ Xd + (AFC EXP((0.5*LN(wla_afc*LTAI	C_tc)) + [(AFC_Yc*Qs*.019 C_Yc*Qs*Xs/Qd)]*(1-FOS/10 cvh^2+1))-2.326*LN(cvh^2+	/Qd*e(-k*AFC 0) -1)^0.5)	e_tc))			
LTAMULT afc	+ Xd + (AFC EXP((0.5*LN(wla_afc*LTAI (.011/e(-k*CF	C_tc)) + [(AFC_Yc*Qs*.019 C_Yc*Qs*Xs/Qd)]*(1-FOS/10 cvh^2+1))-2.326*LN(cvh^2+ MULT_afc	/Qd*e(-k*AFC 0) -1)^0.5) Qd*e(-k*CFC	e_tc))			
LTAMULT afc LTA_afc WLA_cfc	+ Xd + (AFC EXP((0.5*LN(wla_afc*LTAI (.011/e(-k*CF + Xd + (CFC	C_tc)) + [(AFC_Yc*Qs*.019 C_Yc*Qs*Xs/Qd)]*(1-FOS/10 cvh^2+1))-2.326*LN(cvh^2+ MULT_afc C_tc) + [(CFC_Yc*Qs*.011/	/Qd*e(-k*AFC 0) -1)^0.5) Qd*e(-k*CFC 0)	e_tc))	0.5)		
LTAMULT afc LTA_afc	+ Xd + (AFC EXP((0.5*LN(wla_afc*LTAI (.011/e(-k*CF + Xd + (CFC	C_tc)) + [(AFC_Yc*Qs*.019 C_Yc*Qs*Xs/Qd)]*(1-FOS/10 cvh^2+1))-2.326*LN(cvh^2+ MULT_afc C_tc) + [(CFC_Yc*Qs*.011/ C_Yc*Qs*Xs/Qd)]*(1-FOS/10 cvd^2/no_samples+1))-2.32	/Qd*e(-k*AFC 0) -1)^0.5) Qd*e(-k*CFC 0)	e_tc))	0.5)		
LTAMULT afc LTA_afc WLA_cfc LTAMULT_cfc	+ Xd + (AFC EXP((0.5*LN(wla_afc*LTAI (.011/e(-k*CF + Xd + (CFC EXP((0.5*LN(wla_cfc*LTAI	C_tc)) + [(AFC_Yc*Qs*.019 C_Yc*Qs*Xs/Qd)]*(1-FOS/10 cvh^2+1))-2.326*LN(cvh^2+ MULT_afc C_tc) + [(CFC_Yc*Qs*.011/ C_Yc*Qs*Xs/Qd)]*(1-FOS/10 cvd^2/no_samples+1))-2.32	/Qd*e(-k*AFC 10) -1)^0.5) Qd*e(-k*CFC 00) 6*LN(cvd^2/n	5_ tc)) _ tc)). o_samples+1)^(
LTAMULT afc LTA_afc WLA_cfc LTAMULT_cfc LTA_cfc	+ Xd + (AFC EXP((0.5*LN(wla_afc*LTAI (.011/e(-k*CF + Xd + (CFC EXP((0.5*LN(wla_cfc*LTAI EXP(2.326*Lt	C_tc)) + [(AFC_Yc*Qs*.019 C_Yc*Qs*Xs/Qd)]*(1-FOS/10 cvh^2+1))-2.326*LN(cvh^2+ MULT_afc C_tc) + [(CFC_Yc*Qs*.011/ C_Yc*Qs*Xs/Qd)]*(1-FOS/10 cvd^2/no_samples+1))-2.32 MULT_cfc	/Qd*e(-k*AFC 10) -1)^0.5) Qd*e(-k*CFC 0) 6*LN(cvd^2/n 5)-0.5*LN(cvd	5_ tc)) _ tc)). o_samples+1)^(