

Northwest Regional Office CLEAN WATER PROGRAM

Application Type
Renewal
NonFacility Type
Major / Minor
Minor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

Application No. PA0102601

APS ID 1093983

Authorization ID 1473676

Applicant Name	Jones	Estates Franklin Village PA LLC	Facility Name	Franklin Mobile Home Village		
Applicant Address	2310	South Miami Boulevard Suite 238	Facility Address	Village Drive		
	Durha	m, NC 27703-4900		Butler, PA 16001		
Applicant Contact	Kellen		Facility Contact	John Foris (Operator)		
Applicant Phone	(419) 357-9091 (kbuss@rentstackhouse.com)		Facility Phone	(412) 445-9145 (jforis@gmail.com)		
Client ID	37625	8	Site ID	445459		
Ch 94 Load Status	Not O	verloaded	Municipality	Franklin Township		
Connection Status			County	Butler		
Date Application Rece	eived	May 4, 2017	EPA Waived?	Yes		
Date Application Acce	pted	September 22, 2017	If No, Reason			

Summary of Review

A draft NPDES Permit was first posted in the PA Bulletin on July 28, 2018. No comments were received on that draft permit during the draft comment period. However, the final permit was not issued due to unresolved compliance issues and the need for a transfer application due to change of ownership. A transfer application was finally submitted on 6/9/2023 and outstanding violations have been resolved. Since it has been over two years since the permit was first drafted, the draft permit will be sent for public comment again prior to issuance.

The WQM Permit will be transferred to the new Permittee concurrently with the final NPDES Permit issuance.

Sludge use and disposal description and location(s): Sludge is hauled offsite by Dalton Services for dewatering and disposal.

There are currently 8 open violations listed in EFACTS for this client (2/29/2024).

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Approve	Deny	Signatures	Date
Х		Adam J. Pesek Adam J. Pesek, E.I.T. / Project Manager	February 29, 2024
X		Vacant / Environmental Engineer Manager	Okay to Draft JCD 3/4/2024

ischarge, Receiving Waters and Water Supply Info	ormation						
Outfall No. 001	Design Flow (MGD) 0.028						
Latitude 40° 53' 59"	Longitude79° 59' 33"						
Quad Name Mount Chestnut	Quad Code 1106						
Wastewater Description: Treated domestic sewa	ge						
Unnamed Tributary to Mulligan	١						
Receiving Waters Run	Stream Code 34996						
NHD Com ID 126221176	RMI						
Drainage Area 1.169	Yield (cfs/mi²)0.0428						
Q ₇₋₁₀ Flow (cfs) 0.05	Buffalo Creek @ Freeport Q ₇₋₁₀ Basis (1977-2011)						
Elevation (ft) 1240	Slope (ft/ft)						
Watershed No. 20-C	Chapter 93 Class. CWF						
Existing Use	Existing Use Qualifier						
Exceptions to Use	Exceptions to Criteria						
Assessment Status Attaining Use(s)							
Cause(s) of Impairment							
Source(s) of Impairment							
TMDL Status Final	Name Little Connoquenessing Creek Watershed						
Background/Ambient Data	Data Source						
pH (SU) 7.35	9/25/2014 stream sample taken 25 meters above discharge						
Temperature (°C) 20	Default (CWF)						
Hardness (mg/L)	20.00 (0.111)						
Other: NH ₃ -N (mg/l) 0.05	Stream survey sample taken on Crab Run						
Negreet Dougestroom Dublic Water Supply Inteles	Harmany Baraugh Water Authority						
Nearest Downstream Public Water Supply Intake PWS Waters Little Connoquenessing Creek	Harmony Borough Water Authority						
	Flow at Intake (cfs) 2.0						
PWS RMI <u>1.1</u>	Distance from Outfall (mi) 12						

Changes Since Last Permit Issuance:

Other Comments: The TMDL mentioned above does not address Mulligan Run or its tributaries. Therefore, no monitoring of AMD metals will be required, or proposed, in the renewed permit.

	Tr	eatment Facility Summa	ry	
Treatment Facility Na	ı me: Franklin Mobile Home	Village		
WQM Permit No.	Issuance Date			
1092405 A-1	10/20/2016			
	Degree of			Avg Annual
Waste Type	Treatment	Process Type	Disinfection	Flow (MGD)
Sewage	Secondary	Sequencing Batch Reactor	Hypochlorite	0.028
Hydraulic Capacity	Organic Capacity			Biosolids
(MGD)	(lbs/day)	Load Status	Biosolids Treatment	Use/Disposal
0.028	69	Not Overloaded	Aerobic Digestion	Hauled offsite.

Changes Since Last Permit Issuance: The comminutor was removed and a trash basket and rail system was added on the influent line under Amendment No. 1.

Other Comments:

Compliance History										
Summary of DMRs:	There have been consistent violations of effluent limits over the past permit cycle which will hopefully be resolved under the new Permittee.									
Summary of Inspections:	The last facility inspection was conducted on 4/20/2020. Issues/violations noted are as follow: 1. 25 Pa. Code 302.1201: Owner failed to comply with the Act or Chapter 302 regulations 2. 25 Pa. Code 92a.41(a)(12): Failure to submit monitoring reports or properly complete monitoring reports. 3. 25 Pa. Code 92a.41(a)(12): Failure to submit a required DMR supplemental report. 4. 25 Pa. Code 92a.41(a)(12): Failure to submit a required DMR supplemental report. 5. 25 Pa. Code 92a.41(a)(5): Failure to maintain permitted treatment units in operable condition 6. 25 Pa. Code 92a.44: NPDES - Violation of effluent limits in Part A of permit NOV sent on September 25, 2019 for effluent violations. Effluent violations have continued with the most recent reported effluent violation occurring during February 2020. 7. 25 Pa. Code 92a.62: NPDES - Failure to pay annual fee Failure to pay annual fee.									

Other Comments:

Compliance History

DMR Data for Outfall 001 (from January 1, 2023 to December 31, 2023)

Parameter	DEC-23	NOV-23	OCT-23	SEP-23	AUG-23	JUL-23	JUN-23	MAY-23	APR-23	MAR-23	FEB-23	JAN-23
Flow (MGD)												
Average Monthly	0.010	0.026	0.019	0.004	0.025	0.004	0.011	0.010	0.010	0.010	0.010	0.010
pH (S.U.)												
Minimum	7.32	6.69	6.4	7.19	7.98	6.75	7.11	6.53	7.12	7.19	7.26	7.18
pH (S.U.)												
Maximum	7.85	7.10	7.2	7.38	8.64	7.12	7.68	7.12	7.40	7.38	7.41	7.63
DO (mg/L)												
Minimum	8.20	6.30	2.7	6.14	7.32	6.09	6.08	7.12	6.20	6.14	6.02	6.04
TRC (mg/L)												
Average Monthly	0.015	0.075	0.1	0.045	0.045	0.09	0.024	0.036	0.0385	0.036	0.045	0.036
TRC (mg/L)												
Instantaneous												
Maximum	0.14	0.1	0.1	0.05	0.05	0.19	0.047	0.048	0.047	0.048	0.05	0.048
CBOD5 (mg/L)												
Average Monthly	14.9	4.1	8.3	10.55	6.7	6.1	4.0	2.0	3.9	3.1	2.0	5.0
TSS (mg/L)												
Average Monthly	17.5	39.5	34.0	44.0	6.5	10.5	7.5	6.5	9.0	7.5	5.0	5.4
Fecal Coliform												
(CFU/100 ml)												
Geometric Mean	1834.83	379.32	457.95	1.0	1.0	2.0	1.0	1.0	1.0	1.0	1.0	1.0
Fecal Coliform												
(CFU/100 ml)												
Instantaneous												
Maximum	1860	1320	1070	1.0	1.0	2	1.0	1.0	1.0	1.0	1.0	1.0
Ammonia (mg/L)												
Average Monthly	4.85	3.40	4.60	3.0	0.1	2.40	11.20	0.4	0.15	0.20	0.10	1.60
Total Phosphorus												
(mg/L)												
Average Monthly	2.1	2.3	2.0	3.0	1.30	0.75	2.80	7.8	2.70	1.95	1.7	1.7

		Develop	ment of Effluent Limitations		
Outfall No.	001		Design Flow (MGD)	.028	
Latitude	40° 53' 59"		Longitude	-79° 59' 33"	 -
Wastewater [Description:	Sewage Effluent	•		

Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Pollutant	Limit (mg/l)	SBC	Federal Regulation	State Regulation
CBOD₅	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
CBOD5	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
Total Suspended	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Solids	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
pН	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform				
(5/1 - 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform				
(5/1 – 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform				
(10/1 – 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform				
(10/1 – 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)
Phosphorus, Total	2.0	Average Monthly		96.5
E. Coli	Report (No./100 ml)	IMAX	-	92a.61

Comments: The phosphorus limit is implemented for all dischargers to the Connoquenessing Creek basin above the confluence with Slippery Rock Creek.

Monitoring for E. Coli is placed in the permit in accordance with the Department's SOP entitled "Establishing Effluent Limitations for Individual Sewage Permits."

Water Quality-Based Limitations

The following limitations were determined through water quality modeling (output files attached):

Parameter	Limit (mg/l)	SBC	Model
Ammonia Nitrogen			
(5/1 - 10/31)	3.5	Average Monthly	WQM 7.0 Ver. 1.1
Dissolved Oxygen	4.0	Daily Minimum	WQM 7.0 Ver. 1.1
Total Residual Chlorine	0.17	Average Monthly	TRC Evaluation Spreadsheet
Total Residual Chlorine	0.58	IMAX	TRC Evaluation Spreadsheet

Comments: In accordance with the Department's SOP entitled "Establishing Effluent Limitations for Individual Sewage Permits," a seasonal multiplier of "3" will be applied to ammonia nitrogen during the winter period.

Best Professional Judgment (BPJ) Limitations

Comments: Monitoring for total nitrogen will be placed in the permit in accordance with the Department's SOP entitled "Establishing Effluent Limitations for Individual Sewage Permits."

NPDES Permit Fact Sheet Franklin Mobile Home Village

Anti-Backsliding

WQBELs for ammonia nitrogen, dissolved oxygen, and total residual chlorine were relaxed as part of this proposed renewed NPDES Permit. Backsliding of these parameters are permissible under 402(o)(1) of the CWA based on compliance with 303(d)(4)(B) – Attainment Water. Compliance with 303(d)(4)(B) is being met because the receiving stream – an unnamed tributary to Mulligan Run, is attaining its designated use and the backsliding of the effluent limits is consistent with PADEP's antidegradation policy located in 25 Pa. Code Chapter 93.4(a). The revised effluent limits are meeting state antidegradation requirements because instream water uses are being met and state water quality standards for ammonia nitrogen, dissolved oxygen and total residual chlorine in 25 Pa. Code Chapter 93.7 will be achieved, as was demonstrated in the WQM 7.0 Ver. 1.1 Model and the TRC Evaluation Spreadsheet that was done for this permit renewal.

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (386-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

			Effluent L	imitations			Monitoring Re	quirements
Parameter	Mass Units	(lbs/day) ⁽¹⁾		Concentrat	ions (mg/L)		Minimum ⁽²⁾	Required
Farameter	Average Monthly	Average Weekly	Minimum	Average Monthly	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report Daily Max	XXX	XXX	XXX	XXX	Continuous	Measured
pH (S.U.)	XXX	XXX	6.0 Daily Min	XXX	9.0 Daily Max	XXX	1/day	Grab
DO	XXX	XXX	4.0 Daily Min	XXX	XXX	XXX	1/day	Grab
TRC	XXX	XXX	XXX	0.17	XXX	0.58	1/day	Grab
CBOD5	XXX	XXX	XXX	25	XXX	50	2/month	8-Hr Composite
TSS	XXX	XXX	XXX	30	XXX	60	2/month	8-Hr Composite
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	2000 Geo Mean	XXX	10000	2/month	Grab
Fecal Coliform (No./100 ml) May 1 - Sep 30	XXX	XXX	XXX	200 Geo Mean	XXX	1000	2/month	Grab
E. Coli (No./100 ml)	XXX	XXX	XXX	XXX	XXX	Report	1/year	Grab
Total Nitrogen	XXX	XXX	XXX	Report Annl Avg	XXX	XXX	1/year	8-Hr Composite
Ammonia Nov 1 - Apr 30	XXX	XXX	XXX	10.5	XXX	21	2/month	8-Hr Composite
Ammonia May 1 - Oct 31	XXX	XXX	XXX	3.5	XXX	7.0	2/month	8-Hr Composite
Total Phosphorus	XXX	XXX	XXX	2.0	XXX	4	2/month	8-Hr Composite

Compliance Sampling Location: Outfall 001 (after disinfection)

Input Data WQM 7.0

					ilibi	ut Data	a vv Qi	VI 7.0						
	SWP Basin			Stre	eam Name		RMI		ration ft)	Drainage Area (sq mi)	Slope (ft/ft)	PW Withdi (mg	rawal	App F0
	20C	349	96 Trib 3	1996 to M	ulligan Run		0.6	50 1	240.00	1.17	0.00000)	0.00	•
8					St	ream Dat	a							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	<u>Tributary</u> np pH	Tei	<u>Strean</u> mp	<u>n</u> pH	
	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)	(%	C)		
Q7-10 Q1-10 Q30-10	0.043	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000		0.0	0.00	0.00) 2	0.00 7.3	35	0.00	0.00	
		Discharge Data												
			Name	Per	rmit Number	Disc	Permitt Disc Flow (mgd	Flov	Res V Fa	Dis erve Ten ctor	np	Disc pH		
		Frank	lin MHV	PA	0102601	0.0280	0.00	00 0.00	000	0.000 2	0.00	7.70		
					Pa	arameter I	Data							
				Paramete	r Name	Di Co			Stream Conc	Fate Coef				
			2			(m	g/L) (r	mg/L)	(mg/L)	(1/days)				
			CBOD5				25.00	2.00	0.00	1.50				
			Dissolved	Oxygen			4.00	8.24	0.00	0.00				
			NH3-N				25.00	0.05	0.00	0.70				

Monday, February 26, 2024 Version 1.1 Page 1 of 2

Input Data WQM 7.0

					6.315 B.A			came em						
	SWP Basin			Stre	eam Name		RMI		evation (ft)	Drainage Area (sq mi)	Slope (ft/ft)	Witho	VS drawal gd)	Appl FC
	20C	349	996 Trib 3	1996 to M	ulligan Run		0.0	01	1115.00	1.68	0.0000	00	0.00	✓
8					St	ream Dat	a							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Ten	<u>Tributary</u> np pH	T	<u>Streaı</u> emp	<u>m</u> pH	
Conu.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C	;)	(°C)		
Q7-10 Q1-10 Q30-10	0.043	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000	0.0	0.00	0.0	00 2	0.00 7.	35	0.00	0.00	
		Discharge Data									1			
			Name	Per	rmit Number	Disc	Permitt Disc Flow (mgd	Dis Flo	sc Res	Diserve Ter actor	mp	Disc pH		
		H				0.0000	0.00	0.0	0000	0.000	25.00	7.00		
					Pa	arameter l	Data							
			9 000	Paramete	r Name			Trib Conc	Stream Conc	Fate Coef				
					9 5000000000000000000000000000000000000	(m	g/L) (r	mg/L)	(mg/L)	(1/days)				
			CBOD5				25.00	2.00	0.00	1.50				
			Dissolved	Oxygen			3.00	8.24	0.00	0.00				
			NH3-N			i	25.00	0.00	0.00	0.70				

WQM 7.0 Hydrodynamic Outputs

	SW	P Basin	Strea	m Code				Stream	<u>Name</u>			
		20C	3-	4996			Trib 34	996 to N	Iulligan F	Run		
RMI	Stream Flow	PWS With	Net Stream Flow	Disc Analysis Flow	Reach Slope	Depth	Width	W/D Ratio	Velocity	Reach Trav Time	Analysis Temp	Analysis pH
	(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	(°C)	
Q7-1	0 Flow											
0.650	0.05	0.00	0.05	.0433	0.03648	.357	4.12	11.52	0.06	0.625	20.00	7.48
Q1-1	0 Flow											
0.650	0.03	0.00	0.03	.0433	0.03648	NA	NA	NA	0.06	0.705	20.00	7.52
Q30-	10 Flow	,										
0.650	0.07	0.00	0.07	.0433	0.03648	NA	NA	NA	0.07	0.566	20.00	7.46

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	~
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.36	Temperature Adjust Kr	✓
D.O. Saturation	90.00%	Use Balanced Technology	✓
D.O. Goal	6		

WQM 7.0 Wasteload Allocations

SWP Basin	Stream Code	Stream Name
20C	34996	Trib 34996 to Mulligan Run

RMI	Discharge Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
0.65	0 Franklin MHV	9.01	15.64	9.01	15.64	0	0
H3-N (Chronic Allocati	ons					
H3-N (Chronic Allocati	Baseline Criterion	Baseline WLA	Multiple Criterion	Multiple WLA	Critical Reach	Percent Reduction
		Baseline					

Dissolved Oxygen Allocations

			CBOD5		<u>NH</u>	<u>3-N</u>	<u>Dissolved Oxygen</u>		Critical	Percent
le f	RMI	Discharge Name	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Reach	Reduction
	0.65	Franklin MHV	25	25	3.64	3.64	4	4	0	0

WQM 7.0 D.O.Simulation

SWP Basin Str	ream Code			Stream Name	
20C	20C 34996			4996 to Mulligan Rur	1
<u>RMI</u>	Total Discharge	Flow (mgd	<u>) Ana</u>	ysis Temperature (°C)	Analysis pH
0.650	0.028	3		20.000	7.479
Reach Width (ft)	Reach Dep	oth (ft)		Reach WDRatio	Reach Velocity (fps)
4.117	0.357	7		11.521	0.063
Reach CBOD5 (mg/L)	Reach Kc (<u>1/days)</u>	<u>R</u>	each NH3-N (mg/L)	Reach Kn (1/days)
12.67	1.302	50 mm		1.72	0.700
Reach DO (mg/L)	Reach Kr (Kr Equation	Reach DO Goal (mg/L)
6.274	22.95	0		Owens	6
Reach Travel Time (days)		Subreach	Reculte		
0.625	Tra∨Time	CBOD5	NH3-N	D.O.	
	(days)	(mg/L)	(mg/L)	(mg/L)	
	0.063	11.68	1.64	7.51	
	0.125	10.77	1.57	7.88	
	0.188	9.93	1.51	8.03	
	0.250	9.15	1.44	8.12	
	0.313	8.43	1.38	8.20	
	0.375	7.78	1.32	8.24	
	0.438	7.17	1.26	8.24	
	0.500	6.61	1.21	8.24	
	0.563	6.09	1.16	8.24	
	0.625	5.61	1.11	8.24	

WQM 7.0 Effluent Limits

		<u>m Code</u> 4996		Stream Nam Trib 34996 to Mullig			
	200 3	4330		THD 34996 to Mulli	yan Kun		
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
0.650	Franklin MHV	PA0102601	0.028	CBOD5	25		
				NH3-N	3.64	7.28	
				Dissolved Oxygen			4

1A	В	С	D	Е	F	G
2	TRC EVALU				in Mobile Ho	me Village
3	School Committee of the	NACES ROOM - EVEN AND MESSES RESIDENCE - PORCH	B4:B8 and E4:E7			
4		= Q stream (1656	0.5	= CV Daily	
5		= Q discharg		OBLIVICEO	= CV Hourly	
6		= no. sample			= AFC_Partial I	
7	0.000000	ASSESSED TO SERVICE AND THE PROPERTY OF THE PR	emand of Stream	(5)	= CFC_Partial I	
8		4	emand of Discharge		(a - a)	Compliance Time (min)
9		= BAT/BPJ V	(m, 1, m, m)		11 - No. 12 11 11 11 11 11 11 11 11 11 11 11 11	Compliance Time (min)
40			of Safety (FOS)	U	=Decay Coeffic	
10 11	Source TRC	Reference	AFC Calculations	0.007	Reference	CFC Calculations
-07.0070	PENTOXSD TRG	1.3.2.iii 5.1a	WLA afc = LTAMULT afc =	Clear and conference	1.3.2.iii 5.1c	WLA cfc = 0.370 LTAMULT cfc = 0.581
10000000000	PENTOXSD TRG	5 550 5500	LTAMOLT alc =	(ME.E-G-05/08)	5.1d	LTA cfc = 0.361
14	i zivi okob i ko	0.10	2173_010	0.144	0.10	217_516 5.216
15	Source		Effluent	Limit Cal	culations	
16	PENTOXSD TRG	5.1f	AM	L MULT =	1.231	
17	PENTOXSD TRG	5.1g	AVG MON LIMI	T (mg/l) =	0.178	AFC
18			INST MAX LIMI	T (mg/l) =	0.581	
	WLA afc	100	FC_tc)) + [(AFC_Yc*Q		d*e(-k*AFC_tc))	
	LTAMULT afc	(g - 1	C_Yc*Qs*Xs/Qd)]*(1-F (cvh^2+1))-2.326*LN(0.00	^0.5)	
	LTA afc	wla afc*LTA	ANGEROLES SOIL RESIDENCE ON BRANCH	O + 11 2 · 1)	0.0)	
	WLA_cfc	ASSESSED BOOKS AND ADDRESSED ADDRESSED AND ADDRESSED ADDRESSED AND ADDRESSED ADDRESSED AND ADDRESSED AND ADDRESSED ADDRESSED ADDRESSED AND ADDRESSED ADDRESSED ADDRESSED AND ADDRESSED ADDRESSED AND ADDRESSED ADDRESSED AND ADDRESSED ADDRESSED ADDRESSED AND ADDRESSED AND ADDRESSED AND ADDRESSED	FC_tc) + [(CFC_Yc*Qs C_Yc*Qs*Xs/Qd)]*{1-I		*e(-k*CFC_tc)	
	LTAMULT_cfc	Account to the contract of the	(cvd^2/no_samples+1		N(cvd^2/no_sa	mples+1)^0.5)
	LTA_cfc	wla_cfc*LTA	MULT_cfc	5.30	8	. 1 00
	AML MULT	EXP(2.326*L	N((cvd^2/no_samples	+1)^0.5)-	0.5*LN(cvd^2/nc	o_samples+1))
	AVG MON LIMIT	The state of the s	J,MIN(LTA_afc,LTA_c		1 10 10 10 10 10 10 10 10 10 10 10 10 10	
	INST MAX LIMIT	1.5*((av_mo	n_limit/AML_MULT)/L`	TAMULT_	afc)	