

Northwest Regional Office CLEAN WATER PROGRAM

Application Type Renewal Non-Municipal Facility Type Major / Minor Minor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

PA0103861 Application No. APS ID 1094052 Authorization ID 1449527

Applicant and Facility Information

Applicant Name	Steve Zoccoli	Facility Name	Zoccoli MHP
Applicant Address	2575 Ben Franklin Highway	Facility Address	217 Stacie Lane
	Edinburg, PA 16116		Edinburg, PA 16116-9801
Applicant Contact	Steve Zoccoli	Facility Contact	Steve Zoccoli
Applicant Phone	(724) 656-2506	Facility Phone	(724) 656-2506
Client ID	36648	Site ID	269766
Ch 94 Load Status	Not Overloaded	Municipality	Mahoning Township
Connection Status	No Limitations	County	Lawrence
Date Application Reco	eived July 3, 2023	EPA Waived?	Yes
Date Application Acce	epted August 4, 2023	If No, Reason	· ·
Purpose of Applicatio		DES Permit for an existing disc	harge of treated sanitary wastewater from a

Summary of Review

Act 14 - Proof of Notification was submitted and received.

A Part II Water Quality Management permit is not required at this time.

The applicant should be able to meet the limits of this permit, which will continue to protect the uses of the receiving stream.

I. OTHER REQUIREMENTS:

- A. Stormwater into sewers
- B. Right of way
- C. Solids handling
- D. Public Sewerage Availability
- E. Effluent Chlorine Optimization and Minimization

There are no open violations in efacts associated with the subject Client ID (36648) as of 5/30/2024.

	Approve	Deny	Signatures	Date	
	V		Stephen A. McCauley	E/20/2024	
	X		Stephen A. McCauley, E.I.T. / Environmental Engineering Specialist	5/30/2024	
Ī	V		Jason T. Roessing	0/0/0004	
	X		Jason T. Roessing, P.E. / Environmental Engineer Manager	6/3/2024	

II. Solids Management

SPECIAL CONDITIONS:

NPDES Permit Fact Sheet Zoccoli MHP

Discharge, Receivir	ng Water	s and Water Supply Info	rmation	
Outfall No. 001			Design Flow (MGD)	0.005
Latitude 41°	02' 41.37	7"	Longitude	-80º 25' 48.11"
Quad Name -			Quad Code	-
Wastewater Desci	ription:	Sewage Effluent		
Receiving Waters		med Tributary to the ango River (WWF)	Stream Code	N/A
NHD Com ID		25487	Stream Code RMI	N/A
Drainage Area	2.12		Viold (of a/mi ²)	0.053 (previous WQPR)
Q ₇₋₁₀ Flow (cfs)	0.44			calculated
Elevation (ft)	964		Slope (ft/ft)	0.01379
Watershed No.	<u>904</u> 20-A		Chapter 93 Class.	
	20-A			
Existing Use	-			
Exceptions to Use			Exceptions to Criteria	-
Assessment Statu	-	Impaired*		
Cause(s) of Impair		Nutrients		
Source(s) of Impa	irment	Package plants or other	permitted small flow discharges	
TMDL Status		-	Name	
Background/Ambi	ent Data		Data Source	
pH (SU)		_		
Temperature (°F)				
Hardness (mg/L)			-	
Other:				
Other.			-	
Nearest Downstre	am Publi	c Water Supply Intake	PA American Water Company	/ - New Castle
PWS Waters	Shenan	go River	Flow at Intake (cfs)	16.2
PWS RMI	5.1	~	Distance from Outfall (mi)	5.0
-				

* - The receiving stream is impaired by nutrients. Since Total Nitrogen and Total Phosphorus are already monitored, no further action will be taken with this renewal.

Sludge use and disposal description and location(s): <u>Sludge is pumped and hauled to the Mahoning WWTP.</u>

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Narrative: This Fact Sheet details the determination of draft NPDES permit limits for an existing discharge of 0.005 MGD of treated sewage from an existing non-municipal STP in Mahoning Township, Lawrence County.

Treatment permitted under WQM Permit no. 3705403 consists of the following: Two 3,590 gallon septic tanks in series, a dosing tank in the second septic tank, two 1,680 square foot (40' x 42') subsurface sand filters, and tablet chlorine disinfection with a 250 gallon contact tank.

1. Streamflow:

Unnamed Tributary to the Shenango River @ Outfall 001:

Drainage Area: Yieldrate:	<u>2.12</u> <u>0.053</u>	sq. mi. cfsm		(from previous WQPR) (from previous WQPR)
% of stream allocated:	<u>100%</u>		Basis:	no nearby discharges
Q ₇₋₁₀ :	0.11	cfs		(calculated)

2. Wasteflow:

Maximum discharge:	<u>0.005</u> MGD =	<u>0.0077</u> cfs		
Runoff flow period:	<u>16</u> hours	Basis: <u>Runo</u>	off flow for a MHP	
24 hour flow:	0.005 MGD x 2	$\frac{24}{16} = 0.0075$	MGD = <u>0.0116</u>	cfs

The calculated stream flow (Q7-10) is greater than 3 times the permitted discharge flow. In accordance with the SOP, the treatment requirements in document number 391-2000-014, titled, "Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers", dated April 12, 2008, were not evaluated for this facility.

Flow will be required to be monitored as authorized under Chapter 92a.61, and as recommended in the SOP.

3. Parameters:

The following parameters were evaluated: pH, Total Suspended Solids, Fecal Coliform, Phosphorus, NH₃-N, CBOD₅, Dissolved Oxygen, and Disinfection.

а. <u>pH</u>

Between 6.0 and 9.0 at all times

Basis: Application of Chapter 93.7 technology-based limits.

The measurement frequency was previously set as 3/week at the request of the Permittee due to financial hardship. Based on eDMR data, this facility is achieving the limits so the monitoring frequency will not be changed with this renewal.

b. <u>Total Suspended Solids</u>

Limits are 30.0 mg/l as a monthly average and 60.0 as an instantaneous maximum.

Basis: Application of Chapter 92a47 technology-based limits

c. Fecal Coliform

05/01 - 09/30:	200 No./100ml	(monthly average)
	<u>1,000 No./100ml</u>	(instantaneous maximum)
10/01 - 04/30:	<u>2,000 No./100ml</u> <u>10,000 No./100ml</u>	(monthly average) (instantaneous maximum)

Basis: Application of Chapter 92a47 technology-based limits

d. <u>E. Coli</u>

Monitoring was added for E. Coli at a frequency of 1/year.

Basis: Application of Chapter 92a.61 as recommended by the SOP for flows greater than 0.002 MGD and less than 0.05 MGD.

e. <u>Total Phosphorus</u>

Chapter 96.5 does not apply. Therefore, the previous monitoring for Total Phosphorus will be retained in accordance with the SOP, based on Chapter 92a.61.

f. <u>Total Nitrogen</u>

The previous monitoring for Total Nitrogen will be retained in accordance with the SOP, based on Chapter 92a.61.

g. <u>Ammonia-Nitrogen (NH₃-N)</u>

Median discharge pH to be used:	<u>7.0</u>	Standard Units (S.U.)
	В	asis: eDMR data from previous 12 months
Discharge temperature:	<u>25°C</u>	(Default value used for modeling purposes)
Median stream pH to be used:	<u>8.0</u>	Standard Units (S.U.)
	В	asis: Value used in previous modeling
Stream Temperature:	<u>25°C</u>	(Default value used for WWF modeling purposes)
Background NH ₃ -N concentration:	<u>0.0</u>	mg/l
	В	asis: Default value used for modeling purposes
Calculated summer NH ₃ -N limits:	<u>19.3</u> <u>38.6</u>	mg/l (monthly average) mg/l (instantaneous maximum)
Calculated winter NH ₃ -N limits:	<u>25.0</u> 50.0	mg/l (monthly average) mg/l (instantaneous maximum)

Result: <u>WQ modeling resulted in the calculated summer limits above (see Attachment 2). Per the SOP, the winter limits were set as three times the summer limits, but were capped at the technology-based limits of 25.0 mg/l monthly average and 50.0 mg/l instantaneous maximum. The calculated summer</u>

limits are less restrictive than the previous NPDES Permit. Since the previous, more restrictive summer limits of 9.0 mg/l monthly average and 18.0 mg/l instantaneous maximum are attainable, they will be retained.

h. <u>CBOD₅</u>

Median discharge pH to be used:	<u>7.0</u>	Standard Units (S.U.)
	В	asis: Average pH value from DMR summary
Discharge temperature:	<u>25°C</u>	(Default value used for modeling purposes)
Median stream pH to be used:	<u>8.0</u>	Standard Units (S.U.)
	В	asis: Value used in previous modeling
Stream Temperature:	<u>25°C</u>	(Default value used for WWF modeling purposes)
Background CBOD5 concentration:	<u>2.0</u>	mg/l
	В	asis: Default value used for modeling purposes
Calculated CBOD₅ limits:	<u>25.0</u> 50.0	mg/l (monthly average) mg/l (instantaneous maximum)

Result <u>WQ modeling resulted in the technology-based limits above (see Attachment 2), which are the same</u> as the previous NPDES Permit, and will be retained.

i. Dissolved Oxygen (DO)

The technology-based minimum of 4.0 mg/l will be retained with this renewal as recommended by the SOP based on Chapter 93.7, and by the WQ modeling (see Attachment 2), under the authority of Chapter 92a.61.

The measurement frequency was previously set as 3/week at the request of the Permittee due to financial hardship. Based on eDMR data, this facility is achieving the limits so the monitoring frequency will not be changed with this renewal.

j. <u>Disinfection</u>

- Ultraviolet (UV) light monitoring
- Total Residual Chlorine (TRC) limits: 0.5 mg/l (monthly average) 1.6 mg/l (instantaneous maximum)
 - Basis: <u>The technology-based TRC limits above were calculated using the Department's TRC</u> <u>Calculation Spreadsheet (see Attachment 1)</u>. These limits are the same as the previous permit and will be retained with this renewal.</u>

The measurement frequency was previously set as 3/week at the request of the Permittee due to financial hardship. Based on eDMR data, this facility is achieving the limits so the monitoring frequency will not be changed with this renewal.

4. Reasonable Potential Analysis for Receiving Stream:

A Reasonable Potential Analysis was not performed in accordance with State practices using the Department's Toxics Management Spreadsheet since no sampling other than sewage-related parameters was performed for this facility with the renewal application.

5. Reasonable Potential for Downstream Public Water Supply (PWS):

The Department's Toxics Management Spreadsheet does not calculate limits for parameters that are based on PWS criteria (TDS, Chloride, Bromide, and Sulfate). Since no relevant sampling was provided, mass-balance calculations were not performed.

Nearest Downstream potable water supply (PWS):Pennsylvania American Water Company - New CastleDistance downstream from the point of discharge:5.0miles (approximate)

Result: <u>No limits or monitoring are necessary as significant dilution is available.</u>

6. Anti-Backsliding:

Since all the permit limits in this renewal are the same or more restrictive than the previous NPDES Permit, antibacksliding is not applicable.

7. Attachment List:

Attachment 1 - TRC_Calc Spreadsheet

Attachment 2 - WQ Modeling Printouts

(The Attachments above can be found at the end of this document)

Compliance History

DMR Data for Outfall 001 (from April 1, 2023 to March 31, 2024)

Parameter	MAR-24	FEB-24	JAN-24	DEC-23	NOV-23	OCT-23	SEP-23	AUG-23	JUL-23	JUN-23	MAY-23	APR-23
Flow (MGD)												
Average Monthly	0.0004	0.0004	0.0028	0.0006	0.0002	0.00015	0.00006	0.0004	0.0006	0.0004	0.0007	0.0008
Flow (MGD)												
Daily Maximum	0.0005	0.0005	0.009	0.0011	0.0003	0.0003	0.00018	0.0006	0.0009	0.0007	0.0009	0.0015
pH (S.U.)												
Instantaneous Minimum	7.0	6.8	6.9	6.7	7.0	6.9	6.7	6.8	6.8	6.6	6.7	6.8
pH (S.U.)												
Instantaneous Maximum	7.6	7.3	7.3	7.3	8.0	7.3	7.1	7.1	7.6	7.1	7.3	7.2
DO (mg/L)												
Instantaneous Minimum	7.6	8.0	7.4	7.6	7.4	7.0	6.9	6.0	7.5	6.6	6.9	9.0
TRC (mg/L)												
Average Monthly	0.2	0.15	0.21	0.19	0.21	0.18	0.13	0.21	0.16	0.31	0.29	0.22
TRC (mg/L)												
Instantaneous Maximum	0.39	0.21	0.31	0.41	0.29	0.24	0.29	0.47	0.29	0.61	0.43	0.46
CBOD5 (mg/L)												
Average Monthly	< 4.8	< 4	13.1	< 4	< 4	< 4	< 4	< 3	< 4	< 4	< 4	< 4
TSS (mg/L)												
Average Monthly	< 17	29.3	117.9	< 7	< 5	< 5	40	9	11	< 8	< 6	< 5.8
Fecal Coliform (No./100 ml)												
Geometric Mean	< 3	< 4	> 456	< 1	< 1	< 1	< 1	< 9	< 1	< 1	< 1	< 1
Fecal Coliform (No./100 ml)												
Instantaneous Maximum	< 10	< 10	> 2420	< 1	< 1	< 1	1	74	< 1	< 1	< 1	< 1
Total Nitrogen (mg/L)												
Average Monthly	2.16	3.11	6.31	2.7	< 1.25	2.74	2.4	11.3	10.25	13.2	7.1	5.08
Ammonia (mg/L)												
Average Monthly	1.91	3.33	5.53	3.07	< 0.3	3.24	2.33	12.7	10.68	14.8	5.73	6.38
Total Phosphorus (mg/L)												
Average Monthly	0.068	0.158	0.367	< 0.02	< 0.02	< 0.02	0.1025	0.021	0.045	0.054	0.028	0.032

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (386-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

		Monitoring Requirement						
Parameter	Mass Units	(lbs/day) ⁽¹⁾		Concentrat		Minimum ⁽²⁾	Required	
Falameter	Average Monthly	Average Weekly	Minimum	Average Monthly	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report Daily Max	xxx	xxx	xxx	xxx	1/week	Measured
pH (S.U.)	ХХХ	xxx	6.0 Inst Min	xxx	xxx	9.0	3/week	Grab
DO	ХХХ	xxx	4.0 Inst Min	xxx	xxx	xxx	3/week	Grab
TRC	ххх	xxx	ххх	0.5	xxx	1.6	3/week	Grab
CBOD5	ххх	xxx	xxx	25.0	xxx	50	2/month	8-Hr Composite
TSS	ХХХ	xxx	xxx	30.0	xxx	60	2/month	8-Hr Composite
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	2000 Geo Mean	XXX	10000	2/month	Grab
Fecal Coliform (No./100 ml) May 1 - Sep 30	xxx	XXX	XXX	200 Geo Mean	XXX	1000	2/month	Grab
E. Coli (No./100 ml)	ХХХ	XXX	XXX	XXX	XXX	Report	1/year	Grab
Total Nitrogen	XXX	XXX	XXX	Report	XXX	XXX	2/month	8-Hr Composite
Ammonia Nov 1 - Apr 30	ххх	XXX	XXX	25.0	XXX	50	2/month	8-Hr Composite
Ammonia May 1 - Oct 31	ххх	XXX	XXX	9.0	XXX	18	2/month	8-Hr Composite
Total Phosphorus	XXX	xxx	XXX	Report	xxx	XXX	2/month	8-Hr Composite

Compliance Sampling Location: at Outfall 001, after disinfection.

Flow is monitor only based on Chapter 92a.61. The limits for pH and Dissolved Oxygen are technology-based on Chapter 93.7. The Total Residual Chlorine (TRC) limits are technology-based on Chapter 92a.48. The limits for CBOD₅, Total Suspended Solids, and Fecal Coliforms are technology-based on Chapter 92a.47. The limits for Ammonia-Nitrogen are water quality-based on Chapter 93.7. Monitoring for E. Coli, Total Nitrogen, and Total Phosphorus are based on Chapter 92a.61.

Attachment 1

TRC EVALUA	TION						
Input appropria	te values in <i>i</i>	A3:A9 and D3:D9					
0.11	= Q stream (c	fs)	0.5	= CV Daily			
0.0075	= Q discharge	e (MGD)	0.5	= CV Hourly			
30	= no. samples		1	= AFC_Partial I	lix Factor		
0.3	= Chlorine De	mand of Stream		= CFC_Partial I			
0	= Chlorine De	mand of Discharge	15	= AFC_Criteria	Compliance Time (min)		
0.5	= BAT/BPJ Va	lue	720	= CFC_Criteria	Compliance Time (min)		
0	= % Factor of	f Safety (FOS)	0	=Decay Coeffic	ient (K)		
Source	Reference	AFC Calculations		Reference	CFC Calculations		
TRC	1.3.2.iii	WLA afc =	3.043	1.3.2.iii	WLA cfc = 2.960		
PENTOXSD TRG	5.1a	LTAMULT afc =	0.373	5.1c	LTAMULT cfc = 0.581		
PENTOXSD TRG	5.1b	LTA_afc=	1.134	5.1d	LTA_cfc = 1.721		
Source		Efflue	nt Limit Calcu	lations			
PENTOXSD TRG	5.1f		AML MULT =	10,0,0,000,000			
PENTOXSD TRG	5.1g		.IMIT (mg/l) =		BAT/BPJ		
			.IMIT (mg/l) =				
WLA afc	And an and a second sec	C_tc)) + [(AFC_Yc*Qs*.019/ ⊱Yc*Qs*Xs/Qd)]*(1-FOS/10		_tc))			
LTAMULT afc	EXP((0.5*LN(cvh^2+1))-2.326*LN(cvh^2	+1)^0.5)				
LTA_afc	wla_afc*LTA	MULT_afc					
WLA_cfc	- C - C - C - C - C - C - C - C - C - C	C_tc) + [(CFC_Yc*Qs*.011// _Yc*Qs*Xs/Qd)]*(1-FOS/10		tc))			
LTAMULT_cfc LTA_cfc	remembers of the second second	EXP((0.5*LN(cvd^2/no_samples+1))-2.326*LN(cvd^2/no_samples+1)^0.5) wla_cfc*LTAMULT_cfc					
AML MULT AVG MON LIMIT INST MAX LIMIT	MIN(BAT_BP	V((cvd^2/no_samples+1)^0. J,MIN(LTA_afc,LTA_cfc)*AI _limit/AML_MULT)/LTAMUL	NL_MULT)	d^2/no_samples	+1))		

Attachment 2

	SWP Basin	Stream Code	e <u>Stream Name</u>				
	20A	35482		SHENANGO RIV	/ER		
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
2.400	Zoccoli MHP	PA0103861	0.007	CBOD5	25		
				NH3-N	19.37	38.74	
				Dissolved Oxygen			4

WQM 7.0 Effluent Limits

Thursday, May 30, 2024

Version 1.1

<u>SWP Basin</u> St	ream Code			<u>Stream Name</u>	
20A	35482		S	HENANGO RIVER	
<u>RMI</u>	<u>Total Discharge</u>	Flow (mgd	<u>) Anal</u>	ysis Temperature (°C)	<u>Analysis pH</u>
2.400	0.007	7		25.000	7.000
Reach Width (ft)	Reach Dep	oth (ft)		Reach WDRatio	Reach Velocity (fps)
5.687	0.362	2		15.700	0.060
Reach CBOD5 (mg/L)	Reach Kc (1/days)	R	each NH3-N (mg/L)	Reach Kn (1/days)
4.15	0.408	Carer na		1.81	1.029
Reach DO (mg/L)	<u>Reach Kr (</u>			<u>Kr Equation</u> Owens	<u>Reach DO Goal (mg/L)</u>
7.209	24.32	5			
Reach Travel Time (days)		Subreach	Reculte		
1.422	TravTime	CBOD5	NH3-N	D.O.	
	(days)	(mg/L)	(mg/L)	(mg/L)	
	0.142	3.86	1.57	7.54	
	0.284	3.59	1.35	7.54	
	0.426	3.34	1.17	7.54	
	0.569	3.10	1.01	7.54	
	0.711	2.88	0.87	7.54	
	0.853	2.68	0.75	7.54	
	0.995	2.49	0.65	7.54	
	1.137	2.31	0.56	7.54	
	1.279	2.15	0.49	7.54	
	1.422	2.00	0.42	7.54	

WQM 7.0 D.O.Simulation

Thursday, May 30, 2024

Version 1.1

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	✓
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.36	Temperature Adjust Kr	
D.O. Saturation	90.00%	Use Balanced Technology	
D.O. Goal	5		

Thursday, May 30, 2024

Version 1.1

	SWP Basin			Stre	am Name		RMI	Eleva (ft)		Drainage Area (sq mi)	Slope (ft/ft)	PWS Withdra (mgo	awal	Apply FC
	20A	354	482 SHEN	ANGO RI	VER		2.40	00 90	54.00	2.12	0.00000		0.00	✓
					St	ream Dat	ta							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Temp	<u>ributary</u> pH	Tem		pН	
	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C)		
Q7-10 Q1-10 Q30-10	0.053	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000 0.000 0.000	0.0	0.00	0.00	25.0	00 7.0	00	0.00	0.00	
					Di	scharge	Data							
			Name	Per	mit Number	Disc	Permitte Disc Flow (mgd)	ed Design Disc Flow (mgd)	Reser Facto		ip p	sc H		
		Zocc	oli MHP	PA	0103861	0.007	5 0.000	00 0.000	0 0.0	000 2	5.00	7.00		
					Pa	rameter	Data							
				Paramete	r Name				ream Conc	Fate Coef				
			1	i uluilloto	Humo	(m	ng/L) (n	ng/L) (n	ng/L) (1/days)				
	_		CBOD5				25.00	2.00	0.00	1.50				
			Dissolved	Oxygen			4.00	7.54	0.00	0.00				

25.00

0.00

0.00

0.70

Input Data WQM 7.0

NH3-N

	SWP Basin	Strea Coc		Stre	eam Name		RMI		ration ft)	Drainage Area (sq mi)	Slope (ft/ft)	Witho	VS drawal igd)	Apply FC
	20A	354	482 SHEN	ANGO RI	VER		1.00	00	862.00	3.19	0.0000	0	0.00	✓
2					St	ream Data	a							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Tra∨ Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	<u>Tributary</u> np pH	Те	<u>Strea</u> mp	m pH	
Cond.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)	(°	C)		
Q7-10	0.053	0.00	0.00	0.000	0.000	0.0	0.00	0.00) 2	5.00 7.	00	0.00	0.00	
Q1-10		0.00	0.00	0.000	0.000									
Q30-10		0.00	0.00	0.000	0.000									
					Di	scharge D	Data						Ĩ	
			Name	Per	mit Numbe	Disc	Permitte Disc Flow (mgd)	Disc Flov	Res V Fa	Dis erve Ten ctor (°C	np	Disc pH		
						0.0000	0.000	0 0.00	000	0.000	0.00	7.00		
					Pa	arameter D	Data							
				⊃aramete	r Name	Dis Co			Stream Conc	Fate Coef				
				aramete	i Name	(m)	g/L) (m	ng/L)	(mg/L)	(1/days)		_		
			CBOD5			2	25.00	2.00	0.00	1.50				

25.00

0.00

0.00

0.70

Input Data WQM 7.0

Thursday, May 30, 2024

NH3-N

Version 1.1

Page 2 of 2

			A A COLL	VI 7.0	nyur	ouyn	anne	Out	Juis			
		P Basin	-	m Code				<u>Stream</u>				
	ii Î	20A	3:	5482			SH	ENANG	O RIVER			
RMI	Stream Flow	PWS With	Net Stream Flow	Disc Analysis Flow	Reach Slope	Depth	Width	W/D Ratio	Velocity	Reach Tra∨ Time	Analysis Temp	Analysis pH
	(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	(°C)	
Q7-10	0 Flow											
2.400	0.11	0.00	0.11	.0116	0.01380	.362	5.69	15.7	0.06	1.422	25.00	7.00
Q1-1	0 Flow											
2.400	0.07	0.00	0.07	.0116	0.01380	NA	NA	NA	0.05	1.774	25.00	7.00
Q30-'	10 Flow	1										
2.400	0.15	0.00	0.15	.0116	0.01380	NA	NA	NA	0.07	1.214	25.00	7.00

WQM 7.0 Hydrodynamic Outputs

Thursday, May 30, 2024

Version 1.1

each Reductio	Critical Reach 0		WLA	Multiple Criterion (mg/L)	Baseline WLA	Baseline Criterion	Acute Allocation	NH3-N
each Reductio	Reach	WLA I (mg/L)	WLA	Criterion				
0 0	0	50		(mg/L/	(mg/L)	(mg/L)	Discharge Name	RMI
			7	11.07	50	11.07	0 Zoccoli MHP	2.40
						าร	Chronic Allocation	NH3-N
	Critical Reach	NLA Re	Multiple WLA (mg/L)	Multiple Criterion (mg/L)	aseline WLA (mg/L)	aseline criterion (mg/L)	RMI Discharge Name	
0 0	0	19.37	7 19	1.37	19.37	1.37	0 Zoccoli MHP	2.40
						ions	d Oxygen Alloc	issolv
		19.37 Dissolved		1.37 <u>NH3-N</u>	19.37 <u>OD5</u>	tions		81

	(ing/L)	(ing/L)	(ing/L)	(ing/c)	(ing/L)	(ing/L)		22
2.40 Zoccoli MHP	25	25	19.37	19.37	4	4	0	0

Thursday, May 30, 2024

Version 1.1