

Application Type

Renewal

Facility Type

Non-Municipal

Major / Minor

Minor

Application No.

PA0096130

APS ID

1090206

Authorization ID

1442878

**NPDES PERMIT FACT SHEET
INDIVIDUAL SEWAGE**

Applicant and Facility Information

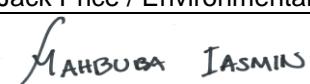
Applicant Name	Nemacolin Inc.	Facility Name	Nemacolin Inc. STP
Applicant Address	PO Box 484	Facility Address	803 Pershing Boulevard
	Nemacolin, PA 15351-0484		Nemacolin, PA 15351
Applicant Contact	Linda Shiffbower	Facility Contact	
Applicant Phone		Facility Phone	
Client ID	63784	Site ID	253728
Ch 94 Load Status	Existing hydraulic overload	Municipality	Cumberland Township
Connection Status		County	Greene
Date Application Received	June 2, 2023	EPA Waived?	Yes
Date Application Accepted	06/15/2023	If No, Reason	
Purpose of Application	Renewal NPDES Permit for a facility discharging treated sewage.		

Summary of Review

The applicant applied for renewal of NPDES Permit No. PA0096130.

There are no open violations for this facility.

Sewage from this facility is treated in a comminutor, flow diverter, and two parallel treatment trains consisting of an aeration tank, clarifier, and chlorine contact chamber. Additionally, there are sludge holding tanks for waste activated sludge. The site has been an approved sewage facility since 1918. The existing facility was approved for construction in 1985.


The applicant is currently enrolled in and will continue to use eDMR.

The Act 14-PL 834 Municipal Notification was provided by the February 1, 2023 letter provided to Cumberland Township and the February 1, 2023 letter provided to Greene County. No comments were received.

This facility is in an existing hydraulic overload. A Compliance Action Plan (CAP) is included in the permit and will be discussed in detail below.

Sludge use and disposal description and location(s): Sludge is hauled off site by a permitted sludge hauler.

Public Participation

Approve	Deny	Signatures	Date
x		 John Price Jack Price / Environmental Engineering Specialist	August 12, 2024
x		 Mahbuba Iasmin Mahbuba Iasmin, Ph.D., P.E. / Environmental Engineer Manager	August 21, 2024

Summary of Review

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Discharge, Receiving Waters and Water Supply Information

Outfall No.	001	Design Flow (MGD)	0.10
Latitude	39° 52' 51.25"	Longitude	-79° 54' 57.35"
Quad Name	Carmichaels	Quad Code	1906
Wastewater Description: Sewage Effluent			
Receiving Waters	Monongahela River (WWF)	Stream Code	37185
NHD Com ID	134839929	RMI	76.68
Drainage Area	4550 mi ²	Yield (cfs/mi ²)	0.002
Q ₇₋₁₀ Flow (cfs)	530	Q ₇₋₁₀ Basis	US Army Corps of Engineers, Mon River @ Maxwell L&D
Elevation (ft)		Slope (ft/ft)	
Watershed No.	19-B	Chapter 93 Class.	WWF
Existing Use		Existing Use Qualifier	
Exceptions to Use		Exceptions to Criteria	
Assessment Status	Attaining Use(s)		
Cause(s) of Impairment			
Source(s) of Impairment			
TMDL Status	Final	Name	Monongahela River TMDL
Background/Ambient Data		Data Source	
pH (SU)			
Temperature (°F)			
Hardness (mg/L)			
Other:			
Nearest Downstream Public Water Supply Intake		Southwestern PA Water Auth	
PWS Waters	Monongahela River	Flow at Intake (cfs)	
PWS RMI		Distance from Outfall (mi)	4.84 Linear Miles

Changes Since Last Permit Issuance: There have been no changes to the receiving waters or water supply information since the previous permit. A new model for the discharge was performed.

This facility is in an existing hydraulic overload. The hydraulic capacity of this facility is 0.1 MGD and has experienced flows greater than this in 11 months of 2023. A chapter 94 spreadsheet was generated to identify the hydraulic overload. The permit includes a schedule for the facility to submit a corrective action plan.

Treatment Facility Summary						
Treatment Facility Name: Nemacolin STP						
This is an existing facility. The original facility was approved in 1918 as the Buckeye Coal Company STP. The facility was replaced in 1985 with a new system due to malfunction of the facility that existed at that time. The facility was transferred in 1991.						
The current treatment system consists of:						
<ul style="list-style-type: none">• One Comminutor• One Diverter• Two 50,000-gallon aeration tanks• Two 8,800-gallon clarifiers with 144 SF surface area each.• Two 3' x 12' x 2' chlorine contact chambers with erosion-feed chlorinators.• One sludge holding tank.						
WQM Permit No.		Issuance Date				
3085401 T-1		03/12/1991				
3085401		05/08/1985				
Waste Type		Degree of Treatment	Process Type	Disinfection		
Sewage		Secondary	Aeration	Erosion-fed chlorination		
Avg Annual Flow (MGD)						
Hydraulic Capacity (MGD)		Organic Capacity (lbs/day)	Load Status	Biosolids Treatment		
0.1		Not Overloaded		Hauled off-site		
Biosolids Use/Disposal						
Landfilled						

Changes Since Last Permit Issuance: The facility discharge to the receiving stream was modeled for this new permit. Modelling was performed as per the SOP BCW-PMT-002 Section IV.L.5.

Other Comments:

Compliance History

DMR Data for Outfall 001 (from July 1, 2023 to June 30, 2024)

Parameter	JUN-24	MAY-24	APR-24	MAR-24	FEB-24	JAN-24	DEC-23	NOV-23	OCT-23	SEP-23	AUG-23	JUL-23
Flow (MGD) Average Monthly	0.094	0.124	0.232	0.227	0.188	0.237	0.117	0.153	0.122	0.075	0.146	0.116
Flow (MGD) Daily Maximum	0.172	0.238	0.556	0.653	0.624	0.822	0.468	0.537	0.4	0.113	0.353	0.271
pH (S.U.) Minimum	6.7	6.7	6.7	6.3	6.7	6.6	6.7	6.8	6.7	6.6	6.7	6.7
pH (S.U.) Maximum	7.0	7.0	7.0	7.0	6.9	7.0	7.0	7.0	7.0	7.0	7.0	7.2
DO (mg/L) Minimum	6.3	6.3	6.3	6.4	6.4	6.4	6.4	6.4	6.4	6.4	6.4	6.2
TRC (mg/L) Average Monthly	0.5	0.5	0.5	0.4	0.5	0.4	0.5	0.5	0.5	0.5	0.5	0.5
TRC (mg/L) Instantaneous Maximum	0.6	0.5	0.6	0.5	0.5	0.5	0.5	0.5	0.5	0.6	0.5	0.5
CBOD5 (mg/L) Average Monthly	< 4.5	< 4.4	5.6	< 2.2	< 2.2	< 2.0	< 2.1	< 2.4	< 5.0	< 2.3	< 5.5	< 9.0
TSS (mg/L) Average Monthly	< 5.0	< 5.0	8.8	5.5	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 8.0
Fecal Coliform (No./100 ml) Geometric Mean	< 2	< 1	< 4	6	< 1	< 1	< 1	< 1	< 2	< 2	1	< 3
Fecal Coliform (No./100 ml) Instantaneous Maximum	3	1	308	1553	< 1	1	1	< 1	10	15	5	12
Total Nitrogen (mg/L) Daily Maximum							4.95					
Ammonia (mg/L) Average Monthly	< 3.07	4.40	< 3.43	< 0.4	< 0.569	< 5.29	< 2.16	< 0.42	< 1.558	< 0.4	< 1.15	< 2.005
Total Phosphorus (mg/L) Daily Maximum							0.78					

Compliance History

Facility: Nemacolin Inc. STP.

NPDES Permit No.: PA0096130

Compliance Review Period: July 2019-July 2024

Inspection Summary:

INSP ID	INSPECTED DATE	INSP TYPE	AGENCY	INSPECTION RESULT DESC
3247381	09/09/2021	Administrative/File Review	PA Dept of Environmental Protection	No Violations Noted
3637885	10/31/2023	Compliance Evaluation	PA Dept of Environmental Protection	No Violations Noted
3057660	07/21/2020	Administrative/File Review	PA Dept of Environmental Protection	No Violations Noted
3247382	09/09/2021	Compliance Evaluation	PA Dept of Environmental Protection	No Violations Noted

Violation Summary:

None.

Open Violations by Client ID:

None.

Enforcement Summary:

None

DMR Violation Summary:

No DMR data found

Compliance Status:

To be determined

Other Comments: The Compliance Status of the facility will be determined prior to the issuance of the final permit. At that time a fact sheet addendum will be issued with the compliance status determination.

Development of Effluent Limitations

Outfall No. 001
Latitude 39° 52' 51.00"
Wastewater Description: Sewage Effluent

Design Flow (MGD) 0.10
Longitude -79° 55' 0.00"

Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Pollutant	Limit (mg/l)	SBC	Federal Regulation	State Regulation
CBOD ₅	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
Total Suspended Solids	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
pH	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform (5/1 – 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform (5/1 – 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform (10/1 – 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform (10/1 – 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)

Comments: The proposed discharge was evaluated using WQM 7.0 to evaluate CBOD₅, ammonia nitrogen, and Dissolved Oxygen Parameters. The modeling results show technology based effluent limitations for CBOD₅, ammonia nitrogen, Dissolved Oxygen, and Total Residual Chlorine are appropriate.

Water Quality-Based Limitations

The following limitations were determined through water quality modeling (output files attached):

Parameter	Limit (mg/l)	SBC	Model
Ammonia Nitrogen	25	Average Monthly	WQM 7.0 Version 1.1
Dissolved Oxygen	4 (min)	Average Monthly	WQM 7.0 Version 1.1
Total Residual Chlorine	0.5	Average Monthly	TRC_CALC

Comments: The WQM model shows that the TBEL limits are sufficient for summertime and wintertime discharges. The TRC_Calc model shows that the TBEL limits are sufficient.

Best Professional Judgment (BPJ) Limitations

Comments: N/A

Anti-Backsliding

Section 402(o) of the Clean Water Act (CWA), enacted in the Water Quality Act of 1987, establishes anti-backsliding rules governing two situations. The first situation occurs when a permittee seeks to revise a Technology-Based effluent limitation based on BPJ to reflect a subsequently promulgated effluent guideline which is less stringent. The second situation addressed by Section 402(o) arises when a permittee seeks relaxation of an effluent limitation which is based upon a State treatment standard of water quality standard.

Previous limits can be used pursuant to EPA's anti-backsliding regulation 40 CFR 122.44 (1) **Reissued permits.** (1) Except as provided in paragraph (1)(2) of this section when a permit is renewed or reissued. Interim effluent limitations, standards or conditions must be at least as stringent as the final effluent limitations, standards, or conditions in the previous permit (unless the circumstances on which the previous permit was based have materially and substantially changed since the time the permit was issued and would constitute cause for permit modification or revocation and reissuance under §122.62). (2) In the case of effluent limitations established on the basis of Section 402(a)(1)(B) of the CWA, a permit may not be renewed, reissued, or modified on the basis of effluent guidelines promulgated under section 304(b) subsequent to the original issuance of such permit, to contain effluent limitations which are less stringent than the comparable effluent limitations in the previous permit.

No backsliding of the existing permit effluent limitations and/or monitoring requirements have been applied in the renewed Draft Permit.

Disinfection

Disinfection at this facility is provided by erosion feed chlorination equipment and a chlorine contact tank. Per the SOP for effluent limitations, a monthly limit of 0.5 mg/L is established with an IMAX of 1.6 mg/L.

(Section I.A, Note 3, SOP for Clean Water Program, Establishing Effluent Limitations for Individual Sewage Permits, Final November 9, 2012, Revised March 24, 2021, Version 1.9 and 25 PA Code 92a.61(b).)

Additional Considerations

Nutrient monitoring is required to establish the nutrient load from the wastewater treatment facility and the impacts that load may have on the quality of the receiving stream(s). A 1/year monitoring requirement for Total Nitrogen and Total Phosphorus has been added to the permit. *Section I.A, Note 7 & 8, SOP for Clean Water Program, Establishing Effluent Limitations for Individual Sewage Permits, Final November 9, 2012, Revised March 24, 2021, Version 1.9 and 25 PA Code 92a.61(b).*

Sewage discharges will include monitoring, at a minimum, for *E. Coli*, in new and reissued permits, with a monitoring frequency of 1/year for design flows between 0.002 and 0.05 MGD. *Note 12 SOP-Establishing Effluent Limitations for Individual Sewage Permits Final November 9, 2012, Revised March 24, 2021, Version 1.9. and 25 PA Code 92a.61(b).*

Monitoring frequency for the proposed effluent limits are based upon Table 6-3, Self-Monitoring Requirements for Sewage Dischargers. *Department Technical Guidance for the Development and Specification of Effluent Limitations and Other Permit Conditions in NPDES Permits (Document No. 362-0400-001*

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (386-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

Parameter	Effluent Limitations						Monitoring Requirements	
	Mass Units (lbs/day) ⁽¹⁾		Concentrations (mg/L)				Minimum ⁽²⁾ Measurement Frequency	Required Sample Type
	Average Monthly	Average Weekly	Minimum	Average Monthly	Maximum	Instant. Maximum		
Flow (MGD)	Report	Report Daily Max	XXX	XXX	XXX	XXX	Continuous	Recorded
pH (S.U.)	XXX	XXX	6.0 Inst Min	XXX	XXX	9.0	1/day	Grab
DO	XXX	XXX	4.0 Inst Min	XXX	XXX	XXX	1/day	Grab
TRC	XXX	XXX	XXX	0.5	XXX	1.6	1/day	Grab
CBOD5	XXX	XXX	XXX	25.0	XXX	50.0	1/week	8-Hr Composite
TSS	XXX	XXX	XXX	30.0	XXX	60.0	1/week	8-Hr Composite
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	2000 Geo Mean	XXX	10000	1/week	Grab
Fecal Coliform (No./100 ml) May 1 - Sep 30	XXX	XXX	XXX	200 Geo Mean	XXX	1000	1/week	Grab
Total Nitrogen	XXX	XXX	XXX	XXX	Report Daily Max	XXX	1/year	Grab
Ammonia-Nitrogen	XXX	XXX	XXX	Report	XXX	XXX	2/month	Grab
Total Phosphorus	XXX	XXX	XXX	XXX	Report Daily Max	XXX	1/year	Grab

Compliance Sampling Location: Outfall 001

Other Comments: None

Attachment 1-USGS StreamStats Report-Upstream

StreamStats Report

Region ID: PA
Workspace ID: PA20230629124434197000
Clicked Point (Latitude, Longitude): 39.88144, -79.91597
Time: 2023-06-29 08:44:57 -0400

[Collapse All](#)

► Basin Characteristics

Parameter Code	Parameter Description	Value	Unit
DRNAREA	Area that drains to a point on a stream	4550	square miles
ELEV	Mean Basin Elevation	1942	feet

► Low-Flow Statistics

Low-Flow Statistics Parameters [99.9 Percent (4550 square miles) Low Flow Region 4]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	4550	square miles	2.26	1400
ELEV	Mean Basin Elevation	1942	feet	1050	2580

Low-Flow Statistics Disclaimers [99.9 Percent (4550 square miles) Low Flow Region 4]

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors.

Low-Flow Statistics Flow Report [99.9 Percent (4550 square miles) Low Flow Region 4]

Statistic	Value	Unit
7 Day 2 Year Low Flow	617	ft ³ /s
30 Day 2 Year Low Flow	827	ft ³ /s
7 Day 10 Year Low Flow	350	ft ³ /s

Statistic	Value	Unit
30 Day 10 Year Low Flow	416	ft ³ /s
90 Day 10 Year Low Flow	629	ft ³ /s

Low-Flow Statistics Citations

Stuckey, M.H., 2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5130, 84 p. (<http://pubs.usgs.gov/sir/2006/5130/>)

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.

USGS Product Names Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Application Version: 4.16.0

StreamStats Services Version: 1.2.22

NSS Services Version: 2.2.1

Attachment 2-USGS StreamStats Report-Downstream

StreamStats Report

Region ID: PA
Workspace ID: PA20230629125009235000
Clicked Point (Latitude, Longitude): 39.88638, -79.91891
Time: 2023-06-29 08:50:32 -0400

[Collapse All](#)

Basin Characteristics

Parameter Code	Parameter Description	Value	Unit
DRNAREA	Area that drains to a point on a stream	4550	square miles
ELEV	Mean Basin Elevation	1942	feet

Low-Flow Statistics

Low-Flow Statistics Parameters [99.9 Percent (4550 square miles) Low Flow Region 4]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	4550	square miles	2.26	1400
ELEV	Mean Basin Elevation	1942	feet	1050	2580

Low-Flow Statistics Disclaimers [99.9 Percent (4550 square miles) Low Flow Region 4]

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors.

Low-Flow Statistics Flow Report [99.9 Percent (4550 square miles) Low Flow Region 4]

Statistic	Value	Unit
7 Day 2 Year Low Flow	617	ft^3/s
30 Day 2 Year Low Flow	827	ft^3/s
7 Day 10 Year Low Flow	350	ft^3/s

Statistic	Value	Unit
30 Day 10 Year Low Flow	416	ft ³ /s
90 Day 10 Year Low Flow	629	ft ³ /s
<i>Low-Flow Statistics Citations</i>		
Stuckey, M.H., 2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5130, 84 p. (http://pubs.usgs.gov/sir/2006/5130/)		

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.

USGS Product Names Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Application Version: 4.16.0

StreamStats Services Version: 1.2.22

NSS Services Version: 2.2.1

Attachment 3-WQM Model Output-Summer

Input Data WQM 7.0

SWP Basin	Stream Code	Stream Name			RMI	Elevation	Drainage Area	Slope	PWS Withdrawal	Apply FC
						(ft)	(sq mi)	(ft/ft)	(mgd)	
19A		37185	MONONGAHELA RIVER		76.680	763.30	4550.00	0.00000	0.00	<input checked="" type="checkbox"/>
Stream Data										
Design Cond.	LFY (cfsm)	Trib Flow (cfs)	Stream Flow (cfs)	Rch Trav Time (days)	Rch Velocity (fps)	WD Ratio	Rch Width (ft)	Rch Depth (ft)	Tributary Temp (°C)	Stream pH (°C)
Q7-10	0.116	0.00	0.00	0.000	0.000	10.0	0.00	0.00	25.00	7.00
Q1-10		0.00	0.00	0.000	0.000				0.00	0.00
Q30-10		0.00	0.00	0.000	0.000					
Discharge Data										
Name	Permit Number	Existing Disc Flow (mgd)	Permitted Disc Flow (mgd)	Design Disc Flow (mgd)	Reserve Factor	Disc Temp (°C)	Disc pH			
NemacolinIncSTP	PA0096130	0.1000	0.0000	0.0000	0.000	20.00	7.00			
Parameter Data										
Parameter Name		Disc Conc (mg/L)	Trib Conc (mg/L)	Stream Conc (mg/L)	Fate Coef (1/days)					
CBOD5		25.00	2.00	0.00	1.50					
Dissolved Oxygen		4.00	8.24	0.00	0.00					
NH3-N		25.00	0.00	0.00	0.70					

Input Data WQM 7.0

SWP Basin	Stream Code	Stream Name		RMI	Elevation	Drainage Area	Slope	PWS Withdrawal	Apply FC		
				(ft)	(sq mi)	(ft/ft)		(mgd)			
19A	37185	MONONGAHELA RIVER		76.300	763.29	4550.10	0.00000	0.00	<input checked="" type="checkbox"/>		
Stream Data											
Design Cond.	LFY (cfsm)	Trib Flow (cfs)	Stream Flow (cfs)	Rch Trav Time (days)	Rch Velocity (fps)	WD Ratio (ft)	Rch Width (ft)	Rch Depth (ft)	Tributary Temp (°C)	Stream Temp (°C)	pH
Q7-10	0.116	0.00	0.00	0.000	0.000	10.0	0.00	0.00	25.00	7.00	0.00
Q1-10		0.00	0.00	0.000	0.000						
Q30-10		0.00	0.00	0.000	0.000						
Discharge Data											
Name		Permit Number	Existing Disc Flow (mgd)	Permitted Disc Flow (mgd)	Design Disc Flow (mgd)	Reserve Factor	Disc Temp (°C)	Disc pH			
			0.0000	0.0000	0.0000	0.000	25.00	7.00			
Parameter Data											
Parameter Name			Disc Conc (mg/L)	Trib Conc (mg/L)	Stream Conc (mg/L)	Fate Coef (1/days)					
CBOD5			25.00	2.00	0.00	1.50					
Dissolved Oxygen			3.00	8.24	0.00	0.00					
NH3-N			25.00	0.00	0.00	0.70					

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	<input checked="" type="checkbox"/>
WLA Method	EMPR	Use Inputted W/D Ratio	<input checked="" type="checkbox"/>
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	<input type="checkbox"/>
Q30-10/Q7-10 Ratio	1.36	Temperature Adjust Kr	<input checked="" type="checkbox"/>
D.O. Saturation	90.00%	Use Balanced Technology	<input checked="" type="checkbox"/>
D.O. Goal	5		

WQM 7.0 Hydrodynamic Outputs

SWP Basin		Stream Code		Stream Name								
19A		37185		MONONGAHELA RIVER								
RMI	Stream Flow	PWS With	Net Stream Flow	Disc Analysis Flow	Reach Slope	Depth	Width	W/D Ratio	Velocity	Reach Trav Time	Analysis Temp	Analysis pH
	(cfs)		(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	(°C)	
Q7-10 Flow												
76.680	527.80	0.00	527.80	.1547 0.00000		8.247	82.47	10	0.78	0.030	25.00	7.00
Q1-10 Flow												
76.680	337.79	0.00	337.79	.1547 0.00000		NA	NA	NA	0.60	0.038	25.00	7.00
Q30-10 Flow												
76.680	717.81	0.00	717.81	.1547 0.00000		NA	NA	NA	0.92	0.025	25.00	7.00

WQM 7.0 Wasteload Allocations

<u>SWP Basin</u>		<u>Stream Code</u>		<u>Stream Name</u>																									
19A	37185	MONONGAHELA RIVER																											
NH3-N Acute Allocations																													
<table> <thead> <tr> <th>RMI</th><th>Discharge Name</th><th>Baseline Criterion (mg/L)</th><th>Baseline WLA (mg/L)</th><th>Multiple Criterion (mg/L)</th><th>Multiple WLA (mg/L)</th><th>Critical Reach</th><th>Percent Reduction</th><th></th><th></th></tr> </thead> <tbody> <tr> <td>76.680</td><td>NemacolinIncST</td><td>6.77</td><td>50</td><td>6.77</td><td>50</td><td>0</td><td>0</td><td></td><td></td></tr> </tbody> </table>										RMI	Discharge Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction			76.680	NemacolinIncST	6.77	50	6.77	50	0	0		
RMI	Discharge Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction																						
76.680	NemacolinIncST	6.77	50	6.77	50	0	0																						
NH3-N Chronic Allocations																													
<table> <thead> <tr> <th>RMI</th><th>Discharge Name</th><th>Baseline Criterion (mg/L)</th><th>Baseline WLA (mg/L)</th><th>Multiple Criterion (mg/L)</th><th>Multiple WLA (mg/L)</th><th>Critical Reach</th><th>Percent Reduction</th><th></th><th></th></tr> </thead> <tbody> <tr> <td>76.680</td><td>NemacolinIncST</td><td>1.34</td><td>25</td><td>1.34</td><td>25</td><td>0</td><td>0</td><td></td><td></td></tr> </tbody> </table>										RMI	Discharge Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction			76.680	NemacolinIncST	1.34	25	1.34	25	0	0		
RMI	Discharge Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction																						
76.680	NemacolinIncST	1.34	25	1.34	25	0	0																						
Dissolved Oxygen Allocations																													
<table> <thead> <tr> <th>RMI</th><th>Discharge Name</th><th>CBOD5 Baseline (mg/L)</th><th>CBOD5 Multiple (mg/L)</th><th>NH3-N Baseline (mg/L)</th><th>NH3-N Multiple (mg/L)</th><th>Dissolved Oxygen Baseline (mg/L)</th><th>Dissolved Oxygen Multiple (mg/L)</th><th>Critical Reach</th><th>Percent Reduction</th></tr> </thead> <tbody> <tr> <td>76.68</td><td>NemacolinIncSTP</td><td>25</td><td>25</td><td>25</td><td>25</td><td>4</td><td>4</td><td>0</td><td>0</td></tr> </tbody> </table>										RMI	Discharge Name	CBOD5 Baseline (mg/L)	CBOD5 Multiple (mg/L)	NH3-N Baseline (mg/L)	NH3-N Multiple (mg/L)	Dissolved Oxygen Baseline (mg/L)	Dissolved Oxygen Multiple (mg/L)	Critical Reach	Percent Reduction	76.68	NemacolinIncSTP	25	25	25	25	4	4	0	0
RMI	Discharge Name	CBOD5 Baseline (mg/L)	CBOD5 Multiple (mg/L)	NH3-N Baseline (mg/L)	NH3-N Multiple (mg/L)	Dissolved Oxygen Baseline (mg/L)	Dissolved Oxygen Multiple (mg/L)	Critical Reach	Percent Reduction																				
76.68	NemacolinIncSTP	25	25	25	25	4	4	0	0																				

WQM 7.0 D.O.Simulation

<u>SWP Basin</u>	<u>Stream Code</u>	<u>Stream Name</u>		
19A	37185	MONONGAHELA RIVER		
RMI	<u>Total Discharge Flow (mgd)</u>		<u>Analysis Temperature (°C)</u>	<u>Analysis pH</u>
76.680	0.100		24.999	7.000
<u>Reach Width (ft)</u>	<u>Reach Depth (ft)</u>		<u>Reach WDRatio</u>	<u>Reach Velocity (fps)</u>
82.465	8.247		10.000	0.776
<u>Reach CBOD5 (mg/L)</u>	<u>Reach Kc (1/days)</u>		<u>Reach NH3-N (mg/L)</u>	<u>Reach Kn (1/days)</u>
2.01	0.005		0.01	1.028
<u>Reach DO (mg/L)</u>	<u>Reach Kr (1/days)</u>		<u>Kr Equation</u>	<u>Reach DO Goal (mg/L)</u>
8.242	0.540		O'Connor	5
<u>Reach Travel Time (days)</u>	Subreach Results			
0.030	TravTime (days)	CBOD5 (mg/L)	NH3-N (mg/L)	D.O. (mg/L)
	0.003	2.01	0.01	7.54
	0.006	2.01	0.01	7.54
	0.009	2.01	0.01	7.54
	0.012	2.01	0.01	7.54
	0.015	2.01	0.01	7.54
	0.018	2.01	0.01	7.54
	0.021	2.01	0.01	7.54
	0.024	2.01	0.01	7.54
	0.027	2.01	0.01	7.54
	0.030	2.01	0.01	7.54

WQM 7.0 Effluent Limits

SWP Basin	Stream Code	Stream Name					
		19A	37185	MONONGAHELA RIVER			
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
76.680	NemacolinIncSTP	PA0096130	0.100	CBOD5	25		
				NH3-N	25	50	
				Dissolved Oxygen			4

Attachment 4-WQM Model Output-Winter

Input Data WQM 7.0

Design Cond.	LFY (cfsm)	Trib Flow (cfs)	Stream Flow (cfs)	Rch Trav Time (days)	Rch Velocity (fps)	WD Ratio	Rch Width (ft)	Rch Depth (ft)	Tributary		Stream Temp (°C)	Stream pH		
									RMI	Elevation (ft)	Drainage Area (sq mi)	Slope (ft/ft)	PWS Withdrawal (mgd)	Apply FC
	19A		37185 MONONGAHELA RIVER			76.680		763.30	4550.00	0.00000	0.00	0.00	<input checked="" type="checkbox"/>	
Stream Data														
Q7-10	0.232	0.00	0.00	0.000	0.000	10.0	0.00	0.00	5.00	7.00	0.00	0.00		
Q1-10		0.00	0.00	0.000	0.000									
Q30-10		0.00	0.00	0.000	0.000									
Discharge Data														
				Name	Permit Number	Existing Disc Flow (mgd)	Permitted Disc Flow (mgd)	Design Disc Flow (mgd)	Reserve Factor	Disc Temp (°C)	Disc pH			
				NemacolinIncSTP	PA0096130	0.1000	0.0000	0.0000	0.000	15.00	7.00			
Parameter Data														
				Parameter Name		Disc Conc (mg/L)	Trib Conc (mg/L)	Stream Conc (mg/L)	Fate Coef (1/days)					
						CBOD5	25.00	2.00	0.00					
						Dissolved Oxygen	4.00	12.51	0.00					
						NH3-N	25.00	0.00	0.00					

Input Data WQM 7.0

SWP Basin	Stream Code	Stream Name			RMI	Elevation (ft)	Drainage Area (sq mi)	Slope (ft/ft)	PWS Withdrawal (mgd)	Apply FC
19A	37185	MONONGAHELA RIVER			76.300	763.29	4550.10	0.00000	0.00	<input checked="" type="checkbox"/>
Stream Data										
Design Cond.	LFY (cfsm)	Trib Flow (cfs)	Stream Flow (cfs)	Rch Trav Time (days)	Rch Velocity (fps)	WD Ratio	Rch Width (ft)	Rch Depth (ft)	Tributary Temp (°C)	Stream Temp (°C)
Q7-10 0.232 0.00 0.00 0.000 0.000 10.0 0.00 0.00 5.00 7.00 0.00 0.00 Q1-10 0.00 0.00 0.000 0.000 Q30-10 0.00 0.00 0.000 0.000										
Discharge Data										
		Name	Permit Number	Existing Disc Flow (mgd)	Permitted Disc Flow (mgd)	Design Disc Flow (mgd)	Reserve Factor	Disc Temp (°C)	Disc pH	
				0.0000	0.0000	0.0000	0.000	25.00	7.00	
Parameter Data										
		Parameter Name		Disc Conc (mg/L)	Trib Conc (mg/L)	Stream Conc (mg/L)	Fate Coef (1/days)			
		CBOD5		25.00	2.00	0.00	1.50			
		Dissolved Oxygen		3.00	8.24	0.00	0.00			
		NH3-N		25.00	0.00	0.00	0.70			

WQM 7.0 Effluent Limits

SWP Basin	Stream Code	Stream Name					
		19A	37185	MONONGAHELA RIVER			
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
76.680	NemacolinIncSTP	PA0096130	0.100	CBOD5	25		
				NH3-N	25	50	
				Dissolved Oxygen			4

WQM 7.0 D.O.Simulation

<u>SWP Basin</u>	<u>Stream Code</u>	<u>Stream Name</u>	
19A	37185	MONONGAHELA RIVER	
RMI	Total Discharge Flow (mgd)	Analysis Temperature (°C)	Analysis pH
76.680	0.100	5.001	7.000
<u>Reach Width (ft)</u>	<u>Reach Depth (ft)</u>	<u>Reach WDRatio</u>	<u>Reach Velocity (fps)</u>
96.047	9.605	10.000	1.144
<u>Reach CBOD5 (mg/L)</u>	<u>Reach Kc (1/days)</u>	<u>Reach NH3-N (mg/L)</u>	<u>Reach Kn (1/days)</u>
2.00	0.003	0.00	0.221
<u>Reach DO (mg/L)</u>	<u>Reach Kr (1/days)</u>	<u>Kr Equation</u>	<u>Reach DO Goal (mg/L)</u>
12.509	0.325	O'Connor	5
<u>Reach Travel Time (days)</u>	Subreach Results		
0.020	TravTime (days)	CBOD5 (mg/L)	NH3-N (mg/L)
			D.O. (mg/L)
	0.002	2.00	0.00
	0.004	2.00	0.00
	0.006	2.00	0.00
	0.008	2.00	0.00
	0.010	2.00	0.00
	0.012	2.00	0.00
	0.014	2.00	0.00
	0.016	2.00	0.00
	0.018	2.00	0.00
	0.020	2.00	0.00

WQM 7.0 Wasteload Allocations

<u>SWP Basin</u>	<u>Stream Code</u>	<u>Stream Name</u>				
19A	37185	MONONGAHELA RIVER				

NH3-N Acute Allocations

RMI	Discharge Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
76.680	NemacolinIncST	20.59	50	20.59	50	0	0

NH3-N Chronic Allocations

RMI	Discharge Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
76.680	NemacolinIncST	4.08	25	4.08	25	0	0

Dissolved Oxygen Allocations

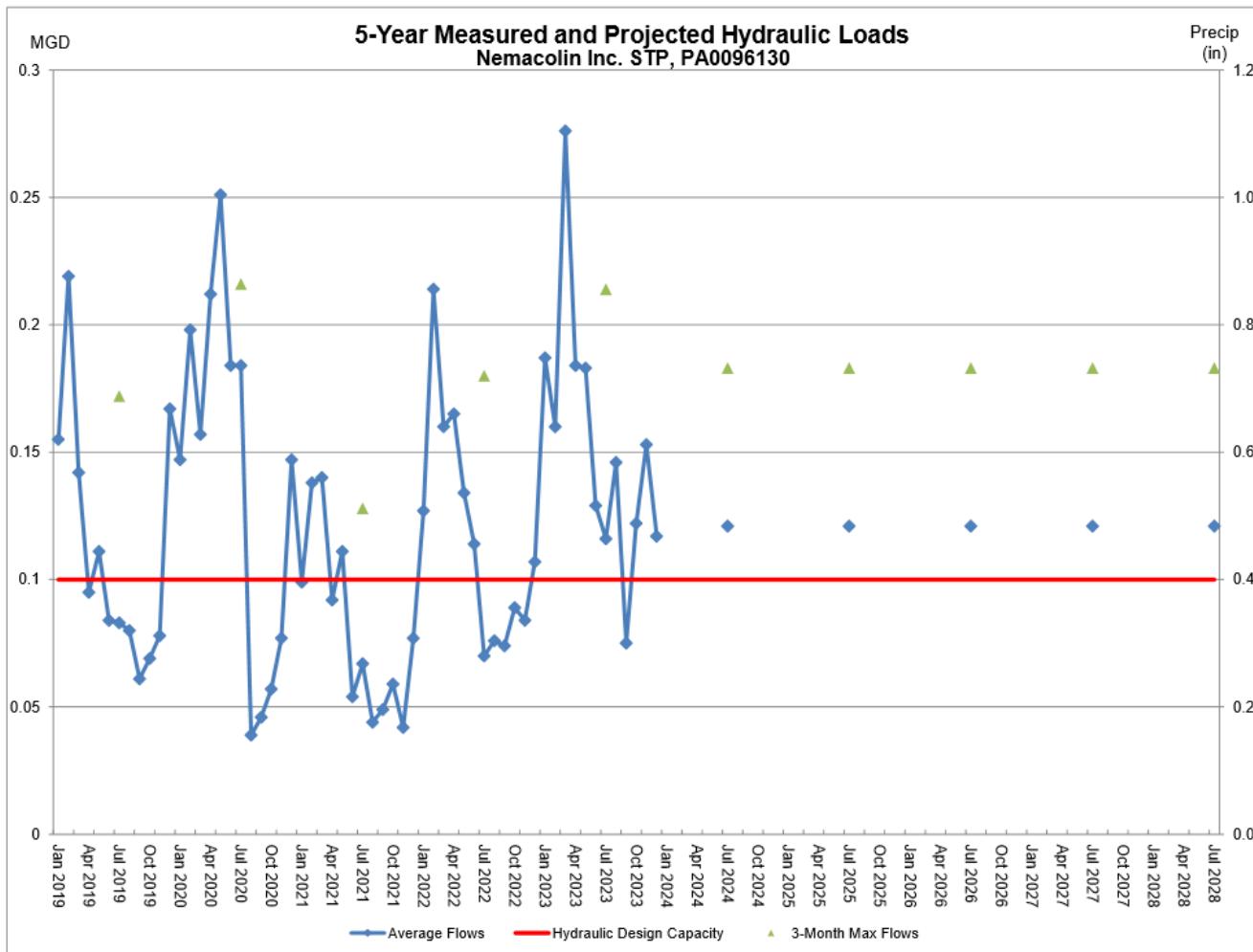
RMI	Discharge Name	CBOD5		NH3-N		Dissolved Oxygen		Critical Reach	Percent Reduction
		Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)		
76.68	NemacolinIncSTP	25	25	25	25	4	4	0	0

WQM 7.0 Hydrodynamic Outputs

<u>SWP Basin</u>		<u>Stream Code</u>		<u>Stream Name</u>									
19A		37185		MONONGAHELA RIVER									
RMI	Stream Flow	PWS With	Net Stream Flow	Disc Analysis Flow	Reach Slope	Depth	Width	W/D Ratio	Velocity	Reach Trav Time	Analysis Temp	Analysis pH	
	(cfs)		(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	(°C)		
Q7-10 Flow													
76.680	1055.60	0.00	1055.60	.1547	0.00000	9.605	96.05	10	1.14	0.020	5.00	7.00	
Q1-10 Flow													
76.680	675.58	0.00	675.58	.1547	0.00000	NA	NA	NA	0.89	0.026	5.00	7.00	
Q30-10 Flow													
76.680	1435.62	0.00	1435.62	.1547	0.00000	NA	NA	NA	1.36	0.017	5.00	7.00	

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	<input checked="" type="checkbox"/>
WLA Method	EMPR	Use Inputted W/D Ratio	<input checked="" type="checkbox"/>
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	<input type="checkbox"/>
Q30-10/Q7-10 Ratio	1.36	Temperature Adjust Kr	<input checked="" type="checkbox"/>
D.O. Saturation	90.00%	Use Balanced Technology	<input checked="" type="checkbox"/>
D.O. Goal	5		


Attachment 5-TRC_Calc Model Output

TRC_CALC1.xlsx

TRC EVALUATION						
Input appropriate values in A3:A9 and D3:D9						
530	= Q stream (cfs)		0.5	= CV Daily		
0.1	= Q discharge (MGD)		0.5	= CV Hourly		
30	= no. samples		1	= AFC_Partial Mix Factor		
0.3	= Chlorine Demand of Stream		1	= CFC_Partial Mix Factor		
0	= Chlorine Demand of Discharge		15	= AFC_Criteria Compliance Time (min)		
0.5	= BAT/BPJ Value		720	= CFC_Criteria Compliance Time (min)		
0	= % Factor of Safety (FOS)			=Decay Coefficient (K)		
Source	Reference	AFC Calculations	Reference	CFC Calculations		
TRC	1.3.2.iii	WLA_afc = 1092.908	1.3.2.iii	WLA_cfc = 1065.493		
PENTOXSD TRG	5.1a	LTAMULT_afc = 0.373	5.1c	LTAMULT_cfc = 0.581		
PENTOXSD TRG	5.1b	LTA_afc= 407.244	5.1d	LTA_cfc = 619.427		
Source						
Effluent Limit Calculations						
PENTOXSD TRG	5.1f	AML MULT = 1.231				
PENTOXSD TRG	5.1g	AVG MON LIMIT (mg/l) = 0.500		BAT/BPJ		
		INST MAX LIMIT (mg/l) = 1.635				
WLA_afc	$(.019/e(-k*AFC_tc)) + [(AFC_Yc*Qs*.019/Qd*e(-k*AFC_tc))...\\...+ Xd + (AFC_Yc*Qs*Xs/Qd)]*(1-FOS/100)$					
LTAMULT_afc	$\text{EXP}((0.5*\text{LN}(cvh^2+1))-2.326*\text{LN}(cvh^2+1)^0.5)$					
LTA_afc	wla_afc*LTAMULT_afc					
WLA_cfc	$(.011/e(-k*CFC_tc)) + [(CFC_Yc*Qs*.011/Qd*e(-k*CFC_tc))...\\...+ Xd + (CFC_Yc*Qs*Xs/Qd)]*(1-FOS/100)$					
LTAMULT_cfc	$\text{EXP}((0.5*\text{LN}(cvd^2/no_samples+1))-2.326*\text{LN}(cvd^2/no_samples+1)^0.5)$					
LTA_cfc	wla_cfc*LTAMULT_cfc					
AML MULT	$\text{EXP}(2.326*\text{LN}((cvd^2/no_samples+1)^0.5)-0.5*\text{LN}(cvd^2/no_samples+1))$					
AVG MON LIMIT	MIN(BAT_BPJ,MIN(LTA_afc,LTA_cfc)*AML_MULT)					
INST MAX LIMIT	$1.5*((\text{av_mon_limit}/\text{AML_MULT})/\text{LTAMULT_afc})$					

Attachment 6-Chapter 94 Spreadsheet Output

pennsylvania DEPARTMENT OF ENVIRONMENTAL PROTECTION		PADEP Chapter 94 Spreadsheet Sewage Treatment Plants																																																																																																																																																								
		Reporting Year:		2023																																																																																																																																																						
Facility Name:	Nemacolin Inc. STP				Permit No.:	PA0096130																																																																																																																																																				
Existing Hydraulic Design Capacity:	0.1	MGD	Year:																																																																																																																																																							
Upgrade Planned In Next 5 Years?																																																																																																																																																										
Future Hydraulic Design Capacity:	MGD																																																																																																																																																									
<table border="1"> <thead> <tr> <th colspan="5">Monthly Average Flows for Past Five Years (MGD)</th> <th>Monthly Average BOD5 Loads for Past Five Years (lbs/day)</th> </tr> <tr> <th>Month</th> <th>2019</th> <th>2020</th> <th>2021</th> <th>2022</th> <th>2023</th> <th>2019</th> <th>2020</th> <th>2021</th> <th>2022</th> <th>2023</th> </tr> </thead> <tbody> <tr><td>January</td><td>0.155</td><td>0.147</td><td>0.099</td><td>0.127</td><td>0.187</td><td></td><td></td><td></td><td></td><td></td></tr> <tr><td>February</td><td>0.219</td><td>0.198</td><td>0.138</td><td>0.214</td><td>0.16</td><td></td><td></td><td></td><td></td><td></td></tr> <tr><td>March</td><td>0.142</td><td>0.157</td><td>0.14</td><td>0.16</td><td>0.276</td><td></td><td></td><td></td><td></td><td></td></tr> <tr><td>April</td><td>0.095</td><td>0.212</td><td>0.092</td><td>0.165</td><td>0.184</td><td></td><td></td><td></td><td></td><td></td></tr> <tr><td>May</td><td>0.111</td><td>0.251</td><td>0.111</td><td>0.134</td><td>0.183</td><td></td><td></td><td></td><td></td><td></td></tr> <tr><td>June</td><td>0.084</td><td>0.184</td><td>0.054</td><td>0.114</td><td>0.129</td><td></td><td></td><td></td><td></td><td></td></tr> <tr><td>July</td><td>0.083</td><td>0.184</td><td>0.067</td><td>0.07</td><td>0.116</td><td></td><td></td><td></td><td></td><td></td></tr> <tr><td>August</td><td>0.08</td><td>0.039</td><td>0.044</td><td>0.076</td><td>0.146</td><td></td><td></td><td></td><td></td><td></td></tr> <tr><td>September</td><td>0.061</td><td>0.046</td><td>0.049</td><td>0.074</td><td>0.075</td><td></td><td></td><td></td><td></td><td></td></tr> <tr><td>October</td><td>0.069</td><td>0.057</td><td>0.059</td><td>0.089</td><td>0.122</td><td></td><td></td><td></td><td></td><td></td></tr> <tr><td>November</td><td>0.078</td><td>0.077</td><td>0.042</td><td>0.084</td><td>0.153</td><td></td><td></td><td></td><td></td><td></td></tr> <tr><td>December</td><td>0.167</td><td>0.147</td><td>0.077</td><td>0.107</td><td>0.117</td><td></td><td></td><td></td><td></td><td></td></tr> </tbody> </table>						Monthly Average Flows for Past Five Years (MGD)					Monthly Average BOD5 Loads for Past Five Years (lbs/day)	Month	2019	2020	2021	2022	2023	2019	2020	2021	2022	2023	January	0.155	0.147	0.099	0.127	0.187						February	0.219	0.198	0.138	0.214	0.16						March	0.142	0.157	0.14	0.16	0.276						April	0.095	0.212	0.092	0.165	0.184						May	0.111	0.251	0.111	0.134	0.183						June	0.084	0.184	0.054	0.114	0.129						July	0.083	0.184	0.067	0.07	0.116						August	0.08	0.039	0.044	0.076	0.146						September	0.061	0.046	0.049	0.074	0.075						October	0.069	0.057	0.059	0.089	0.122						November	0.078	0.077	0.042	0.084	0.153						December	0.167	0.147	0.077	0.107	0.117					
Monthly Average Flows for Past Five Years (MGD)					Monthly Average BOD5 Loads for Past Five Years (lbs/day)																																																																																																																																																					
Month	2019	2020	2021	2022	2023	2019	2020	2021	2022	2023																																																																																																																																																
January	0.155	0.147	0.099	0.127	0.187																																																																																																																																																					
February	0.219	0.198	0.138	0.214	0.16																																																																																																																																																					
March	0.142	0.157	0.14	0.16	0.276																																																																																																																																																					
April	0.095	0.212	0.092	0.165	0.184																																																																																																																																																					
May	0.111	0.251	0.111	0.134	0.183																																																																																																																																																					
June	0.084	0.184	0.054	0.114	0.129																																																																																																																																																					
July	0.083	0.184	0.067	0.07	0.116																																																																																																																																																					
August	0.08	0.039	0.044	0.076	0.146																																																																																																																																																					
September	0.061	0.046	0.049	0.074	0.075																																																																																																																																																					
October	0.069	0.057	0.059	0.089	0.122																																																																																																																																																					
November	0.078	0.077	0.042	0.084	0.153																																																																																																																																																					
December	0.167	0.147	0.077	0.107	0.117																																																																																																																																																					
Annual Avg	0.112	0.142	0.081	0.118	0.154	Annual Avg																																																																																																																																																				
Max 3-Mo Avg	0.172	0.216	0.128	0.18	0.214	Max Mo Avg																																																																																																																																																				
Max : Avg Ratio	1.54	1.52	1.58	1.53	1.39	Max : Avg Ratio																																																																																																																																																				
Existing EDUs						Existing EDUs																																																																																																																																																				
Flow/EDU (GPD)						Load/EDU																																																																																																																																																				
Flow/Capita (GPD)						Load/Capita																																																																																																																																																				
Exist. Overload?	YES	YES	NO	YES	YES	Exist. Overload?																																																																																																																																																				
<table border="1"> <thead> <tr> <th colspan="5">Projected Flows for Next Five Years (MGD)</th> <th>Projected BOD5 Loads for Next Five Years (lbs/day)</th> </tr> <tr> <th></th> <th>2024</th> <th>2025</th> <th>2026</th> <th>2027</th> <th>2028</th> <th>2024</th> <th>2025</th> <th>2026</th> <th>2027</th> <th>2028</th> </tr> </thead> <tbody> <tr><td>New EDUs</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></tr> <tr><td>New EDU Flow</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0.000</td><td>0.000</td><td>0.000</td><td>0.000</td><td>0.000</td></tr> <tr><td>Proj. Annual Avg</td><td>0.121</td><td>0.121</td><td>0.121</td><td>0.121</td><td>0.121</td><td>#DIV/0!</td><td>#DIV/0!</td><td>#DIV/0!</td><td>#DIV/0!</td><td>#DIV/0!</td></tr> <tr><td>Proj. Max 3-Mo Avg</td><td>0.183</td><td>0.183</td><td>0.183</td><td>0.183</td><td>0.183</td><td>Proj. Max Avg</td><td>#DIV/0!</td><td>#DIV/0!</td><td>#DIV/0!</td><td>#DIV/0!</td></tr> <tr><td>Proj. Overload?</td><td>YES</td><td>YES</td><td>YES</td><td>YES</td><td>YES</td><td>Proj. Overload?</td><td>#DIV/0!</td><td>#DIV/0!</td><td>#DIV/0!</td><td>#DIV/0!</td></tr> </tbody> </table>						Projected Flows for Next Five Years (MGD)					Projected BOD5 Loads for Next Five Years (lbs/day)		2024	2025	2026	2027	2028	2024	2025	2026	2027	2028	New EDUs	0.0	0.0	0.0	0.0	0.0	0	0	0	0	0	New EDU Flow	0	0	0	0	0	0.000	0.000	0.000	0.000	0.000	Proj. Annual Avg	0.121	0.121	0.121	0.121	0.121	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	Proj. Max 3-Mo Avg	0.183	0.183	0.183	0.183	0.183	Proj. Max Avg	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	Proj. Overload?	YES	YES	YES	YES	YES	Proj. Overload?	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!																																																																													
Projected Flows for Next Five Years (MGD)					Projected BOD5 Loads for Next Five Years (lbs/day)																																																																																																																																																					
	2024	2025	2026	2027	2028	2024	2025	2026	2027	2028																																																																																																																																																
New EDUs	0.0	0.0	0.0	0.0	0.0	0	0	0	0	0																																																																																																																																																
New EDU Flow	0	0	0	0	0	0.000	0.000	0.000	0.000	0.000																																																																																																																																																
Proj. Annual Avg	0.121	0.121	0.121	0.121	0.121	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!																																																																																																																																																
Proj. Max 3-Mo Avg	0.183	0.183	0.183	0.183	0.183	Proj. Max Avg	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!																																																																																																																																																
Proj. Overload?	YES	YES	YES	YES	YES	Proj. Overload?	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!																																																																																																																																																
Show Precipitation Data on Hydraulic Graph?																																																																																																																																																										
<table border="1"> <thead> <tr> <th colspan="6">Total Monthly Precipitation for Past Five Years (Inches)</th> </tr> <tr> <th>Month</th> <th>2019</th> <th>2020</th> <th>2021</th> <th>2022</th> <th>2023</th> </tr> </thead> <tbody> <tr><td>January</td><td></td><td></td><td></td><td></td><td></td></tr> <tr><td>February</td><td></td><td></td><td></td><td></td><td></td></tr> <tr><td>March</td><td></td><td></td><td></td><td></td><td></td></tr> <tr><td>April</td><td></td><td></td><td></td><td></td><td></td></tr> <tr><td>May</td><td></td><td></td><td></td><td></td><td></td></tr> <tr><td>June</td><td></td><td></td><td></td><td></td><td></td></tr> <tr><td>July</td><td></td><td></td><td></td><td></td><td></td></tr> <tr><td>August</td><td></td><td></td><td></td><td></td><td></td></tr> <tr><td>September</td><td></td><td></td><td></td><td></td><td></td></tr> <tr><td>October</td><td></td><td></td><td></td><td></td><td></td></tr> <tr><td>November</td><td></td><td></td><td></td><td></td><td></td></tr> <tr><td>December</td><td></td><td></td><td></td><td></td><td></td></tr> </tbody> </table>						Total Monthly Precipitation for Past Five Years (Inches)						Month	2019	2020	2021	2022	2023	January						February						March						April						May						June						July						August						September						October						November						December																																																																						
Total Monthly Precipitation for Past Five Years (Inches)																																																																																																																																																										
Month	2019	2020	2021	2022	2023																																																																																																																																																					
January																																																																																																																																																										
February																																																																																																																																																										
March																																																																																																																																																										
April																																																																																																																																																										
May																																																																																																																																																										
June																																																																																																																																																										
July																																																																																																																																																										
August																																																																																																																																																										
September																																																																																																																																																										
October																																																																																																																																																										
November																																																																																																																																																										
December																																																																																																																																																										

