

Northwest Regional Office CLEAN WATER PROGRAM

Application Type

Renewal

Non
Facility Type

Maior / Minor

Minor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

Application No. **PA0101702**APS ID **1023881**

Authorization ID 1328131

		Applicant ar	nd Facility Information			
Applicant Name	Rock	y Ridge Village LLC	Facility Name	Rocky Ridge Village MHP		
Applicant Address	156 N	Maple Grove Circle	Facility Address	Washington Boulevard		
	Frank	lin, PA 16323-3662		Franklin, PA 16323		
Applicant Contact	t Contact Ryan Williams		Facility Contact	Ryan Williams		
Applicant Phone	(814)	516-5900	Facility Phone	(814) 516-5900		
Client ID	30750	09	Site ID	239527		
Ch 94 Load Status	Not C	verloaded	Municipality	Sandycreek Township		
Connection Status			County	Venango		
Date Application Received		September 1, 2020	EPA Waived?	Yes		
Date Application Accepted Sept		September 30, 2020	If No, Reason			
Purpose of Application	n	Renewal of an NPDES Permit	for an existing discharge of	treated sewage.		

Summary of Review

The permittee is currently registered for and is using the eDMR system for reporting.

No changes to the permit were proposed by the permittee as part of this renewal.

There is currently one open violation for this permittee in EFACTS (11/01/2021), for a plant operator not being fully certified, and for failure to maintain calibration reports per the NOV dated 02/13/2020 and mailed to the permittee.

The existing facility predates the watershed designation as Exceptional Value (EV), and as the plant's treatment discharge quantity and treatment process remains unchanged. Therefore, anti-degradation requirements are satisfied by continuing to model the discharge as being to a WWF.

Sludge use and disposal description and location(s): Hauled offsite.

Due to ongoing compliance issues, daily monitoring for pH, TRC, and DO is proposed in the draft permit. The previous permit relaxed the monitoring for these parameters to 4/week.

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Approve	Deny	Signatures	Date
Х		Jordan A. Frey, E.I.T. Jordan A. Frey, E.I.T. / Civil Engineer Trainee	November 1, 2021
Х		Justin C. Dickey Justin C. Dickey, P.E. / Environmental Engineer Manager	November 2, 2021

scharge, Receiving	Water	s and Water Supply Info	rmatio	n					
Outfall No. 001				Design Flow (MGD)	.015				
	D' 5.97"		-	Longitude	-79 ^o 51' 5.59"				
	nderell		-	Quad Code 41079C7					
		Effluent	=	Quad Code	4107907				
Wastewater Descrip	otion.	Effluent							
Receiving Waters		ned Tributary to Ditzenber EV - existing use)	rger	Stream Code	51324				
NHD Com ID	10047			RMI	0.4				
Drainage Area 0.0361			Yield (cfs/mi ²)	0.001					
Q ₇₋₁₀ Flow (cfs) 0 dry stream / 0.06 perennial reac		ach	Q ₇₋₁₀ Basis	Previous model					
Elevation (ft) 1360			Slope (ft/ft)	0.18227					
Watershed No. 16-G			Chapter 93 Class.	WWF					
Existing Use EV (EXCEPTIONAL VALUE)			Existing Use Qualifier	RBP - Antidegradation					
Exceptions to Use				Exceptions to Criteria					
Assessment Status		Attaining Use(s)							
Cause(s) of Impairm	nent								
Source(s) of Impairn	nent								
TMDL Status				Name					
Background/Ambien	st Data		Dot	a Source					
pH (SU)	ii Dala	7.0		a Source ault					
Temperature (°F)		20	-	ault					
Hardness (mg/L)		100		ault					
Other: NH3-N		0.1		ault					
Nearest Downstrear	n Public	c Water Supply Intake	Aaı	ıa Pennsylvania, Inc Em	lenton				
		• • •		Flow at Intake (cfs)	1376				
PWS Waters Allegheny River PWS RMI 90.0				Distance from Outfall (mi) 24.3					

Changes Since Last Permit Issuance: None.

Other Comments: DEP has evaluated information indicating that the existing use of the receiving waters is different than the designated use under 25 Pa. Code § 93.9. In developing the draft NPDES permit, DEP is proposing to protect the existing use of the receiving waters. Following DEP's notice of the receipt of the application and the draft permit in the Pennsylvania Bulletin, DEP will accept written comments during the public comment period regarding DEP's tentative determination to protect the existing use. DEP will make a final determination on existing use protection for the receiving waters as part of the final permit action.

WQM Permit No.

6176401 T-2

Treatment Facility Name: Rocky Ridge Village MHP **Issuance Date** 12/19/2013

Waste Type	Waste Type Degree of Treatment		Disinfection	Avg Annual Flow (MGD)	
Sewage	Tertiary	Extended Aeration With Solids Removal	No Disinfection	0.0125	

Treatment Facility Summary

Hydraulic Capacity (MGD)	Organic Capacity (Ibs/day)	Load Status	Biosolids Treatment	Biosolids Use/Disposal
0.0125	30.3	Not Overloaded		

Changes Since Last Permit Issuance: The existing facility predates the watershed designation as Exceptional Value (EV), and as the plant's treatment process remains unchanged, current anti-degradation limits associated with an EV discharge are not applied as the limits associated with a WWF discharge should be protective.

Other Comments: None.

Compliance History

DMR Data for Outfall 001 (from October 1, 2020 to September 30, 2021)

Parameter	SEP-21	AUG-21	JUL-21	JUN-21	MAY-21	APR-21	MAR-21	FEB-21	JAN-21	DEC-20	NOV-20	OCT-20
Flow (MGD)					0.00647	0.00657			0.00777			
Average Monthly	0.00667	0.00654	0.0065	0.0068	5	5	0.00638	0.0078	5	0.00804	0.00727	0.00825
Flow (MGD)												
Daily Maximum	0.0063	0.0075	0.0072	0.0079	0.0073	0.0069	0.0069	0.0085	0.0071	0.0085	0.0079	0.0099
pH (S.U.)												
Minimum	6.8	6.8	6.7	6.6	6.6	6.7	6.5	6.7	6.8	6.7	6.7	6.5
pH (S.U.)												
Maximum	7.2	7.4	7.4	7.1	7.1	7.1	7.2	7.2	7.4	7.3	7.3	7.2
DO (mg/L)												
Minimum	7.0	6.9	7.0	6.8	7.0	6.9	6.8	7.0	7.0	7.0	7.0	6.8
TRC (mg/L)												
Average Monthly	0.245	0.187	0.2105	0.205	0.212	0.194	0.175	0.20	0.208	0.215	0.225	0.22
TRC (mg/L)												
Instantaneous												
Maximum	0.37	0.29	0.37	0.31	0.31	0.29	0.24	0.26	0.32	0.31	0.36	0.31
CBOD5 (mg/L)									_			
Average Monthly	3.1	3	3	9.3	3.35	7.15	5.8	6.55	3	3.3	12.35	3.7
TSS (mg/L)	•	0.5	•			4.4		0.5				0.5
Average Monthly	3	3.5	6	3	5.5	11	6	8.5	3	6	3	3.5
Fecal Coliform												
(CFU/100 ml) Geometric Mean	1	49.19	1	1	1	1	49.19	1	4	1	1.414	20.27
Fecal Coliform	l	49.19	ı	ı	l l	l l	49.19	I	l l	l l	1.414	20.27
(CFU/100 ml)												
Instantaneous												
Maximum	1	2420	1	1	1	1	2420	1	1	1	2	411
Total Nitrogen (mg/L)	'	2420				'	2420					711
Annual Average										9.39		
Ammonia (mg/L)										0.00		
Average Monthly	3.955	6.925	0.395	5.875	12.6	6.1	7.58	6.2	3.42	4.53	5.23	5.915
Total Phosphorus	0.000	0.020	0.000	3.3.3		.		<u> </u>	5		5.25	0.0.0
(mg/L)												
Annual Average										1.23		

Compliance History

Effluent Violations for Outfall 001, from: November 1, 2020 To: September 30, 2021

=		-,	ptombo: 00, 2021			
Parameter	Date	SBC	DMR Value	Units	Limit Value	Units
Fecal Coliform	08/31/21	IMAX	2420	CFU/100 ml	1000	CFU/100 ml
Ammonia	05/31/21	Avg Mo	12.6	mg/L	6.5	mg/L
		Ğ		Ğ		
Ammonia	08/31/21	Avg Mo	6.925	mg/L	6.5	mg/L

Summary of Inspections: There is currently one open violation for this permittee in EFACTS (11/01/2021), for a plant operator not being fully certified, and for failure to maintain calibration reports per the NOV dated 02/13/2020 and mailed to the permittee.

Other Comments: None.

		Devel	opment of Effluent Limitations	
Outfall No.	001		Design Flow (MGD)	.015
Latitude	41° 20' 6.00"		Longitude	-79° 51' 6.00"
Wastewater D	Description:	Effluent		

Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Pollutant	Limit (mg/l)	SBC	Federal Regulation	State Regulation
CBOD	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
CBOD ₅	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
Total Suspended	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Solids .	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
pН	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform				
(5/1 – 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform				
(5/1 – 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform				
(10/1 - 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform				
(10/1 – 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)

Comments: None.

Water Quality-Based Limitations

The following limitations were determined through water quality modeling (output files attached):

Parameter	Limit (mg/l)	SBC	Model
Ammonia Nitrogen	6.5	Average Monthly	WQM 7.1b

Comments: New modeling indicated a limit of 8.7 mg/l as an average monthly is protective; however the existing limit will remain due to anti-backsliding provisions. Seasonal multiplier of 3 was used for the wintertime limit in accordance with the Department's SOP entitled "Establishing Effluent Limitations for Individual Sewage Permits."

The calculated WQBEL for TRC at the start of the perennial reach is 0.463 mg/L. Given that the discharge is on a dry stream reach approximately 0.4-miles from the perennial stream, TRC levels are expected to be well below the 0.463 mg/L if the discharge effluent limitation is set at the technology-based limitation of 0.5 mg/L.

Best Professional Judgment (BPJ) Limitations

Comments: A dissolved oxygen limit of a minimum of 4.0 mg/l and monitoring for total nitrogen and total phosphorus are placed in the permit in accordance with the Department's SOP entitled "Establishing Effluent Limitations for Individual Sewage Permits."

Anti-Backsliding

The TRC IMAX limit of 1.2 mg/l is being retained for this discharge due to anti-backsliding provisions. It is based on a sampling frequency of 4/month (previous sampling frequency).

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

			Effluent L	imitations			Monitoring Re	quirements
Doromotor	Mass Units	(lbs/day) (1)		Concentrat	ions (mg/L)		Minimum (2)	Required
Parameter	Average Monthly	Average Weekly	Minimum	Average Monthly	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report Daily Max	XXX	XXX	XXX	XXX	1/week	Measured
pH (S.U.)	XXX	XXX	6.0 Inst Min	XXX	XXX	9.0	1/day	Grab
DO	XXX	XXX	4.0 Inst Min	XXX	XXX	XXX	1/day	Grab
TRC	XXX	XXX	XXX	0.5	XXX	1.2	1/day	Grab
CBOD5	XXX	XXX	XXX	25	XXX	50	2/month	8-Hr Composite
TSS	XXX	XXX	XXX	30	XXX	60	2/month	8-Hr Composite
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	2000 Geo Mean	XXX	10000	2/month	Grab
Fecal Coliform (No./100 ml) May 1 - Sep 30	XXX	XXX	XXX	200 Geo Mean	XXX	1000	2/month	Grab
E. Coli (No./100 ml)	XXX	XXX	XXX	XXX	XXX	Report	1/year	Grab
Total Nitrogen	XXX	XXX	XXX	Report Annl Avg	XXX	XXX	1/year	8-Hr Composite
Ammonia Nov 1 - Apr 30	XXX	XXX	XXX	20	XXX	40	2/month	8-Hr Composite
Ammonia May 1 - Oct 31	XXX	XXX	XXX	6.5	XXX	13	2/month	8-Hr Composite
Total Phosphorus	XXX	XXX	XXX	Report Annl Avg	XXX	XXX	1/year	8-Hr Composite

Compliance Sampling Location: Outfall 001, after disinfection.

Other Comments: E. Coli limit added per PADEP SOP for Establishing Effluent Limitations in Individual Sewage Permits.

eMAP with Aerial Imagery and Stream Existing Use Information

DRY STREAM REACH

Input Data WQM 7.0

	SWP Basir			Stre	eam Name		RMI	Eleva		Drainage Area (sq mi)	Slo (ft/		PWS Vithdrawal (mgd)	Apply FC
	16G	513	324 Trib 51	1324 to Di	tzenberger	Run	0.40	00 13	364.00	0.0	1 0.0	0000	0.00	
					St	ream Dat	a							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	<u>Tributary</u> ip pł	4	<u>St</u> Temp	<u>ream</u> pH	
	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C)		
Q7-10 Q1-10 Q30-10	0.001	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000 0.000 0.000	0.0	0.00	0.00	2	0.00 (6.90	0.0	0.00)
					Di	scharge	Data							
			Name	Per	mit Number	Existing Disc	Permitte Disc Flow (mgd)	Disc Flow	Res Fa	erve To	oisc emp °C)	Disc pH		
		Rock	y Ridge	PA	0101702	0.012	5 0.012	25 0.01	25 (0.000	20.00	6.	90	
					Pa	rameter	Data							
			1	Paramete	r Name	-			tream Conc	Fate Coef				
						(m	ıg/L) (n	ng/L) (i	mg/L)	(1/days)				
			CBOD5				25.00	2.00	0.00	1.50				
			Dissolved	Oxygen			3.00	8.24	0.00	0.00				
			NH3-N				25.00	0.00	0.00	0.70				

Input Data WQM 7.0

					an a pr	u. – u.								
	SWP Basin			Stre	eam Name		RMI		vation (ft)	Drainage Area (sq mi)	Slope (ft/ft)	PW Withd (mg	rawal	Appl FC
	16G	51:	324 Trib 5	1324 to D	itzenberger	Run	0.0	10	960.00	0.24	0.0000	0	0.00	✓
S.					St	tream Dat	ta							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Ten	<u>Tributary</u> np pH	Те	<u>Strean</u> mp	<u>n</u> pH	
Cona.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C	:)	(0	C)		
Q7-10 Q1-10 Q30-10	0.001	0.00 0.00 0.00	0.00	0.000 0.000 0.000	0.000	0.0	0.00	0.0	00 2	0.00 6.9	90	0.00	0.00	
					D	ischarge	Data							
			Name	Pe	rmit Numbe	Existing Disc r Flow (mgd)	Permitt Disc Flow (mgd	Flo	c Res w Fa	Dis serve Ten actor (°C	np	Disc pH		
		100				0.000	0 0.000	0.0	000	0.000 2	25.00	7.00		
					P	arameter	Data							
				Paramete	r Name			Trib Conc	Stream Conc	Fate Coef				
				i di dillicte	Hallic	(m	ng/L) (r	mg/L)	(mg/L)	(1/days)				
	-		CBOD5				25.00	2.00	0.00	1.50				
			Dissolved	Oxygen			3.00	8.24	0.00	0.00				
			NH3-N				25.00	0.00	0.00	0.70				

WQM 7.0 Hydrodynamic Outputs

	sw	P Basin	Strea	m Code				Stream	<u>Name</u>				
	5.0	16G	5	1324		5	Trib 5132	24 to Dit	zenberge	r Run			
RMI	Stream Flow	PWS With	Net Stream Flow	Disc Analysis Flow	Reach Slope	Depth	Width	W/D Ratio	Velocity	Reach Trav Time	Analysis Temp	Analysis pH	
	(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	(°C)		
F-5170 8	0 Flow	500 40 500	NACTORNI .			202020	ww.	0 802	277272		200 400		
0.400	0.00	0.00	0.00	.0193	0.19619	.389	.58	1.49	0.09	0.277	20.00	6.90	
Q1-1 0.400	0.00	0.00	0.00	.0193	0.19619	NA	NA	NA	0.09	0.277	20.00	6.90	
Q30-	-10 Flow	1											
0.400	0.00	0.00	0.00	.0193	0.19619	NA	NA	NA	0.09	0.277	20.00	6.90	

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	✓
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.36	Temperature Adjust Kr	~
D.O. Saturation	90.00%	Use Balanced Technology	✓
D.O. Goal	6		

Tuesday, October 26, 2021 Version 1.0b Page 1 of 1

WQM 7.0 Wasteload Allocations

SWP Basin	Stream Code	Stream Name
16G	51324	Trib 51324 to Ditzenberger Run

RMI	Discharge Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
0.40	0 Rocky Ridge	NA	50	18.18	50	0	0
IH3-N (Chronic Allocati	Baseline Criterion	Baseline WLA	Multiple Criterion	Multiple WLA	Critical Reach	Percent Reduction
RMI		Baseline		STATE OF THE PARTY			

Dissolved Oxygen Allocations

		CBC	<u>DD5</u>	NH	<u>3-N</u>	Dissolved	d Oxygen	Critical	Percent
RMI	Discharge Name	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Reach	Reduction
0.40	Rocky Ridge	25	25	25	25	6	6	0	0

WQM 7.0 D.O.Simulation

SWP Basin S	tream Code			Stream Name		
16G	51324		Trib 513	324 to Ditzenbe	ger Run	
<u>RMI</u>	Total Discharge	Ministra	<u> Ana</u>	lysis Temperatu	e (°C)	Analysis pH
0.400	0.01			20.000		6.900
Reach Width (ft)	Reach De			Reach WDRati	<u>o</u>	Reach Velocity (fps)
0.578	0.38			1.485		0.086
Reach CBOD5 (mg/L)	Reach Kc		E	each NH3-N (m	Reach Kn (1/days)	
24.99	1.50			24.99	0.700	
Reach DO (mg/L)	Reach Kr (Kr Equation	Reach DO Goal (mg/L)	
6.001	24.09	94		Owens		NA
Reach Travel Time (days)		Subreach	Results			
0.277	TravTime	CBOD5	NH3-N	D.O.		
	(days)	(mg/L)	(mg/L)	(mg/L)		
	0.028	23.97	24.51	4.83		
	0.055	23.00	24.04	4.31		
	0.083	22.06	23.58	4.11		
	0.111	21.17	23.12	4.08		
	0.138	20.31	22.68	4.13		
	0.166	19.48	22.25	4.23		
	0.194	18.69	21.82	4.34		
	0.221	17.93	21.40	4.46		
	0.249	17.20	20.99	4.58		
	0.277	16.50	20.59	4.70		
-	T					

INPUT INTO PERENNIAL MODEL

TRAVEL TIME TO ENTER INTO NH3-N DECAY CALCULATION

PERENNIAL REACH

WQM 7.0 Effluent Limits

	SWP Basin Str	ream Code		Stream Name	<u>9</u>		
	16G	51324	T	rib 51324 to Ditzenb	erger Run		
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
0.400	Rocky Ridge	PA0101702	0.013	CBOD5	25		
				NH3-N	25	50	
				Dissolved Oxygen			6

Input Data WQM 7.0

	SWP Basir			Stre	eam Name		RMI	Eleva (ft		Drainag Area (sq mi		Slope ft/ft)	PW: Withdr (mg	awal	Apply FC
	16G	51:	322 SAND	Y CREEK	(0.50	00 9	00.08	1	.56 0.	.00000		0.00	✓
					St	ream Data	a								
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	<u>Tributar</u> p	¥ pH	Tem	<u>Stream</u> p	рН	
oona.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C))		(°C)		
Q7-10 Q1-10 Q30-10	0.038	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000	0.0	0.00	0.00	2	5.00	7.00	(0.00	0.00	
					Di	scharge [Data								
			Name	Per	rmit Number	Disc	Permitte Disc Flow (mgd)	ed Desigr Disc Flow (mgd)	Res Fac	erve ctor	Disc Temp (°C)	Di: P	sc H		
		Rock	y Ridge 2	PA	0101702_2	0.0125	0.012	5 0.012	25 (0.000	20.0	00	6.90		
					Pa	arameter [Data								
			ï	Paramete	r Name	Di: Co			tream Conc	Fate Coef					
						(m	g/L) (n	ng/L) (r	mg/L)	(1/days)				
			CBOD5				16.50	2.00	0.00	1.5	0				
			Dissolved	Oxygen			4.70	7.54	0.00	0.0	0				
			NH3-N			2	20.59	0.10	0.00	0.7	0				

FROM DRY REACH MODEL

Input Data WQM 7.0

					шр	ut Date	a vvQi	VI 7 .U						
	SWP Basin			Str	eam Name		RMI		evation (ft)	Drainage Area (sq mi)	Slope (ft/ft)	Witho	VS drawal gd)	Appl FC
	16G	513	322 SAND	Y CREEK	(0.2	60	935.00	1.59	0.0000	00	0.00	✓
					St	ream Dat	a							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	ı Ten	<u>Tributary</u> np pH	Te	<u>Strear</u> emp	<u>m</u> pH	
Cona.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C	:)	('	°C)		
Q7-10 Q1-10 Q30-10	0.038	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000	0.0	0.00	0.0	00 2	5.00 7.	.00	0.00	0.00	
					Di	ischarge	Data							
			Name	Pe	rmit Numbe	Disc	Permitt Disc Flow (mgd	Dis Flo	sc Res	Di serve Ter ctor	mp	Disc pH		
						0.000	0.00	00 0.0	0000	0.000	25.00	7.00		
					Pa	arameter	Data							
				Paramete	r Name			Trib Conc	Stream Conc	Fate Coef				
				- aramete		(m	ng/L) (i	mg/L)	(mg/L)	(1/days)				
			CBOD5				25.00	2.00	0.00	1.50				
			Dissolved	Oxygen			3.00	8.24	0.00	0.00				
			NH3-N				25.00	0.00	0.00	0.70				

WQM 7.0 Hydrodynamic Outputs

	sw	P Basin	Strea	m Code				<u>Stream</u>	<u>Name</u>			
		16G	5	1322			8	SANDY (REEK			
RMI	Stream Flow	PWS With	Net Stream Flow	Disc Analysis Flow	Reach Slope	Depth	Width	W/D Ratio	Velocity	Reach Trav Time	Analysis Temp	Analysis pH
	(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	(°C)	
Q7-1	0 Flow											
0.500	0.06	0.00	0.06	.0193	0.03551	.348	4.19	12.02	0.05	0.272	23.77	6.97
Q1-1	0 Flow											
0.500	0.04	0.00	0.04	.0193	0.03551	NA	NA	NA	0.05	0.325	23.31	6.96
Q30-	10 Flow	1										
0.500	0.08	0.00	0.08	.0193	0.03551	NA	NA	NA	0.06	0.238	24.03	6.98

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	~
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.36	Temperature Adjust Kr	✓
D.O. Saturation	90.00%	Use Balanced Technology	~
D.O. Goal	6		

Tuesday, October 26, 2021 Version 1.0b Page 1 of 1

WQM 7.0 Wasteload Allocations

SWP Basin	Stream Code	Stream Name
16G	51322	SANDY CREEK

RMI	Discharge Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
0.50	0 Rocky Ridge 2	13.14	38.72	13.14	38.72	0	0
LIO NI	Obvenie Alleseti						
H3-N	Chronic Allocati			** **	F 100 1	800.1	
H3-N (Chronic Allocati	ONS Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction

Dissolved Oxygen Allocations

		CBOD5		<u>NH3-N</u>		Dissolved Oxygen		Critical	Percent
RMI	Discharge Name	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	B.A Idim I a	Reach	Reduction
0.50	Rocky Ridge 2	16.5	16.5	7.16	7.16	4.7	4.7	0	0

WQM 7.0 D.O.Simulation

SWP Basin Str	ream Code			Stream Name	
16G	51322			SANDY CREEK	
RMI	Total Discharge Flow (mgd)			lysis Temperature (°C)	Analysis pH
0.500	0.012	2	-	23.770	6.973
Reach Width (ft)	Reach Dep	oth (ft)		Reach WDRatio	Reach Velocity (fps)
4.185	0.348	3		12.021	0.054
Reach CBOD5 (mg/L)	Reach Kc (1/days)	<u>R</u>	each NH3-N (mg/L)	Reach Kn (1/days)
5.57	1.017	7		1.84	0.936
Reach DO (mg/L)	Reach Kr (- S		Kr Equation	Reach DO Goal (mg/L)
6.841	23.63	6		Owens	6
Reach Travel Time (days)		Subreach	Poculte		
0.272	TravTime	CBOD5	NH3-N	D.O.	
	(days)	(mg/L)	(mg/L)	(mg/L)	
	0.027	5.39	1.79	7.30	
	0.054	5.21	1.75	7.54	
	0.082	5.04	1.70	7.54	
	0.109	4.88	1.66	7.54	
	0.136	4.72	1.62	7.54	
	0.163	4.57	1.58	7.54	
	0.190	4.42	1.54	7.54	
	0.217	4.28	1.50	7.54	
	0.245	4.14	1.46	7.54	
	0.272	4.01	1.42	7.54	

WQM 7.0 Effluent Limits

		m Code		Stream Name			
	16G 5	1322		SANDY CREE	K.		
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
0.500	Rocky Ridge 2	PA0101702_2	0.013	CBOD5 NH3-N	16.5 7.16	14.32	,
				Dissolved Oxygen			4.7

 $C_T = C_0 e^{-kt}$ $C_0 = 7.16 e^{(0.7)(0.277)}$ $C_0 = 8.7 \text{ mg/L}$

CBOD5 and DO limits are the same as the inputs from the dry reach model. Therefore, 25 mg/L CBOD5 and 4.0 mg/L DO are acceptable limits.

TRC Evaluation at Perennial Conditions (~ 0.4 miles downstream of discharge)

1A	В	С	D		F	G			
2	TRC EVALU	ATION							
	Input appropriate values in B4:B8 and E4:E7								
4		= Q stream (5		= CV Daily				
5	QUARTE 194.00/0	= Q discharg	A CONTROL OF THE PROPERTY OF T		= CV Hourly				
6		= no. sample			= AFC_Partial M				
7	171077		emand of Stream		= CFC_Partial M				
8			emand of Discharge		1000	Compliance Time (min)			
9	100000	= BAT/BPJ V				Compliance Time (min)			
			of Safety (FOS)	0	=Decay Coefficie				
10	Source	Reference	AFC Calculations		Reference	CFC Calculations			
11	TRC	1.3.2.iii	WLA afc =	ALLES PROPERTY	1.3.2.iii	WLA cfc = 0.976			
200000000000000000000000000000000000000	PENTOXSD TRO PENTOXSD TRO	N 1001 10000	LTAMULT afc =	536 PROPERTY - 100 PA	5.1c	LTAMULT cfc = 0.581			
14		5.1b	LTA_afc=	0.376	5.1d	$LTA_cfc = 0.567$			
15			Effluent	Limit Cald	culations				
	PENTOXSD TRO	5.1f		L MULT =					
17	PENTOXSD TRO	5.1g	AVG MON LIMI	T (mg/l) =	0.463 AFC				
18		_	INST MAX LIMI	T (mg/l) =	1.513				
		(040) (144)		+ 04040	* (1*****				
	WLA afc	555	FC_tc)) + [(AFC_Yc*Q: C_Yc*Qs*Xs/Qd)]*(1-F		re(-k^AFC_tc))	•			
	LTAMULT afc	· · · · · · · · · · · · · · · · · · ·	(cvh^2+1))-2.326*LN(3. 4 3	\0 5\				
	LTA afc	wla afc*LTA	MANAGEMENT AND ADMINISTRATION STREET,	OVII 271)	0.0)				
	2.7010								
	WLA_cfc	(.011/e(-k*Cl	C_tc) + [(CFC_Yc*Qs	*.011/Qd*	e(-k*CFC_tc))				
	asconductions — short paper.	+ Xd + (CF	C_Yc*Qs*Xs/Qd)]*(1-F	OS/100)					
	LTAMULT_cfc	EXP((0.5*LN	(cvd^2/no_samples+1))-2.326*L	*LN(cvd^2/no_samples+1)^0.5)				
	LTA_cfc	wla_cfc*LTA	MULT_cfc						
		EVD (0.00 5th		. 4) 40 = 5	Settati IAC:	1			
	AML MULT	360	N((cvd^2/no_samples	10	35	_samples+1))			
	AVG MON LIMIT	es management and the	J,MIN(LTA_afc,LTA_c	- and Daniel State of the State	700 A				
	NST MAX LIMIT 1.5*((av_mon_limit/AML_MULT)/LTAMULT_afc)								