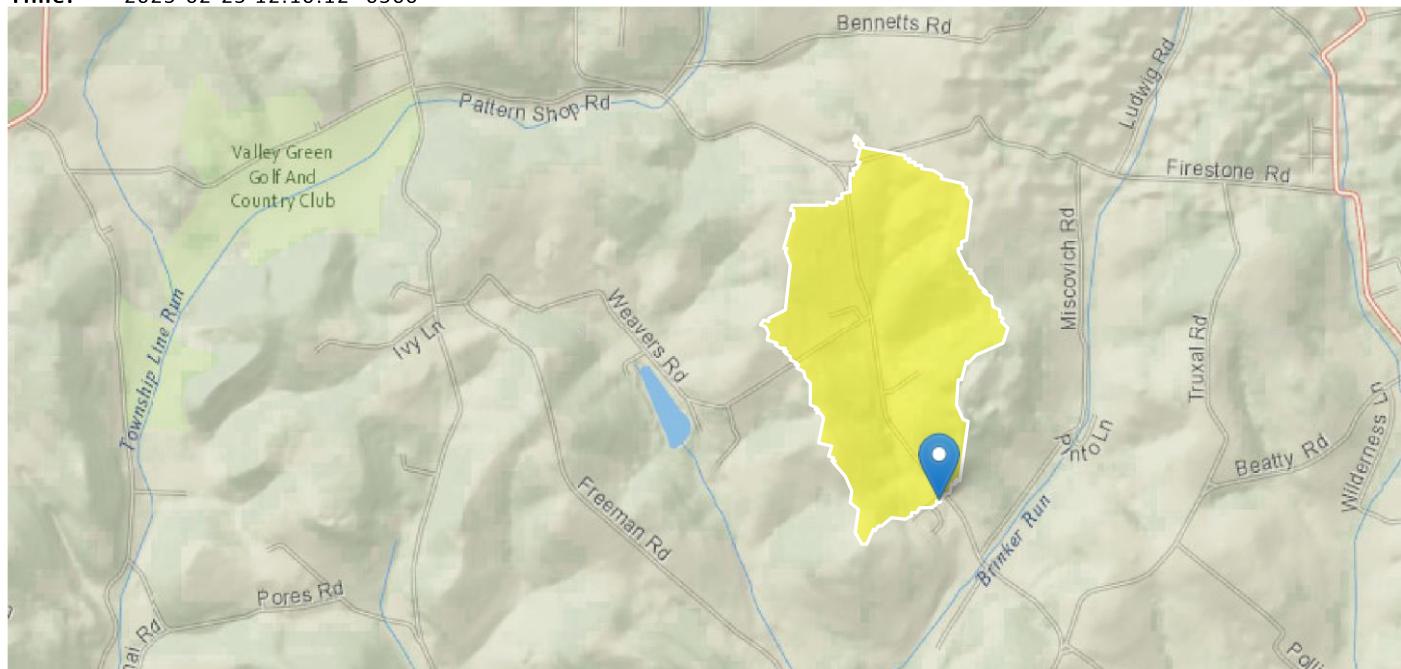


ATTACHMENT A

USGS Stream Stats Output File


StreamStats Report

Region ID: PA

Workspace ID: PA20250225170941615000

Clicked Point (Latitude, Longitude): 40.23915, -79.50039

Time: 2025-02-25 12:10:12 -0500

[Collapse All](#)

[2] Basin Characteristics

Parameter Code	Parameter Description	Value	Unit
DRNAREA	Area that drains to a point on a stream	0.42	square miles
ELEV	Mean Basin Elevation	1161	feet
FOREST	Percentage of area covered by forest	34.6274	percent
PRECIP	Mean Annual Precipitation	41	inches
URBAN	Percentage of basin with urban development	0	percent

[2] Low-Flow Statistics

Low-Flow Statistics Parameters [Low Flow Region 4]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	0.42	square miles	2.26	1400
ELEV	Mean Basin Elevation	1161	feet	1050	2580

Low-Flow Statistics Disclaimers [Low Flow Region 4]

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors.

Low-Flow Statistics Flow Report [Low Flow Region 4]

Statistic	Value	Unit
7 Day 2 Year Low Flow	0.0102	ft^3/s
30 Day 2 Year Low Flow	0.0204	ft^3/s
7 Day 10 Year Low Flow	0.00277	ft^3/s
30 Day 10 Year Low Flow	0.00631	ft^3/s
90 Day 10 Year Low Flow	0.0134	ft^3/s

LowFlowStatisticsCitations

Stuckey, M.H., 2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5130, 84 p. (<http://pubs.usgs.gov/sir/2006/5130/>)

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.

USGS Product Names Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Application Version: 4.27.0

StreamStats Services Version: 1.2.22

NSS Services Version: 2.2.1

ATTACHMENT B
TRC Spreadsheet

TRC_CALC_Mutual Mobile Home Park

TRC EVALUATION

Input appropriate values in A3:A9 and D3:D9

0.00277	= Q stream (cfs)	0.5	= CV Daily
0.001999	= Q discharge (MGD)	0.5	= CV Hourly
30	= no. samples	1	= AFC_Partial Mix Factor
0.3	= Chlorine Demand of Stream	1	= CFC_Partial Mix Factor
0.3	= Chlorine Demand of Discharge	1	= AFC_Criteria Compliance Time (min)
0	= BAT/BPJ Value	15	= CFC_Criteria Compliance Time (min)
0	= % Factor of Safety (FOS)	720	= Decay Coefficient (K)
0.5			
0			

Source	Reference	AFC Calculations	Reference	CFC Calculations
TRC	1.3.2.iii	WLA_afc = 0.305	1.3.2.iii	WLA_cfc = 0.290
PENTOXSD TRG	5.1a	LTAMULT_afc = 0.373	5.1c	LTAMULT_cfc = 0.581
PENTOXSD TRG	5.1b	LTA_afc = 0.114	5.1d	LTA_cfc = 0.168

Source	Effluent Limit Calculations		
PENTOXSD TRG	5.1f	AML MULT = 1.231	
PENTOXSD TRG	5.1g	AVG MON LIMIT (mg/l) = 0.140 INST MAX LIMIT (mg/l) = 0.457	AFc

WLA_afc
$$(.019/e(-k*AFc_tc)) + [(AFc_Yc*Qs*.019/Qd*e(-k*AFc_tc))... + Xd + (AFc_Yc*Qs*Xs/Qd)]*(1-FOS/100)$$

LTAMULT_afc
$$\text{EXP}((0.5*\text{LN}(cvh^2+1))-2.326*\text{LN}(cvh^2+1)^0.5) \text{ LTA_afc}$$

wla_afc*LTAMULT_afc

WLA_cfc
$$(.011/e(-k*Cfc_tc)) + [(Cfc_Yc*Qs*.011/Qd*e(-k*Cfc_tc))... + Xd + (Cfc_Yc*Qs*Xs/Qd)]*(1-FOS/100)$$

LTAMULT_cfc
$$\text{EXP}((0.5*\text{LN}(cvd^2/no_samples+1))-2.326*\text{LN}(cvd^2/no_samples+1)^0.5)$$

wla_cfc*LTAMULT_cfc

AML MULT
$$\text{EXP}(2.326*\text{LN}(cvd^2/no_samples+1)^0.5)-0.5*\text{LN}(cvd^2/no_samples+1))$$

AVG MON LIMIT
$$\text{MIN}(\text{BAT_BPJ}, \text{MIN}(\text{LTA_afc}, \text{LTA_cfc})*\text{AML_MULT})$$

INST MAX LIMIT
$$1.5*((\text{av_mon_limit}/\text{AML_MULT})/\text{LTAMULT_afc})$$