

 Application Type
 Renewal

 Facility Type
 Industrial

 Major / Minor
 Minor

NPDES PERMIT FACT SHEET INDIVIDUAL INDUSTRIAL WASTE (IW) AND IW STORMWATER

 Application No.
 PA0110655

 APS ID
 591148

 Authorization ID
 643150

Applicant and Facility Information

Applicant Name	North A	American Höganäs Inc.	Facility Name	North American Höganäs
Applicant Address	111 Hö	ganäs Way	Facility Address	111 Höganäs Way
	Hollsop	ple, PA 15935-6416		Hollsopple, PA 15935-6416
Applicant Contact	David J	ohnson	Facility Contact	Same
Applicant Phone	814-479	9-3520	Facility Phone	Same
Client ID	79754		Site ID	245766
SIC Code	3399		Municipality	Quemahoning Township
SIC Description	Mfg - P	rimary Metal Products, NEC	County	Somerset
Date Application Receiv	ved	February 15, 2006	EPA Waived?	Yes
Date Application Accep	oted	August 11, 2006	If No, Reason	
Purpose of Application		Renewal NPDES Permit Coverage		

Summary of Review

The Department received a renewal NPDES permit application from North American Höganäs (NAH), Inc on February 15, 2006 to continue coverage of its facility in Hollsopple, PA. An update to the application was received by the Department on October 16, 2020. The site manufactures iron metal powders and stainless-steel metal powder for the primary metal industry. Powders are produced by melting scrap or virgin raw materials in either an electric arc furnace or induction furnaces. Molten metal is then atomized using high-pressure water to convert to powder. Powder is then dried, screen to desired faction, annealed in annealing furnaces, blended and packaged for shipment. The site SIC codes are 3399, Primary Metal Products, and 3312, Iron and Steel Mills.

The site has 11 outfalls, Outfall 002 through Outfall 010, Outfall 013, and a new Outfall 014. Outfalls 002, 006, 007, 010, 014, 015 discharge to Stonycreek River designated in 25 Pa Code Chapter 93 as a trout stocking fishery (TSF). Outfalls 003, 004, 005, 008 and 009 discharge to Quemahoning Creek designated in Pa Code Chapter 93 as a cold-water fishery (CWF). Outfall 013 discharges to an unnamed tributary to Quemahoning Creek designated in Pa Code Chapter 93 as a cold-water fishery (CWF).

In the previous permit Outfall 002 was believed to receive reverse osmosis discharge via Internal Outfall 102; however, it has been determined that 102 does not discharge via Outfall 002 but discharges to a separate discharge point at the site. This discharge point is being named Outfall 014. Additionally, to be consistent with the Department's outfall naming convention, Internal Outfall 102 is being renamed IMP 114. Furthermore, NAH is proposing a potential rerouting of a complimentary heat exchanger discharge line from what currently discharges via Outfall 002 to discharge via Outfall 014. The current set up with the heat exchanger discharge water causes NAH to have back-ups in the lines and internal flooding on to plant floors especially during the summer months. This proposed change would eliminate that. NAH presently has a complimentary heat exchanger located in the general vicinity of the reverse osmosis (RO) unit. The RO unit reject water discharges via Outfall 014. This heat exchanger provides complimentary cooling to the reused water from the atomization process. Contact atomization water is

Approve	Deny	Signatures	Date
x		ahon	
		Adam Olesnanik / Project Manager	11/16/2020
Х		Miden F. Fifet	
		Michael E. Fifth, P.E. / Environmental Engineer Manager	12/30/2020

filtered, cooled and then reused within the atomization process. The contact atomization water needs to be cooled for production quality reasons. Presently the non-contact water from this heat exchanger discharges into the plant non-contact cooling water loop, whose overflow discharges via Outfall 002. NAH experiences issues, especially during the summer months, with back-ups and this causes internal flooding within the non-contact cooling water lines. NAH is proposing to relocate the NCCW discharge from this heat exchanger to discharge via Outfall 014. The discharge would be in the same pipeline as the RO unit reject water discharge but both waste streams will be monitored internally at different points, the RO unit reject water will be monitored via IMP 214. Removing the heat exchanger non-contact cooling water from Outfall 002 will not cause any flow reductions or changes to the discharge quality to Outfall 002, because this water presently discharges into a recirculating loop and consists completely of non-contact cooling water. NAH has a "dead" pipeline in this area to where the heat exchanger water can be easily routed to the discharge pipeline of Outfall 014. It will only take some valve manipulation to complete the rerouting, so the rerouting could possibly be completed in a week.

Outfall 002 discharges non-contact cooling water that is used to cool facility equipment such as the electric arc furnace, ladle metallurgy furnace, and annealing furnaces. Although most NCCW is recirculated some will discharge based on temperature regulations and if the system gets too full. The NCCW that discharges, overflows from an internal recirculating pit at the north end of the facility into a small catch basin outside and then runs via pipeline to Outfall 002.

Outfall 003 discharge stormwater from the southeast side of the facility consisting of an internal roadway, parking area, scrap receiving area and roof drainage; the drainage area of this outfall is about 8.77 acres.

Outfall 004 discharges stormwater from the southwest side of the facility which consists of an internal roadway, parking area, and roof drainages; the drainage area of this outfall is about 3.21 acres.

Outfall 005 discharges uncontaminated stormwater from a small area near the sewage treatment plant; the drainage area of this outfall is about 4.1 acres.

Outfall 006 discharges stormwater from the west side of the facility which consists of an internal roadway, large parking area, shipping docks, and facility roof drainage; the drainage area of this outfall is about 5.51 acres.

Outfall 007 is a combined outfall which discharges stormwater from the northern side of the facility which mainly consists of scrap storage and the onsite slag processing facility; the drainage area of this outfall is about 105.25 acres. Outfall 007 also received the discharge from Outfall 014 at a small culvert located at the slag processing area.

Outfall 008 discharges uncontaminated stormwater from a small area grassy area located approximately 100 yards west of the facility near the pump house; the drainage area of this outfall is about 1.76 acres.

Outfall 009 discharges uncontaminated stormwater from a grassy hillside west of the facility near Abex Road that leads to the facility; the drainage area of this outfall is about 1.65 acres.

Outfall 010 discharges stormwater from a grassy area north of Outfall 007 near the slag processing facility and near the railroad tracks that deliver scrap to the facility; the drainage area of this outfall is about 1.95 acres.

Outfall 013 discharges uncontaminated stormwater from a wooded and grassy area across Abex Road 200 yards from the facility grounds; the drainage area of this outfall is about 22.04 acres.

Outfall 014 discharges the reject water from the reverse osmosis (RO) unit and non-contact cooling water from the atomization process heat exchanger. Raw water from the Quemahoning dam is brought to the facility and filtered. It is then sent through the RO unit. About 65% is used in the facility and 35% is rejected to Outfall 014. The discharge from the RO unit is monitored internally at IMP 114 (previously named Internal Outfall 102). Proposed IMP 214 will discharge non-contact cooling water used in the atomization process heat exchanger. The water quality would be exactly the same as Outfall 002 since the water is drawn from the same source. The maximum discharge from IMP 214 would be 0.317 MGD and the average daily discharge would be 0.080 MGD. Outfall 014 discharges to a drainage ditch along the hillside at the edge of the site. The wastewater discharged from Outfall 014 then flows in this drainage ditch along the hill side where it is collected in a culvert that combines with the Outfall 007 discharge pipeline where it is eventually discharged to Stonycreek River.

Scrap material delivered by truck or rail is off loaded outdoors on irregular shaped piles primarily within the drainage area of Outfall 007. These materials vary considerably in size, shape, and contents. Mobile crane and trucks primarily accomplish material handling. The storage areas are unpaved. Some of the types of scrap materials purchased for melt stock are primarily

comprised of clean, low residual grade scrap such as bushelling, #1 industrial bundles, slitter and some shredded. NAH purchase orders specify that all scrap shall be free of any oil and grease. Scrap materials generated by the plant in the steel making process is storage and handled similarly to the purchased scrap materials in the same general location. Refractory material removed from the electric arc furnaces, ladles, tundish, etc. are mixed with the slag prior to crushing. Some spent refractories are processed off site and returned as a ladles slag conditioner. Slag generated by the steel making process is transferred to the slag processing are for crushing, sizing, screening and magnetic removal of any metallics. Spent refractories are frequently mixed in with the slag prior to the crushing operations. This work is accomplished by an outside contractor. The slag and spent refractory material are stored in uncovered piles and handled by front-end loaders. Although this material is frequently spayed with water to obtain certain properties and for dust control, this activity does not result in any runoff to the stormwater drainage ditch as the spay water is entirely absorbed by the slag and refectory material. Dust generated by the EAF emission control system is captured in the three baghouses and disposed into two. 30-yard containers. The material is then landfilled off site. Hot slag from the electric arc furnace is hauled outside in large pots and dumped into a pit for cooling. The hot slag is water cooled (quenching) depending on what type of properties the processor desires. The water-cooling process has little runoff because the majority of theater sprayed onto the slag turns to steam. After cooling, the slag and spent refractory is spread out for breaking and crushing by dropping a heavy ball onto the material. A magnet is then passed over the crushed material to recover all the metallics. The metals that are recovered are recycled back into the electric arc furnace. The broken and crushed slag is then picked up by a font end loader and dumped onto a conveyor that conveys it though a screening system that sizes the slag for commercial purposes. After screening, the slag is stored in piles on site by size until it is sold for beneficial use.

The NAH facility derives its water from the Cambria Somerset Authority (CSA). The main pipeline is located to the west of the NAH facility buried in the bed of the Quemahoning Creek. Water is pumped from this line up to a 5.5-million-gallon reservoir located approximately 170 feet above the plant from the reservoir, water flows by gravity to the plant. The major portion of this water is for non-contact cooling water purposes at the Electric Arc Furnace, the Ladle Metallurgy Furnace, air compressors and atomization. A very small amount is used for make-up and incidental uses throughout the plant. The non-contact cooling water flows to a collection pit where it is either discharged to Stony Creek or pumped through a cooling tower and back up to the reservoir.

There are no floor drains, catch-basins or other such inlets inside the plant other than the non-contact cooling water drainage system. The use of water outside of the plant is limited to very few activities, none of which result in a discharge or runoff to the stormwater drainage system. Water from the atomization process is used for slag quenching and for dust control. Use is limited to prevent runoff.

Clean Water Act § 316(b) – Cooling Water Intake Structures

On August 15, 2014, EPA promulgated Clean Water Act Section 316(b) regulations applicable to cooling water intake structures. The regulations established best technology available ("BTA") standards to reduce impingement mortality and entrainment of all life stages of fish and shellfish at existing power generating and manufacturing facilities. The Final Rule took effect on October 14, 2014. Regulations implementing the 2014 Final Rule (and the previously promulgated Phase I Rule) are provided in 40 CFR Part 125, Subparts I and J for new facilities and existing facilities, respectively. Associated NPDES permit application requirements for facilities with cooling water intake structures are provided in 40 CFR Part 122, Subpart B – Permit Application and Special NPDES Program Requirements (§ 122.21(r)).

North American Höganäs (NAH) is supplied with water for cooling by the Cambria Somerset Authority ("CSA"). CSA owns and operates five dams and associated reservoirs located in Cambria and Somerset Counties as well as the associated piping and appurtenances necessary for providing raw water from the dams to various users in the region. NAH may variously receive raw water from at least three of CSA's five reservoirs including the Quemahoning Reservoir, the Hinckston Run Reservoir, and the Border Dam Reservoir. CSA's primary water supply source for its customers is the Quemahoning Reservoir with Hinckston Run and Border as backups.

NAH is an "existing facility" as defined in 40 CFR § 125.92(k). As an existing facility, NAH is subject to 40 CFR Part 125, Subpart J – Requirements Applicable to Cooling Water Intake Structures for Existing Facilities Under Section 316(b) of the Clean Water Act (§§ 125.90 – 125.99) if the facility meets the rule's applicability criteria. Pursuant to the applicability criteria given by § 125.91(a), NAH is subject to the requirements of §§ 125.94 – 125.99 if:

(1) The facility is a point source;

- (2) The facility uses or proposes to use one or more cooling water intake structures with a cumulative design intake flow (DIF) of greater than 2 million gallons per day (mgd) to withdraw water from waters of the United States; and
- (3) Twenty-five percent or more of the water the facility withdraws on an actual intake flow basis is used exclusively for cooling purposes.

NAH is a point source as defined in 40 CFR § 122.2. NAH appears to use one or more cooling water intake structures (Quemahoning, Hinckston Run, or Border through NAH's water supply arrangement with CSA) with a cumulative Design Intake Flow greater than 2 MGD (the Quemahoning intake alone can withdraw 71 MGD). And NAH uses nearly 100% of the approximately 0.5 MGD of water it withdraws (via CSA) for cooling purposes, which exceeds the 25% applicability threshold. NAH appears to meet these initial applicability criteria. However, §§ 125.91(b) and (c) further state that:

(b) Use of a cooling water intake structure includes obtaining cooling water by any sort of contract or arrangement with one or more independent suppliers of cooling water if the independent supplier withdraws water from waters of the United States but is not itself a new or existing facility as defined in subparts I or J of this part, except as provided in paragraphs (c) and (d) of this section. An owner or operator of an existing facility may not circumvent these requirements by creating arrangements to receive cooling water from an entity that is not itself a facility subject to subparts I or J of this part.

(c) Obtaining cooling water from a public water system, using reclaimed water from wastewater treatment facilities or desalination plants, or recycling treated process wastewater effluent as cooling water does not constitute use of a cooling water intake structure for purposes of this subpart.

U.S. EPA Region 3 clarified the applicability of §§ 125.91(b) and (c) to CSA in a June 19, 2019 email as follows:

Two intake structures at the Quemahoning and Wilmore Reservoirs that are owned and operated by CSA are subject to 316(b). Section 316(b) requires the use of the Best Technology Available to minimize adverse environmental impact at cooling water intake structures for power-generating and manufacturing facilities. While CSA is not a power-generating or manufacturing facility, the co-permittee, CPV Fairview, LLC, a power-generating facility, will directly use the water supplied by CSA for cooling purposes.

- 1) CSA meets the definition of an independent supplier.
- 2) CSA is not a public water system (they do not supply finished or potable water) so the public water system exemption doesn't apply to the facility.
- In the case where CSA is a co-permittee, both CSA and CPV Fairview LLC are subject to the requirements of 316(b).

Section 125.92(p) defines "independent supplier" as "an entity, other than the regulated facility, that owns and operates its own cooling water intake structure and directly withdraws water from waters of the United States. The supplier provides the cooling water to other facilities for their use, but may itself also use a portion of the water. An entity that provides potable water to residential populations (e.g., public water system) is not a supplier for purposes of this subpart."

In an independent supplier scenario where the independent supplier is not an existing facility subject to 316(b) requirements, the facility that uses water supplied by the independent supplier for cooling purposes (i.e., NAH) is subject to 316(b) requirements and the independent supplier (i.e., CSA) is not. As EPA stated in its June 19, 2019 email, even though CSA is an independent supplier, it is subject to 316(b) requirements because it is a co-permittee with CPV Fairview (NPDES PA0253359). Also, even though § 125.91(b) only states that the independent supplier must be an existing facility for the § 125.91(b) exemption to apply to facilities like NAH, the preamble to the 2014 Existing Facilities rule (79 FR 48305) clarifies that the independent supplier must be an existing facility that is subject to 316(b) requirements for the facilities served by the independent supplier to be exempt as 'not using a cooling water intake structure'. The relevant portion of the preamble states:

C. General Applicability

This rule applies to owners and operators of existing facilities that meet all following criteria:

• The facility is a point source that uses or, in the case of new units at an existing facility, proposes to use cooling water from one or more cooling water intake structures, including a cooling water intake structure operated by an independent supplier not otherwise subject to 316(b) requirements that withdraws water from

waters of the United States and provides cooling water to the facility by any sort of contract or other arrangement; [...]

In summary, if the independent supplier is an existing facility subject to 316(b) requirements, then the facilities that use water supplied by that independent supplier for cooling purposes are not considered to be using a cooling water intake structure. Consequently, the independent supplier's customers who are served by the independent suppliers' cooling water intake structures do not satisfy the § 125.91(a)(2) applicability criterion. That is, NAH does not use one or more cooling water intake structures with a design intake flow greater than 2 MGD because NAH's water supply arrangement with CSA does not qualify (for NAH) as "use of a cooling water intake structure". Since NAH does not meet one of the three applicability criteria in § 125.91(a), NAH is not subject to the requirements of §§ 125.94 – 125.99.

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

)ischarge, Recei	ving Wate	rs and Water Supply Info	ormation	
Outfall No. 0	02		_ Design Flow (MGD)	1.2
Latitude 4	0º 11' 48"		Longitude	-78º 56' 02"
Quad Name	Hooversvi	lle	Quad Code	1714
Wastewater De	scription:	NCCW		
Receiving Wate	rs Stony	creek River (TSF)	Stream Code	45084
NHD Com ID	1237	19580	RMI	17.4
Drainage Area	146		Yield (cfs/mi ²)	0.070
Q ₇₋₁₀ Flow (cfs)	10.3		Q ₇₋₁₀ Basis	USGS StreamStats
Elevation (ft)	1535		Slope (ft/ft)	0.0001
Watershed No.	18-E		Chapter 93 Class.	TSF
Existing Use			Existing Use Qualifier	
Exceptions to U	se		Exceptions to Criteria	
Assessment Sta	atus	Attaining Use(s)		
Cause(s) of Imp	airment	U , <i>i</i>		
Source(s) of Im	pairment			
TMDL Status		Final	Kiskiminetas Name Watersheds	s-Conemaugh River TMDL
Nearest Downs	tream Publ	ic Water Supply Intake	Saltsburg Municpal Waterwor	ks
PWS Waters	Conema	augh River	Flow at Intake (cfs)	124
PWS RMI	0.52		Distance from Outfall (mi)	>50

Discharge, Receiving Waters and Water Supply Information	ion	
Outfall No. 003 Latitude 40° 11' 27" Quad Name Hooversville Westewater Description:	Design Flow (MGD) Longitude Quad Code	0 -78º 56' 07" 1714
Wastewater Description: Stormwater		
Receiving WatersQuemahoning Creek (CWF)NHD Com ID123719512	Stream Code RMI	<u>45371</u> 0.37
Watershed No. <u>18-E</u> Existing Use	Chapter 93 Class. Existing Use Qualifier	CWF
Exceptions to Use Assessment Status Attaining Use(s) Cause(s) of Impairment Source(s) of Impairment	Exceptions to Criteria	
TMDL Status	Kiskiminetas Name Watersheds	s-Conemaugh River TMDL
Discharge, Receiving Waters and Water Supply Informati	ion	
Outfall No. 004 Latitude 40° 11' 34" Quad Name Hooversville	Design Flow (MGD) Longitude Quad Code	0 -78º 56' 13" 1714
Wastewater Description: Stormwater		
Receiving WatersQuemahoning Creek (CWF)NHD Com ID123719512Watershed No.18-E	Stream Code RMI Chapter 93 Class.	45371 0.37 CWF
Existing Use	Existing Use Qualifier	0111
	6	
Exceptions to Use Assessment Status Attaining Use(s) Cause(s) of Impairment Source(s) of Impairment	Exceptions to Criteria	

Kiskiminetas-Conemaugh River

Name Watersheds TMDL

Discharge, Receiving Waters and Water Supply Information	n	
Outfall No. 005	Decign Flow (MCD)	0
Outfall No. <u>005</u> Latitude 40º 11' 38"	Design Flow (MGD) Longitude	<u>0</u> -78º 56' 11"
Quad Name Hooversville	Quad Code	1714
		1714
Wastewater Description: Stormwater		
Receiving Waters _ Quemahoning Creek (CWF)	Stream Code	45371
NHD Com ID 123719512	RMI	0.27
Watershed No. 18-E	Chapter 93 Class.	CWF
Existing Use	Existing Use Qualifier	
Exceptions to Use	Exceptions to Criteria	
Assessment Status Attaining Use(s)		
Cause(s) of Impairment		
Source(s) of Impairment		
TMDL Status Final	Kiskiminetas Name Watersheds	Conemaugh River TMDL
Discharge, Receiving Waters and Water Supply Information	n	
Outfall No. 006	Design Flow (MGD)	0
Latitude 40° 11' 50"	Longitude	-78º 56' 06"
Latitude40° 11' 50"Quad NameHooversville	• • •	
Latitude 40° 11' 50"	Longitude	-78º 56' 06"
Latitude40° 11' 50"Quad NameHooversvilleWastewater Description:Stormwater	Longitude Quad Code	-78º 56' 06" 1714
Latitude 40° 11' 50" Quad Name Hooversville Wastewater Description: Stormwater Receiving Waters Stonycreek River (TSF)	Longitude Quad Code Stream Code	-78º 56' 06" 1714 45084
Latitude 40° 11' 50" Quad Name Hooversville Wastewater Description: Stormwater Receiving Waters Stonycreek River (TSF) NHD Com ID 123719580	Longitude Quad Code Stream Code RMI	<u>-78° 56' 06"</u> 1714 45084 17.32
Latitude 40° 11' 50" Quad Name Hooversville Wastewater Description: Stormwater Receiving Waters Stonycreek River (TSF) NHD Com ID 123719580 Watershed No. 18-E	Longitude Quad Code Stream Code RMI Chapter 93 Class.	-78º 56' 06" 1714 45084
Latitude 40° 11' 50" Quad Name Hooversville Wastewater Description: Stormwater Receiving Waters Stonycreek River (TSF) NHD Com ID 123719580 Watershed No. 18-E Existing Use	Longitude Quad Code Stream Code RMI Chapter 93 Class. Existing Use Qualifier	<u>-78° 56' 06"</u> 1714 45084 17.32
Latitude 40° 11' 50" Quad Name Hooversville Wastewater Description: Stormwater Receiving Waters Stonycreek River (TSF) NHD Com ID 123719580 Watershed No. 18-E Evisting Lise	Longitude Quad Code Stream Code RMI Chapter 93 Class.	<u>-78° 56' 06"</u> 1714 45084 17.32
Latitude 40° 11' 50" Quad Name Hooversville Wastewater Description: Stormwater Receiving Waters Stonycreek River (TSF) NHD Com ID 123719580 Watershed No. 18-E Existing Use	Longitude Quad Code Stream Code RMI Chapter 93 Class. Existing Use Qualifier	<u>-78° 56' 06"</u> 1714 45084 17.32

TMDL Status

Final

Source(s) of Impairment

8

Discharge, Receiving Waters and Water Supply Informat	ion	
Outfall No. 007	Design Flow (MGD)	0
Latitude 40° 11' 46"	Longitude	-78º 55' 59"
Quad Name Hooversville	Quad Code	1714
Wastewater Description: Stormwater		
Receiving Waters Stonycreek River (TSF)	Stream Code	45084
NHD Com ID 123719580	RMI	17.4
Watershed No. 18-E	Chapter 93 Class.	TSF
Existing Use	Existing Use Qualifier	
Exceptions to Use	Exceptions to Criteria	
Assessment Status Attaining Use(s)	-	
Cause(s) of Impairment		
Source(s) of Impairment		
		S-Conemaugh River
TMDL Status Final	Name Watersheds	IMDL
Discharge, Receiving Waters and Water Supply Informat	ion	
Outfall No. 008	Design Flow (MGD)	0
Latitude 40° 11' 46"	Longitude	-78º 56' 06"
Quad Name Hooversville	Quad Code	1714
Wastewater Description: Stormwater		
Receiving Waters Quemahoning Creek (CWF)	Stream Code	45371
NHD Com ID 123719511	RMI	0.09
Watershed No. 18-E	- Chapter 93 Class.	CWF
Existing Use	Existing Use Qualifier	
Exceptions to Use	Exceptions to Criteria	
Assessment Status Attaining Use(s)	- '	
Cause(s) of Impairment		
Source(s) of Impairment		
TMDL Status Final	Kiskiminetas	S-Conemaugh River

Discharge, Receiving Waters and Water Supply Information	tion	
Outfall No. 009	Design Flow (MGD)	0
Latitude 40° 11' 42"	Longitude	-78º 56' 08"
Quad Name Hooversville	Quad Code	1714
Wastewater Description: Stormwater		
Receiving Waters _ Quemahoning Creek (CWF)	_ Stream Code	45371
NHD Com ID 123719512	RMI	0.16
Watershed No. 18-E	Chapter 93 Class.	CWF
Existing Use	Existing Use Qualifier	
Exceptions to Use	Exceptions to Criteria	
Assessment Status Attaining Use(s)		
Cause(s) of Impairment		
Source(s) of Impairment		
		-Conemaugh River
TMDL Status Final	Name Watersheds	IMDL
Discharge, Receiving Waters and Water Supply Informa	tion	
Discharge, Receiving Waters and Water Supply Information	tion	
Discharge, Receiving Waters and Water Supply Information Outfall No. 010		0
	tion Design Flow (MGD) Longitude	0 -78° 55' 19"
Outfall No. 010	Design Flow (MGD)	
Outfall No. 010 Latitude 40º 11' 47" Quad Name Hooversville	Design Flow (MGD) Longitude	-78º 55' 19"
Outfall No. 010 Latitude 40º 11' 47" Quad Name Hooversville	Design Flow (MGD) Longitude	-78º 55' 19"
Outfall No. 010 Latitude 40º 11' 47" Quad Name Hooversville	Design Flow (MGD) Longitude	-78º 55' 19"
Outfall No. 010 Latitude 40° 11' 47" Quad Name Hooversville Wastewater Description: Stormwater	Design Flow (MGD) Longitude Quad Code	-78º 55' 19" 1714
Outfall No. 010 Latitude 40° 11' 47" Quad Name Hooversville Wastewater Description: Stormwater Receiving Waters Stonycreek River (TSF)	Design Flow (MGD) Longitude Quad Code Stream Code	-78º 55' 19" 1714 45084
Outfall No. 010 Latitude 40° 11' 47" Quad Name Hooversville Wastewater Description: Stormwater Receiving Waters Stonycreek River (TSF) NHD Com ID 123719580	Design Flow (MGD) Longitude Quad Code _ Stream Code _ RMI	-78° 55' 19" 1714 45084 18.0
Outfall No. 010 Latitude 40° 11' 47" Quad Name Hooversville Wastewater Description: Stormwater Receiving Waters Stonycreek River (TSF) NHD Com ID 123719580 Watershed No. 18-E	Design Flow (MGD) Longitude Quad Code _ Stream Code _ RMI _ Chapter 93 Class.	-78° 55' 19" 1714 45084 18.0
Outfall No. 010 Latitude 40° 11' 47" Quad Name Hooversville Wastewater Description: Stormwater Receiving Waters Stonycreek River (TSF) NHD Com ID 123719580 Watershed No. 18-E Existing Use	Design Flow (MGD) Longitude Quad Code Stream Code RMI Chapter 93 Class. Existing Use Qualifier	-78° 55' 19" 1714 45084 18.0
Outfall No. 010 Latitude 40° 11' 47" Quad Name Hooversville Wastewater Description: Stormwater Receiving Waters Stonycreek River (TSF) NHD Com ID 123719580 Watershed No. 18-E Existing Use	Design Flow (MGD) Longitude Quad Code Stream Code RMI Chapter 93 Class. Existing Use Qualifier	-78° 55' 19" 1714 45084 18.0
Outfall No. 010 Latitude 40° 11' 47" Quad Name Hooversville Wastewater Description: Stormwater Receiving Waters Stonycreek River (TSF) NHD Com ID 123719580 Watershed No. 18-E Existing Use	Design Flow (MGD) Longitude Quad Code Stream Code RMI Chapter 93 Class. Existing Use Qualifier	-78° 55' 19" 1714 45084 18.0
Outfall No. 010 Latitude 40° 11' 47" Quad Name Hooversville Wastewater Description: Stormwater Receiving Waters Stonycreek River (TSF) NHD Com ID 123719580 Watershed No. 18-E Existing Use	Design Flow (MGD) Longitude Quad Code Stream Code RMI Chapter 93 Class. Existing Use Qualifier Exceptions to Criteria	-78° 55' 19" 1714 45084 18.0

Outfall No. 013 Design Flow (MGD) 0 Latitude 40° 11' 19" Longitude -78° 56' 08" Quad Name Hooversville Quad Code 1714 Wastewater Description: Stormwater Quemahoning Creek (CWF) Stream Code 45382 NHD Com ID 123719280 RMI 0.15 Watershed No. 18-E Chapter 93 Class. CWF Existing Use Existing Use Existing Use Qualifier Exceptions to Use Attaining Use(s) Exceptions to Criteria Cause(s) of Impairment Attaining Use(s) Kiskiminetas-Conemaugh River TMDL Status Final Name Watersheds TMDL
Latitude 40° 11' 19" Longitude -78° 56' 08" Quad Name Hooversville Quad Code 1714 Wastewater Description: Stormwater Stormwater Receiving Waters Quemahoning Creek (CWF) Stream Code 45382 NHD Com ID 123719280 RMI 0.15 Watershed No. 18-E Chapter 93 Class. CWF Existing Use Existing Use Qualifier Exceptions to Use Exceptions to Criteria Assessment Status Attaining Use(s) Cause(s) of Impairment Attaining Use(s) Cause(s) of Impairment Kiskiminetas-Conemaugh River
Quad Name Hooversville Quad Code 1714 Wastewater Description: Stormwater Unnamed Tributary to Receiving Waters Quemahoning Creek (CWF) Stream Code 45382 NHD Com ID 123719280 RMI 0.15 Watershed No. 18-E Chapter 93 Class. CWF Existing Use Existing Use Qualifier Exceptions to Criteria
Wastewater Description: Stormwater Receiving Waters Unnamed Tributary to Quemahoning Creek (CWF) Stream Code 45382 NHD Com ID 123719280 RMI 0.15 Watershed No. 18-E Chapter 93 Class. CWF Existing Use Existing Use Qualifier Exceptions to Use Exceptions to Criteria Assessment Status Attaining Use(s) Attaining Use(s) Kiskiminetas-Conemaugh River
Receiving Waters Unnamed Tributary to Quemahoning Creek (CWF) Stream Code 45382 NHD Com ID 123719280 RMI 0.15 Watershed No. 18-E Chapter 93 Class. CWF Existing Use Existing Use Qualifier Exceptions to Use Exceptions to Criteria Assessment Status Attaining Use(s) Attaining Use(s) Kiskiminetas-Conemaugh River
Receiving Waters Quemahoning Creek (CWF) Stream Code 45382 NHD Com ID 123719280 RMI 0.15 Watershed No. 18-E Chapter 93 Class. CWF Existing Use Existing Use Qualifier Exceptions to Use Exceptions to Criteria Assessment Status Attaining Use(s) Attaining Use(s) Kiskiminetas-Conemaugh River
Receiving Waters Quemahoning Creek (CWF) Stream Code 45382 NHD Com ID 123719280 RMI 0.15 Watershed No. 18-E Chapter 93 Class. CWF Existing Use Existing Use Qualifier Exceptions to Use Exceptions to Criteria Assessment Status Attaining Use(s) Attaining Use(s) Kiskiminetas-Conemaugh River
NHD Com ID 123719280 RMI 0.15 Watershed No. 18-E Chapter 93 Class. CWF Existing Use Existing Use Qualifier Exceptions to Use Exceptions to Criteria Assessment Status Attaining Use(s) Attaining Use(s) Exceptions to Criteria Source(s) of Impairment Kiskiminetas-Conemaugh River
Watershed No. 18-E Chapter 93 Class. CWF Existing Use Existing Use Qualifier Existing Use Qualifier Exceptions to Use Exceptions to Criteria Exceptions to Criteria Assessment Status Attaining Use(s) Exceptions to Criteria Cause(s) of Impairment Exceptions to Criteria Exceptions to Criteria Source(s) of Impairment Kiskiminetas-Conemaugh River
Existing Use Existing Use Qualifier Exceptions to Use Exceptions to Criteria Assessment Status Attaining Use(s) Cause(s) of Impairment Source(s) of Impairment Source(s) of Impairment Kiskiminetas-Conemaugh River
Exceptions to Use Exceptions to Criteria Assessment Status Attaining Use(s) Cause(s) of Impairment
Assessment Status Attaining Use(s) Cause(s) of Impairment Source(s) of Impairment Kiskiminetas-Conemaugh River
Cause(s) of Impairment Source(s) of Impairment Kiskiminetas-Conemaugh River
Source(s) of Impairment Kiskiminetas-Conemaugh River
Kiskiminetas-Conemaugh River
Discharge, Receiving Waters and Water Supply Information
Outfall No. 014 (IMP 114, IMP 214) Design Flow (MGD) 0.1
Latitude 40° 11' 30" Longitude -78° 55' 56"
Quad Name Hooversville Quad Code 1714
Wastewater Description: Reverse Osmosis Reject Wastewater, NCCW
•
Receiving Waters Stonycreek River (TSF) Stream Code 45084
NHD Com ID 123719580 RMI 17.4
Drainage Area 146 Yield (cfs/mi ²) 0.070
Q ₇₋₁₀ Flow (cfs) 10.3 Q ₇₋₁₀ Basis USGS StreamStats
Elevation (ft) 1535 Slope (ft/ft) 0.0001
Watershed No. 18-E Chapter 93 Class. TSF
Existing Use Existing Use Qualifier
Exceptions to Use Exceptions to Criteria
Assessment Status Attaining Use(s)
Cause(s) of Impairment
Source(s) of Impairment
Kiskiminetas-Conemaugh River
TMDL Status Final Name Watersheds TMDL
Nearest Downstream Public Water Supply Intake Saltsburg Municpal Waterworks
PWS Waters Conemaugh River Flow at Intake (cfs) 124
PWS RMI 0.52 Distance from Outfall (mi) >50

Development of Effluent Limitations

Outfall No.	002		Design Flow (MGD)	1.20
Latitude	40º 11' 48"		Longitude	-78º 56' 02"
Wastewater D	escription:	Noncontact cooling water		

Technology Based Limitations

Regulatory Effluent Standards and Monitoring Requirements

Flow monitoring is required pursuant to 25 Pa. Code § 92a.61(d)(1).

Temperature limits will be imposed per the Department's "*Implementation Guidance for Temperature Criteria*." As a policy, DEP normally imposes a maximum temperature limit of 110°F on discharges that contain residual heat. The limit is intended as a safety measure to protect sampling personnel or anyone who may come into contact with the heated discharge where it enters the receiving water.

Effluent standards for pH are also imposed on industrial wastes by 25 Pa. Code § 95.2(1) as indicated in Table 1.

Table 1: Regulatory Effluent Standards and Monitoring Requirements for Outfall 002

Parameter	Monthly Average	Daily Maximum	IMAX	Units
Flow	Monitor	and Report	XXX	MGD
Temperature	XXX	XXX	110	°F
рН	Not le	ess than 6.0 nor greater th	ian 9.0	S.U.

Water Quality-Based Limitations

Toxics Management Spread Sheet

The Department of Environmental Protection (DEP) has developed the DEP Toxics Management Spreadsheet ("TMS") to facilitate calculations necessary for completing a reasonable potential (RP) analysis and determining water quality-based effluent limitations for discharges of toxic pollutants. The Toxics Management Spreadsheet is a macro-enabled Excel binary file that combines the functions of the PENTOXSD model and the Toxics Screening Analysis spreadsheet to evaluate the reasonable potential for discharges to cause excursions above water quality standards and to determine WQBELs. The Toxics Management Spread Sheet is a single discharge, mass-balance water quality calculation spread sheet that includes consideration for mixing, first-order decay and other factors to determine recommended WQBELs for toxic substances and several non-toxic substances. Required input data including stream code, river mile index, elevation, drainage area, discharge name, NPDES permit number, discharge flow rate and the discharge concentrations for parameters in the permit application or in DMRs, which are entered into the spread sheet to establish site-specific discharge conditions. Other data such as low flow yield, reach dimensions and partial mix factors may also be entered to further characterize the conditions of the discharge and receiving water. Discharge concentrations for the parameters are chosen to represent the "worst case" quality of the discharge (i.e., maximum reported discharge concentrations). The spread sheet then evaluates each parameter by computing a Waste Load Allocation for each applicable criterion, determining a recommended maximum WQBEL and comparing that recommended WQBEL with the input discharge concentration to determine which is more stringent. Based on this evaluation, the Toxics Management Spread sheet recommends average monthly and maximum daily WQBELs.

Reasonable Potential Analysis and WQBEL Development for Outfall 002

Discharges from Outfall 002 are evaluated based on concentrations reported on the application and on DMRs; data from those sources are entered into the Toxics Management Spread Sheet. The maximum reported value of the parameters from the application form or from previous DMRs is used as the input concentration in the Toxics Management Spread Sheet. All toxic pollutants whose maximum concentrations, as reported in the permit application or on DMRs, are greater than the most stringent applicable water quality criterion are considered to be pollutants of concern. [This includes pollutants reported as "Not Detectable" or as "<MDL" where the method detection limit for the analytical method used by the applicant is greater than the most stringent water quality criterion]. The Toxics Management Spread Sheet is run with the discharge and receiving stream characteristics shown in Table 2. For IW discharges, the design flow used in modeling is the average flow during production or operation taken from the permit application. Pollutants for which water quality standards have not been promulgated (e.g., TSS, oil and grease) are excluded from the analysis. All the parameters are

NPDES Permit Fact Sheet North American Höganäs

evaluated using the model to determine the water quality-based effluent limits applicable to the discharge and the receiving stream. The spreadsheet then compares the reported discharge concentrations to the calculated water qualitybased effluent limitations to determine if a reasonable potential exists to exceed the calculated WQBELs. Effluent limitations are established in the draft permit where a pollutant's maximum reported discharge concentration equals or exceeds 50% of the WQBEL. For non-conservative pollutants, monitoring requirements are established where the maximum reported concentration is between 25% - 50% of the WQBEL. For conservative pollutants, monitoring requirements are established where the maximum reported concentration is between 25% - 50% of the WQBEL. For conservative pollutants, monitoring requirements are established where the maximum reported concentration is between 10% - 50% of the WQBEL. The information described above including the maximum reported discharge concentrations, the most stringent water quality criteria, the pollutant-of-concern (reasonable potential) determinations, the calculated WQBELs, and the WQBEL/monitoring recommendations are displayed in the Toxics Management Spread Sheet in Attachment B of this Fact Sheet. The water quality-based effluent limitations and monitoring requirements that are recommended by the Toxics Management Spread Sheet are displayed below in Table 3. The discharge concentrations used in the modeling are also included in Table 3.

Table 2: TMS Inputs for Outfall 002

Parameter	Value			
River Mile Index	17.4			
Discharge Flow (MGD)	0.325			
Basin/Stream Characteristics				
Parameter	Value			
Area in Square Miles	146			
Area in Square Miles Q ₇₋₁₀ (cfs)	146 10.3			
•				
Q ₇₋₁₀ (cfs)	10.3			

Table 3: Water Quality Base Effluent Limitations at Outfall 002

Parameters	Average Monthly	Daily Maximum	Discharge Concentration used in modeling
Total Copper (µg/L)	Monitor	Monitor	14.8

Thermal WQBELs for Heated Discharges

Thermal WQBELs are evaluated using a DEP program called "Thermal Discharge Limit Calculation Spreadsheet" created with Microsoft Excel for Windows. The program calculates temperature WLAs through the application of a heat transfer equation, which takes two forms in the program depending on the source of the facility's cooling water. In Case 1, intake water to a facility is from the receiving stream. In Case 2, intake water is from a source other than the receiving stream (e.g., municipal water supply). The determination of which case applies to a given discharge is determined by the input data which include the receiving stream flow rate (Q_{7-10} or the minimum regulated flow for large rivers), the stream intake flow rate, external source intake flow rates, consumptive flow rates and site-specific ambient stream temperatures. Case 1 limits are generally expressed as heat rejection rates while Case 2 limits are usually expressed as temperatures.

Since the temperature criteria from 25 Pa. Code Chapter 93.7(a) are expressed on monthly and semi-monthly bases for three different aquatic life-uses—cold water fishes, warm water fishes and trout stocking—the program generates monthly and semi-monthly limits for each use. DEP selects the output that corresponds to the aquatic life-use of the receiving stream and consequently which limits apply to the discharge. Temperature WLAs are bounded by an upper limit of 110°F for the safety of sampling personnel and anyone who may come into contact with the heated discharge where it enters the receiving water. If no WLAs below 110°F are calculated, an instantaneous maximum limit of 110°F is recommended by the program.

Discharges from Outfall 002 are classified under Case 2 because water is obtained from water supply. The flow rate used for modeling is the summation of the maximum discharge flow from all of the outfalls combined, 1.517 MGD. The results of the thermal analysis, included in Attachment C, indicate that WQBELs for temperature is required at Outfall 002 and are displayed below in Table 4.

Table 4. Thermal Limitations

Date Ranges	Instantaneous Temperature Limits (°F)
Jan 1 – Jun 30	110.0
Jul 1 -31	81.5
Aug 1 – Nov 30	110.0
Dec 1 – Dec 31	105.2

Total Maximum Daily Loads

Wastewater discharges from NAH are located within the Kiskiminetas-Conemaugh River Watersheds for which the Department has developed a TMDL. The TMDL was finalized on January 29, 2010 and establishes waste load allocations for the discharge of aluminum, iron and manganese within the Kiskiminetas-Conemaugh River Watersheds, Section 303(d) of the Clean Water Act and the U.S. Environmental Protection Agency's Water Quality Planning and Management Regulations (codified at Title 40 of the Code of Federal Regulations Part 130) require states to develop a TMDL for impaired water bodies. A TMDL establishes the amount of a pollutant that a water body can assimilate without exceeding the water guality criteria for that pollutant. TMDLs provide the scientific basis for a state to establish water quality-based controls to reduce pollution from both point and non-point sources in order to restore and maintain the quality of the state's water resources (USEPA 1991a). Stream reaches within the Kiskiminetas-Conemaugh River Watersheds are included in the state's 2008 Section 303(d) list because of various impairments, including metals, pH and sediment. The TMDL includes consideration for each river and tributary within the target watershed and its impairment sources. Stream data is then used to calculate minimum pollutant reductions that are necessary to attain water quality criteria levels. Target concentrations published in the TMDL were based on established water quality criteria of 0.750 mg/L total recoverable aluminum, 1.5 mg/L total recoverable iron based on a 30-day average and 1.0 mg/L total recoverable manganese. The reduction needed to meet the minimum water quality standards is then divided between each known point and non-point pollutant source in the form of a watershed allocation. TMDLs prescribe allocations that minimally achieve water quality criteria (i.e., 100 percent use of a stream's assimilative capacity). The NAH permit, (PA0110655), is not listed in the Appendix G of the Kiskiminetas-Conemaugh River Watersheds TMDL and therefore. wasn't provided load allocations. It was assumed that discharges from Quemahoning Plant do not contain aluminum, iron, and manganese since they are not permitted to discharge these metals. Therefore, these points source were not considered as potential sources of the metal impairments in the Kiskiminetas-Conemaugh River Watersheds. In other words, if it is determined that a site is discharging wastewater containing these parameters, the site must meet the instream criterion values for these parameters at the point of discharge. Based on the permit application, the discharge indicated that aluminum, iron, and manganese are present in the discharge. Therefore, limitations equal to the instream criteria will be imposed at Outfall 002 and are displayed below in Table 5.

The specific water quality criterion for aluminum is expressed as an acute or maximum daily in 25 Pa. Code Chapter 93. Discharges of aluminum may only be authorized to the extent that they will not cause or contribute to any violation of the water quality standards. Therefore, the water quality criterion for aluminum (0.75 mg/L) is imposed as a maximum daily effluent limit (MDL). Whenever the most stringent criterion is selected for the MDL, the Department should also impose an average monthly limit (AML) and instantaneous maximum limit (IMAX) if applicable. The imposition of an AML that is more stringent than the MDL is typically not appropriate because the water quality concerns have already been fully addressed by setting the MDL equal to the most stringent applicable criterion. Therefore, where the MDL is set at the value of the most stringent applicable criterion, the AML should be set equal to the MDL.

The specific water quality criterion for iron is expressed as a 30-day average of 1.5 ^{mg}/_L in 25 Pa. Code § 93.7(a). The criterion is based on the protection of aquatic life and is associated with chronic exposure. There are no other criteria for total iron. Since the duration of the total iron criterion coincides with the 30-day duration of the AML, the 30-day average criterion for total iron is set equal to the AML. In addition, because the total iron criterion is associated with chronic exposure, the MDL (representing acute exposure) and the IMAX may be made less stringent according to established procedures described in Section III.C.3.h on Page 13 of the Water Quality Toxics Management Strategy (Doc. # 361-0100-003). These procedures state that a MDL and IMAX may be set at 2 times and 2.5 times the AML, respectively, or there is the option to use multipliers from EPA's Technical Support Document for Water Quality-based Toxics Control, if data are available to support the use of alternative multipliers.

The specific water quality criterion for manganese is expressed as an acute or maximum daily of 1.0 mg/L in 25 Pa. Code § 93.7(a). The criterion is based on the protection of human health and is associated with chronic exposure associated with a potable water supply (PWS). Since no duration is given in Chapter 93 for the manganese criterion, a duration of 30 days is used based on the water quality criteria duration for Threshold Human Health (THH) criteria given in Section III.C.3.a., Table 1 on Page 10 of DEP's Water Quality Toxics Management Strategy. The 30-day duration for THH criteria

NPDES Permit Fact Sheet North American Höganäs

coincides with the 30-day duration of an AML, which is why the manganese criterion is set equal to the AML for a "permitting at criteria" scenario. Because the manganese criterion is interpreted as having chronic exposure, the manganese MDL and IMAX may be made less stringent according to procedures established in Section III.C.2.h. of the Water Quality Toxics Management Strategy (AML multipliers of 2.0 and 2.5 for the MDL and IMAX respectively).

Parameter	Discharge Concentrations	TMDL Limits (mg/L)		
i di di locol	(mg/L)	Average Monthly	Daily Maximum	
Aluminum, total	0.067	0.75	0.75	
Iron, total	0.330	1.5	3.0	
Manganese, total	0.140	1.0	2.0	

Table 5: Kiskiminetas-Conemaugh River Watersheds TMDL Limits

Anti-backsliding

Previous limits can be used pursuant to EPA's anti-backsliding regulation, 40 CFR 122.44(I) and are displayed below in Table 6. A Part C condition was included in the permit stating that there shall be no discharges of non-contact cooling water from the powder operation except during the period from June 1 through August 31. However, based on new information the temperature limits in the current permit will be removed and replaced with the new temperature limits that are based on current discharge flow rate of the non-contact cooling water from Outfall 002.

Table 6. Existing Effluent Limitations at Outfall 002

Parameter	Monthly Average	Daily Maximum	Instantaneous Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Monitor	Monitor		1/Week	Measure
Temperature (°F) Jun 1 – 15 Jun 16 – 30 Jul 1 – 31 Aug 1 – 15 Aug 16 – May 31			84 81 76 91 110	1/Week	i-s
pH (S.U.)	Not less th	nan 6.0 nor grea	ater than 9.0	1/Week	Grab

Proposed Effluent Limitations for Outfall 002

The proposed effluent limitations and monitoring requirements for Outfall 002 are shown below in Table 7. The limits are the most stringent values from the above limitation analysis.

Table 7. Existing Effluent Limitations at Outfall 002

Parameter	Monthly Average	Daily Maximum	Instantaneous Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Monitor	Monitor		1/Week	Measure
Copper, Total (mg/L)	Monitor	Monitor		1/Week	Grab
Aluminum, Total	0.75	0.75		1/Week	Grab
Iron, total	1.5	3.0		1/Week	Grab
Manganese, total	1.0	2.0		1/Week	Grab
Temperature (°F) Jan 1 – June 30 Jul 1 – 31 Aug 1 – Nov 30 Dec 1 – Dec 31			110 81.5 110 105.2	1/Week	i-s
pH (S.U.)	Not less th	an 6.0 nor grea	ater than 9.0	1/Week	Grab

Development of Effluent Limitations						
Outfall No.	003, 004, 006, 007, and 010	Design Flow (MGD)	0			
Latitude	Varies	Longitude	Varies			
Wastewater Description: Stormwater						

Technology-Based Effluent limitations:

Outfalls 003, 004, 006, 007 and 010 will be subject to PAG-03 General Stormwater Permit conditions as a minimum requirement because each outfall discharges stormwater. Based on the site's SIC code the corresponding appendix that would apply to the facility is Appendix B of the PAG-03. The proposed monitoring requirements are shown in Table 8 below. The benchmark values list below are not effluent limitation, and exceedances so not constitutes permit violations. However, if the permittee's sampling demonstrates exceedances of benchmark values for two consecutive monitoring periods, the permit shall submit a corrective action plan. This requirement will be included in Part C of the permit.

Table 8: PAG-03 Appendix (B) Monitoring Requirements

	Monitoring Rec	uirements	Benchmark
Parameters	Minimum		Values
T drameters	Measurement	- · -	
	Frequency	Sample Type	
Total Suspended Solids (TSS) (mg/L)	1 / 6 Months	Grab	100
Total Aluminum (mg/L)	1 / 6 Months	Grab	XXX
Total Zinc (mg/L)	1 / 6 Months	Grab	XXX
Total Copper (mg/L)	1 / 6 Months	Grab	XXX
Total Iron (mg/L)	1 / 6 Months	Grab	XXX
Total Lead (mg/L)	1 / 6 Months	Grab	XXX

Water Quality-Based Effluent limitations:

Water quality analyses are typically performed under low-flow (Q7-10) conditions. Stormwater discharges occur at variable rates and frequencies but not however during Q7-10 conditions. Since the discharges from Outfalls 003, 004, 006, 007, and 010 are composed entirely of stormwater, a formal water quality analysis cannot be accurately conducted. Accordingly, water quality-based effluent limitations based on water quality analyses are not proposed.

Anti-Backsliding

Previous limits can be used pursuant to EPA's anti-backsliding regulation, 40 CFR 122.44(I) and are displayed below in Table 9. These limitations are currently imposed on Outfalls 003, 004, 006, 007, and 010. Effluent goals were included in a Part C conditions for these parameters at these outfalls.

Table 9. Current Limitations at Outfall 003, 004, 006, 007, 010

Parameter	Monthly Average	Daily Maximum	Goal (mg/L)	Measurement Frequency	Sample Type
Total Suspended Solids	Monitor	Monitor	100	1/Quarter	Grab
Nitrate-Nitrite as Nitrogen	Monitor	Monitor	0.68	1/Quarter	Grab
Cadmium	Monitor	Monitor	0.0159	1/Quarter	Grab
Lead	Monitor	Monitor	0.0816	1/Quarter	Grab
Zinc	Monitor	Monitor	0.117	1/Quarter	Grab

1/6 Months

1/6 Months

Grab

Grab

Proposed Final Effluent Limitations

Nitrate-Nitrite as Nitrogen

Cadmium

The proposed effluent monitoring requirements for Outfalls 003, 004, 006, 007, and 010 are displayed in Table 10 below, they are the most stringent values from the above effluent limitation development. The monitoring frequency for the existing monitoring requirements has been changed from 1/quarter to semi-annually to reflect that monitoring frequency in the PAG-03 general permit. The Draft Permit requires a Corrective Action Plan when there are two consecutive exceedances of the benchmark values, which are also included in the Part C condition. The benchmark values are displayed below in Table 10. The effluent goals for Nitrate-Nitrite as Nitrogen, Cadmium, Lead, and Zinc that were included in a Part C condition in the current permit will be converted to Benchmark values. These values are not effluent limitations, an exceedance of the benchmark value is not a violation. As described above, if there are two consecutive exceedances of the benchmark value, a Corrective Action Plan must be conducted to evaluate site stormwater controls and BMPs. Benchmark monitoring is a feedback tool, along with routine inspections and visual assessments, for assessing the effectiveness of stormwater controls and BMPs. An exceedance of the benchmark provides permittees with an indication that the facility's controls may not be sufficiently controlling pollutants in stormwater.

Table 10. Troposed Endent Monitoring Requirements for Otorinwater Outlans							
Parameter	Max Daily Concentration	Benchmark Values (mg/L)	Measurement Frequency	Sample Type			
Total Suspended Solids (TSS)	Report	100.0	1/6 Months	Grab			
Total Aluminum	Report	XXX	1/6 Months	Grab			
Total Zinc	Report	0.117	1/6 Months	Grab			
Total Copper	Report	XXX	1/6 Months	Grab			
Total Iron	Report	XXX	1/6 Months	Grab			
Total Lead	Report	0.0816	1/6 Months	Grab			

Report

Report

0.68

0.0159

Table 10: Proposed Effluent Monitoring Requirements for Stormwater Outfalls

Development of Effluent Limitations					
Outfall No.	005, 008, 00	9 and 013	Design Flow (MGD)	0	
Latitude	Varies		Longitude	Varies	
Wastewater	Description:	Uncontaminated Stormwater			

Outfalls 005, 008, 009 and 013 are considered uncontaminated stormwater therefore no effluent limitations or monitoring is imposed. All other Part C conditions of the NPDES permit are applicable for these outfalls.

Development of Effluent Limitations

Outfall No.	014	Design Flow (MGD)	0.417
Latitude	40º 11' 48"	Longitude	-78º 56' 02"
Wastewater D	escription:	RO Reject Wastewater, Non-contact cooling water	

All wastewater discharged via Outfall 014 is monitored at internal monitoring points 114 and 214.

Development of Effluent Limitations

IMP No.	114 (Previou	sly Outfall 102)	Design Flow (MGD)	0.10
Latitude	40º 11' 48"		Longitude	-78º 56' 02"
Wastewater De	escription:	Reverse Osmosis Reject Wastewater		

Technology-Based Limitations

Regulatory Effluent Standards and Monitoring Requirements

Flow monitoring is required pursuant to 25 Pa. Code § 92a.61(d)(1).

Effluent standards for pH are also imposed on industrial wastes by 25 Pa. Code § 95.2(1) as indicated in Table 11.

Table 11: Regulatory Effluent Standards and Monitoring Requirements for IMP 102

Parameter	Monthly Average	Daily Maximum	IMAX	Units	
Flow	Monitor	and Report	XXX	MGD	
Dissolved Iron	XXX			mg/L	
рН	Not le	Not less than 6.0 nor greater than 9.0			

Best Practicable Control Technology Currently Achievable (BPT)

BPT for wastewater from treatment of WTP sludges and filter backwash is found in DEPs Technology-Based Control Requirements for Water Treatment Plant Wastes Document which relies on Best Professional Judgement in accordance with 40 CFR § 125.3. The limits proposed are displayed in Table 12 below. A Total Residual Chlorine limitation is not imposed for this discharge because no chlorine is used in the process.

Table 12. BPT Limits for WTP sludge and filter backwash wastewater

Parameter	Monthly Avg (mg/l)	Daily Max (mg/l)				
Suspended solids	30.0	60.0				
Iron (total)	2.0	4.0				
Aluminum (total)	4.0	8.0				
Manganese (total)	1.0	2.0				
Flow (MGD)	Monitor					
pH (S.U.)	6-9 at all times					

Water Quality-Based Limitations

Toxics Management Spread Sheet

The Department of Environmental Protection (DEP) has developed the DEP Toxics Management Spreadsheet ("TMS") to facilitate calculations necessary for completing a reasonable potential (RP) analysis and determining water quality-based effluent limitations for discharges of toxic pollutants. The Toxics Management Spreadsheet is a macro-enabled Excel binary file that combines the functions of the PENTOXSD model and the Toxics Screening Analysis spreadsheet to evaluate the reasonable potential for discharges to cause excursions above water quality standards and to determine WQBELs. The Toxics Management Spread Sheet is a single discharge, mass-balance water quality calculation spread sheet that includes consideration for mixing, first-order decay and other factors to determine recommended WQBELs for toxic substances and several non-toxic substances. Required input data including stream code, river mile index, elevation, drainage area, discharge name, NPDES permit number, discharge flow rate and the discharge concentrations for parameters in the permit application or in DMRs, which are entered into the spread sheet to establish site-specific discharge conditions. Other data such as low flow yield, reach dimensions and partial mix factors may also be entered to further characterize the conditions of the discharge and receiving water. Discharge concentrations for the parameters are chosen to represent the "worst case" quality of the discharge (i.e., maximum reported discharge concentrations). The spread sheet then evaluates each parameter by computing a Waste Load Allocation for each applicable criterion, determining a recommended maximum WQBEL and comparing that recommended WQBEL with the input discharge concentration to determine which is more stringent. Based on this evaluation, the Toxics Management Spread sheet recommends average monthly and maximum daily WQBELs.

Reasonable Potential Analysis and WQBEL Development for Outfall 102

Discharges from Outfall 102 are evaluated based on concentrations reported on the application and on DMRs; data from those sources are entered into the Toxics Management Spread Sheet. The maximum reported value of the parameters from the application form or from previous DMRs is used as the input concentration in the Toxics Management Spread Sheet. All toxic pollutants whose maximum concentrations, as reported in the permit application or on DMRs, are greater than the most stringent applicable water quality criterion are considered to be pollutants of concern. [This includes pollutants reported as "Not Detectable" or as "<MDL" where the method detection limit for the analytical method used by the applicant is greater than the most stringent water quality criterion]. The Toxics Management Spread Sheet is run with the discharge and receiving stream characteristics shown in Table 13. For IW discharges, the design flow used in modeling is the average flow during production or operation taken from the permit application. Pollutants for which water quality standards have not been promulgated (e.g., TSS, oil and grease) are excluded from the analysis. All the parameters are evaluated using the model to determine the water quality-based effluent limits

applicable to the discharge and the receiving stream. The spreadsheet then compares the reported discharge concentrations to the calculated water quality-based effluent limitations to determine if a reasonable potential exists to exceed the calculated WQBELs. Effluent limitations are established in the draft permit where a pollutant's maximum reported discharge concentration

Table 13: TMS Inputs for Outfall 102

Parameter	Value				
River Mile Index	17.4				
Discharge Flow (MGD)	0.0168				
Basin/Stream Characteristics					
Parameter	Value				
Area in Square Miles	146				
Q ₇₋₁₀ (cfs)	10.3				
Low-flow yield (cfs/mi ²)	0.070				
Elevation (ft)	1535				
Slope	0.001				

equals or exceeds 50% of the WQBEL. For non-conservative pollutants, monitoring requirements are established where the maximum reported concentration is between 25% - 50% of the WQBEL. For conservative pollutants, monitoring requirements are established where the maximum reported concentration is between 10% - 50% of the WQBEL. The information described above including the maximum reported discharge concentrations, the most stringent water quality criteria, the pollutant-of-concern (reasonable potential) determinations, the calculated WQBELs, and the WQBEL/monitoring recommendations are displayed in the Toxics Management Spread Sheet in Attachment D of this Fact Sheet. No water quality-based effluent limitations or monitoring requirements were recommended by the Toxics Management Spread Sheet.

Total Maximum Daily Loads

Wastewater discharges from NAH are located within the Kiskiminetas-Conemaugh River Watersheds for which the Department has developed a TMDL. The TMDL was finalized on January 29, 2010 and establishes waste load allocations for the discharge of aluminum, iron and manganese within the Kiskiminetas-Conemaugh River Watersheds. Section 303(d) of the Clean Water Act and the U.S. Environmental Protection Agency's Water Quality Planning and Management Regulations (codified at Title 40 of the Code of Federal Regulations Part 130) require states to develop a TMDL for impaired water bodies. A TMDL establishes the amount of a pollutant that a water body can assimilate without exceeding the water guality criteria for that pollutant. TMDLs provide the scientific basis for a state to establish water quality-based controls to reduce pollution from both point and non-point sources in order to restore and maintain the quality of the state's water resources (USEPA 1991a). Stream reaches within the Kiskiminetas-Conemaugh River Watersheds are included in the state's 2008 Section 303(d) list because of various impairments, including metals, pH and sediment. The TMDL includes consideration for each river and tributary within the target watershed and its impairment sources. Stream data is then used to calculate minimum pollutant reductions that are necessary to attain water quality criteria levels. Target concentrations published in the TMDL were based on established water quality criteria of 0.750 mg/L total recoverable aluminum, 1.5 mg/L total recoverable iron based on a 30-day average and 1.0 mg/L total recoverable manganese. The reduction needed to meet the minimum water quality standards is then divided between each known point and non-point pollutant source in the form of a watershed allocation. TMDLs prescribe allocations that minimally achieve water quality criteria (i.e., 100 percent use of a stream's assimilative capacity). The NAH permit, (PA0110655), is not listed in the Appendix G of the Kiskiminetas-Conemaugh River Watersheds TMDL and therefore, wasn't provided load allocations. It was assumed that discharges from Quemahoning Plant do not contain aluminum, iron, and manganese since they are not permitted to discharge these metals. Therefore, these points source were not considered as potential sources of the metal impairments in the Kiskiminetas-Conemaugh River Watersheds. In other words, if it is determined that a site is discharging wastewater containing these parameters, the site must meet the instream criterion values for these parameters at the point of discharge. Based on the permit application, the discharge

indicated that aluminum, iron, and manganese are present in the discharge. Therefore, limitations equal to the instream criteria will be imposed at Outfall 002 and are displayed below in Table 14.

The specific water quality criterion for aluminum is expressed as an acute or maximum daily in 25 Pa. Code Chapter 93. Discharges of aluminum may only be authorized to the extent that they will not cause or contribute to any violation of the water quality standards. Therefore, the water quality criterion for aluminum (0.75 mg/L) is imposed as a maximum daily effluent limit (MDL). Whenever the most stringent criterion is selected for the MDL, the Department should also impose an average monthly limit (AML) and instantaneous maximum limit (IMAX) if applicable. The imposition of an AML that is more stringent than the MDL is typically not appropriate because the water quality concerns have already been fully addressed by setting the MDL equal to the most stringent applicable criterion. Therefore, where the MDL is set at the value of the most stringent applicable criterion, the AML should be set equal to the MDL.

The specific water quality criterion for iron is expressed as a 30-day average of 1.5 ^{mg}/_L in 25 Pa. Code § 93.7(a). The criterion is based on the protection of aquatic life and is associated with chronic exposure. There are no other criteria for total iron. Since the duration of the total iron criterion coincides with the 30-day duration of the AML, the 30-day average criterion for total iron is set equal to the AML. In addition, because the total iron criterion is associated with chronic exposure, the MDL (representing acute exposure) and the IMAX may be made less stringent according to established procedures described in Section III.C.3.h on Page 13 of the Water Quality Toxics Management Strategy (Doc. # 361-0100-003). These procedures state that a MDL and IMAX may be set at 2 times and 2.5 times the AML, respectively, or there is the option to use multipliers from EPA's Technical Support Document for Water Quality-based Toxics Control, if data are available to support the use of alternative multipliers.

The specific water quality criterion for manganese is expressed as an acute or maximum daily of 1.0 mg/L in 25 Pa. Code § 93.7(a). The criterion is based on the protection of human health and is associated with chronic exposure associated with a potable water supply (PWS). Since no duration is given in Chapter 93 for the manganese criterion, a duration of 30 days is used based on the water quality criteria duration for Threshold Human Health (THH) criteria given in Section III.C.3.a., Table 1 on Page 10 of DEP's Water Quality Toxics Management Strategy. The 30-day duration for THH criteria coincides with the 30-day duration of an AML, which is why the manganese criterion is set equal to the AML for a "permitting at criteria" scenario. Because the manganese criterion is interpreted as having chronic exposure, the manganese MDL and IMAX may be made less stringent according to procedures established in Section III.C.2.h. of the Water Quality Toxics Management Strategy (AML multipliers of 2.0 and 2.5 for the MDL and IMAX respectively).

Parameter	Discharge Concentrations	TMDL Limits (mg/L)			
i urumeter	(mg/L)	Average Monthly	Daily Maximum		
Aluminum, total	0.024	0.75	0.75		
Iron, total	0.08	1.5	3.0		
Manganese, total	0.03	1.0	2.0		

Table 14: Kiskiminetas-Conemaugh River Watersheds TMDL Limits

Anti-backsliding

Previous limits can be used pursuant to EPA's anti-backsliding regulation, 40 CFR 122.44(I) and are displayed below in Table 15.

Table 15: Existing Effluent Limitation for Outfall 102	
--	--

Deremetere	Mass (lb/day)	Concentration (mg/L)			Monitoring Requirements		
Parameters	Average Monthly	Daily Maximum	Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Frequency	Sample Type
Flow (MGD)	Report	Report	XXX	XXX	XXX	XXX	1/Week	Measure
Total Suspended Solids	XXX	XXX	XXX	30.0	60.0	XXX	1/Week	Grab
Total Aluminum	XXX	XXX	XXX	4.0	8.0	XXX	1/Week	Grab
Total Iron	XXX	XXX	XXX	2.0	4.0	XXX	1/Week	Grab
Total Manganese	XXX	XXX	XXX	1.0	2.0	XXX	1/Week	Grab
BOD ₅	XXX	XXX	XXX	Monitor	Monitor	XXX	1/Week	Grab
Total Dissolved Solids	XXX	XXX	XXX	Monitor	Monitor	XXX	1/Week	Grab
pH (S.U.)	XXX	XXX	6.0	XXX	9.0	XXX	1/Week	Grab

Proposed Effluent Limitations for Outfall 102

The proposed effluent limitations and monitoring requirements for Outfall 102 are shown below in Table 16. The limits are the most stringent values from the above limitation analysis.

Table 16: Proposed Effluent Limitation for Outfall 102

Parametero	Mass (Mass (lb/day)		Concentration (mg/L)				Monitoring Requirements	
Parameters	Average Monthly	Daily Maximum	Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Frequency	Sample Type	
Flow (MGD)	Report	Report	XXX	XXX	XXX	XXX	1/Week	Measure	
Total Suspended Solids	XXX	XXX	XXX	30.0	60.0	XXX	1/Week	Grab	
Total Aluminum	XXX	XXX	XXX	0.75	0.75	XXX	1/Week	Grab	
Total Iron	XXX	XXX	XXX	1.5	3.0	XXX	1/Week	Grab	
Total Manganese	XXX	XXX	XXX	1.0	2.0	XXX	1/Week	Grab	
BOD ₅	XXX	XXX	XXX	Monitor	Monitor	XXX	1/Week	Grab	
Total Dissolved Solids	XXX	XXX	XXX	Monitor	Monitor	XXX	1/Week	Grab	
pH (S.U.)	XXX	XXX	6.0	XXX	9.0	XXX	1/Week	Grab	

Development of Effluent Limitations

IMP No.	214		Design Flow (MGD)	0.317
Latitude	40º 11' 48"		Longitude	-78º 56' 02"
Wastewater De	escription:	Noncontact cooling water		

Technology Based Limitations

Regulatory Effluent Standards and Monitoring Requirements

Flow monitoring is required pursuant to 25 Pa. Code § 92a.61(d)(1).

Temperature limits will be imposed per the Department's "*Implementation Guidance for Temperature Criteria*." As a policy, DEP normally imposes a maximum temperature limit of 110°F on discharges that contain residual heat. The limit is intended as a safety measure to protect sampling personnel or anyone who may come into contact with the heated discharge where it enters the receiving water.

Effluent standards for pH are also imposed on industrial wastes by 25 Pa. Code § 95.2(1) as indicated in Table 17.

Table 17: Regulatory Effluent Standards and Monitoring Requirements for Outfall 002

Parameter	Monthly Average	Daily Maximum	IMAX	Units		
Flow	Monitor	and Report	XXX	MGD		
Temperature	XXX	XXX	110	°F		
pH	Not le	Not less than 6.0 nor greater than 9.0				

Water Quality-Based Limitations

Toxics Management Spread Sheet

The Department of Environmental Protection (DEP) has developed the DEP Toxics Management Spreadsheet ("TMS") to facilitate calculations necessary for completing a reasonable potential (RP) analysis and determining water quality-based effluent limitations for discharges of toxic pollutants. The Toxics Management Spreadsheet is a macro-enabled Excel binary file that combines the functions of the PENTOXSD model and the Toxics Screening Analysis spreadsheet to evaluate the reasonable potential for discharges to cause excursions above water quality standards and to determine WQBELs. The Toxics Management Spread Sheet is a single discharge, mass-balance water quality calculation spread sheet that includes consideration for mixing, first-order decay and other factors to determine recommended WQBELs for toxic substances and several non-toxic substances. Required input data including stream code, river mile index, elevation, drainage area, discharge name, NPDES permit number, discharge flow rate and the discharge concentrations for parameters in the permit application or in DMRs, which are entered into the spread sheet to establish site-specific discharge conditions. Other data such as low flow yield, reach dimensions and partial mix factors may also be entered to further characterize the conditions of the discharge and receiving water. Discharge concentrations for the parameters are chosen to represent the "worst case" quality of the discharge (i.e., maximum reported discharge concentrations). The spread sheet then evaluates each parameter by computing a Waste Load Allocation for each applicable criterion, determining a recommended maximum WQBEL and comparing that recommended WQBEL with the input discharge concentration to determine which is more stringent. Based on this evaluation, the Toxics Management Spread sheet recommends average monthly and maximum daily WQBELs.

Reasonable Potential Analysis and WQBEL Development for IMP 214

Discharges from IMP 214 are evaluated based on concentrations reported on the application and on DMRs from Outfall 002 because the quality of the discharge is similar; data from those sources are entered into the Toxics Management Spread Sheet. The maximum reported value of the parameters from the application form or from previous DMRs is used as the input concentration in the Toxics Management Spread Sheet. All toxic pollutants whose maximum concentrations, as reported in the permit application or on DMRs, are greater than the most stringent applicable water quality criterion are considered to be pollutants of concern. [This includes pollutants reported as "Not Detectable" or as "<MDL" where the method detection limit for the analytical method used by the applicant is greater than the most stringent water quality criterion]. The Toxics Management Spread Sheet is run with the discharge and receiving stream characteristics shown in Table 18. For IW discharges, the design flow used in modeling is the average flow during production or operation taken from the permit application. Pollutants for which water quality standards have not been promulgated (e.g., TSS, oil and

grease) are excluded from the analysis. All the parameters are evaluated using the model to determine the water quality-based effluent limits applicable to the discharge and the receiving stream. The spreadsheet then compares the reported discharge concentrations to the calculated water quality-based effluent limitations to determine if a reasonable potential exists to exceed the calculated WQBELs. Effluent limitations are established in the draft permit where a pollutant's maximum reported discharge concentration equals or exceeds 50% of the WQBEL. For nonconservative pollutants, monitoring requirements are established where the maximum reported concentration is between 25% - 50% of the WQBEL. For conservative pollutants, monitoring requirements are established where the maximum reported concentration is between 10% - 50% of the WQBEL. The information described above including the maximum reported discharge concentrations, the most stringent water quality criteria, the pollutant-of-concern (reasonable potential) determinations, the calculated WQBELs, and the WQBEL/monitoring recommendations are displayed in the Toxics Management Spread Sheet in Attachment E of this Fact Sheet. No water quality-based effluent limitations or monitoring requirements were recommended by the Toxics Management Spread Sheet.

Table 18: TMS Inputs for IMP 214

Parameter	Value			
River Mile Index	17.4			
Discharge Flow (MGD)	0.08			
Basin/Stream Characteristics				
Parameter	Value			
Area in Square Miles	146			
Q ₇₋₁₀ (cfs)	10.3			
Low-flow yield (cfs/mi ²)	0.070			
Elevation (ft)	1535			
Slope	0.001			

Thermal WQBELs for Heated Discharges

Thermal WQBELs are evaluated using a DEP program called "Thermal Discharge Limit Calculation Spreadsheet" created with Microsoft Excel for Windows. The program calculates temperature WLAs through the application of a heat transfer equation, which takes two forms in the program depending on the source of the facility's cooling water. In Case 1, intake water to a facility is from the receiving stream. In Case 2, intake water is from a source other than the receiving stream (e.g., municipal water supply). The determination of which case applies to a given discharge is determined by the input data which include the receiving stream flow rate (Q₇₋₁₀ or the minimum regulated flow for large rivers), the stream intake flow rate, external source intake flow rates, consumptive flow rates and site-specific ambient stream temperatures. Case 1 limits are generally expressed as heat rejection rates while Case 2 limits are usually expressed as temperatures.

Since the temperature criteria from 25 Pa. Code Chapter 93.7(a) are expressed on monthly and semi-monthly bases for three different aquatic life-uses—cold water fishes, warm water fishes and trout stocking—the program generates monthly and semi-monthly limits for each use. DEP selects the output that corresponds to the aquatic life-use of the receiving stream and consequently which limits apply to the discharge. Temperature WLAs are bounded by an upper limit of 110°F for the safety of sampling personnel and anyone who may come into contact with the heated discharge where it enters the receiving water. If no WLAs below 110°F are calculated, an instantaneous maximum limit of 110°F is recommended by the program.

Discharges from IMP 214 are classified under Case 2 because water is obtained from water supply. The flow rate used for modeling is the summation of the maximum discharge flow from all of the outfalls combined, 1.517 MGD. The results of the thermal analysis, included in Attachment C, indicate that WQBELs for temperature is required at IMP 214 and are displayed below in Table 19.

Date Ranges Instantaneous Temperature Limits (°F)				
Jan 1 – Jun 30	110.0			
Jul 1 -31	81.5			
Aug 1 – Nov 30	110.0			
Dec 1 – Dec 31	105.2			

Table 19. Thermal Limitations

Total Maximum Daily Loads

Wastewater discharges from NAH are located within the Kiskiminetas-Conemaugh River Watersheds for which the Department has developed a TMDL. The TMDL was finalized on January 29, 2010 and establishes waste load allocations for the discharge of aluminum, iron and manganese within the Kiskiminetas-Conemaugh River Watersheds. Section 303(d) of the Clean Water Act and the U.S. Environmental Protection Agency's Water Quality Planning and Management Regulations (codified at Title 40 of the *Code of Federal Regulations* Part 130) require states to develop a TMDL for impaired water bodies. A TMDL establishes the amount of a pollutant that a water body can assimilate without exceeding the water quality criteria for that pollutant. TMDLs provide the scientific basis for a state to establish water quality-based controls to reduce pollution from both point and non-point sources in order to restore and

NPDES Permit Fact Sheet North American Höganäs

maintain the quality of the state's water resources (USEPA 1991a). Stream reaches within the Kiskiminetas-Conemaugh River Watersheds are included in the state's 2008 Section 303(d) list because of various impairments, including metals, pH and sediment. The TMDL includes consideration for each river and tributary within the target watershed and its impairment sources. Stream data is then used to calculate minimum pollutant reductions that are necessary to attain water quality criteria levels. Target concentrations published in the TMDL were based on established water quality criteria of 0.750 mg/L total recoverable aluminum, 1.5 mg/L total recoverable iron based on a 30-day average and 1.0 mg/L total recoverable manganese. The reduction needed to meet the minimum water quality standards is then divided between each known point and non-point pollutant source in the form of a watershed allocation. TMDLs prescribe allocations that minimally achieve water quality criteria (i.e., 100 percent use of a stream's assimilative capacity). The NAH permit, (PA0110655), is not listed in the Appendix G of the Kiskiminetas-Conemaugh River Watersheds TMDL and therefore, wasn't provided load allocations. It was assumed that discharges from Quemahoning Plant do not contain aluminum, iron, and manganese since they are not permitted to discharge these metals. Therefore, these points source were not considered as potential sources of the metal impairments in the Kiskiminetas-Conemaugh River Watersheds. In other words, if it is determined that a site is discharging wastewater containing these parameters, the site must meet the instream criterion values for these parameters at the point of discharge. Based on the permit application, the discharge indicated that aluminum, iron, and manganese are present in the discharge. Therefore, limitations equal to the instream criteria will be imposed at IMP 214 and are displayed below in Table 20.

The specific water quality criterion for aluminum is expressed as an acute or maximum daily in 25 Pa. Code Chapter 93. Discharges of aluminum may only be authorized to the extent that they will not cause or contribute to any violation of the water quality standards. Therefore, the water quality criterion for aluminum (0.75 mg/L) is imposed as a maximum daily effluent limit (MDL). Whenever the most stringent criterion is selected for the MDL, the Department should also impose an average monthly limit (AML) and instantaneous maximum limit (IMAX) if applicable. The imposition of an AML that is more stringent than the MDL is typically not appropriate because the water quality concerns have already been fully addressed by setting the MDL equal to the most stringent applicable criterion. Therefore, where the MDL is set at the value of the most stringent applicable criterion, the AML should be set equal to the MDL.

The specific water quality criterion for iron is expressed as a 30-day average of 1.5 ^{mg}/_L in 25 Pa. Code § 93.7(a). The criterion is based on the protection of aquatic life and is associated with chronic exposure. There are no other criteria for total iron. Since the duration of the total iron criterion coincides with the 30-day duration of the AML, the 30-day average criterion for total iron is set equal to the AML. In addition, because the total iron criterion is associated with chronic exposure, the MDL (representing acute exposure) and the IMAX may be made less stringent according to established procedures described in Section III.C.3.h on Page 13 of the Water Quality Toxics Management Strategy (Doc. # 361-0100-003). These procedures state that a MDL and IMAX may be set at 2 times and 2.5 times the AML, respectively, or there is the option to use multipliers from EPA's Technical Support Document for Water Quality-based Toxics Control, if data are available to support the use of alternative multipliers.

The specific water quality criterion for manganese is expressed as an acute or maximum daily of 1.0 mg/L in 25 Pa. Code § 93.7(a). The criterion is based on the protection of human health and is associated with chronic exposure associated with a potable water supply (PWS). Since no duration is given in Chapter 93 for the manganese criterion, a duration of 30 days is used based on the water quality criteria duration for Threshold Human Health (THH) criteria given in Section III.C.3.a., Table 1 on Page 10 of DEP's Water Quality Toxics Management Strategy. The 30-day duration for THH criteria coincides with the 30-day duration of an AML, which is why the manganese criterion is set equal to the AML for a "permitting at criteria" scenario. Because the manganese criterion is interpreted as having chronic exposure, the manganese MDL and IMAX may be made less stringent according to procedures established in Section III.C.2.h. of the Water Quality Toxics Management Strategy (AML multipliers of 2.0 and 2.5 for the MDL and IMAX respectively).

Parameter	Discharge Concentrations	TMDL Limits (mg/L)		
	(mg/L)	Average Monthly	Daily Maximum	
Aluminum, total	0.067	0.75	0.75	
Iron, total	0.330	1.5	3.0	
Manganese, total	0.140	1.0	2.0	

Table 20: Kiskiminetas-Conemaugh River Watersheds TMDL Limits

NPDES Permit Fact Sheet North American Höganäs

Anti-backsliding

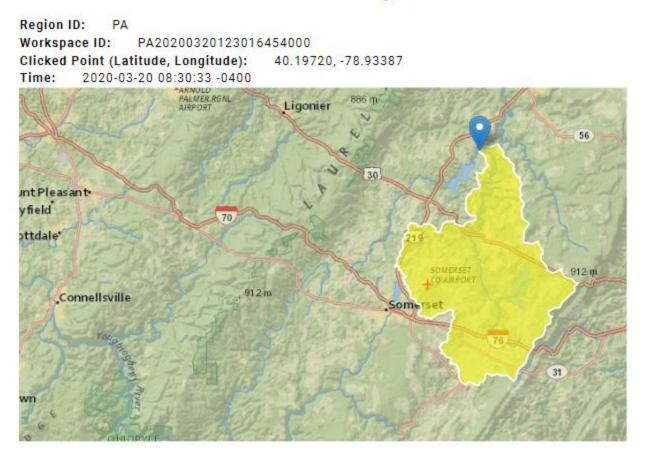
This is a new IMP; anti-backsliding is not appliable to this IMP.

Proposed Effluent Limitations for Outfall 002

The proposed effluent limitations and monitoring requirements for IMP 214 are shown below in Table 21. The limits are the most stringent values from the above limitation analysis.

Table 21. Existing Effluent Limitations at IMP 214

Parameter	Monthly Average	Daily Maximum	Instantaneous Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Monitor	Monitor		1/Week	Measure
Aluminum, Total	0.75	0.75		1/Week	Grab
Iron, total	1.5	3.0		1/Week	Grab
Manganese, total	1.0	2.0		1/Week	Grab
Temperature (°F) Jan 1 – June 30 Jul 1 – 31 Aug 1 – Nov 30 Dec 1 – Dec 31			110 81.5 110 105.2	1/Week	i-s
pH (S.U.)	Not less th	nan 6.0 nor grea	ater than 9.0	1/Week	Grab


	Tools and References Used to Develop Permit
	WQM for Windows Model (see Attachment
	PENTOXSD for Windows Model (see Attachment)
	TRC Model Spreadsheet (see Attachment)
$\overline{\boxtimes}$	Temperature Model Spreadsheet (see Attachment C)
$\overline{\square}$	Toxics Screening Analysis Spreadsheet (see Attachment)
	Water Quality Toxics Management Strategy, 361-0100-003, 4/06.
	Technical Guidance for the Development and Specification of Effluent Limitations, 362-0400-001, 10/97.
	Policy for Permitting Surface Water Diversions, 362-2000-003, 3/98.
	Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 362-2000-008, 11/96.
	Technology-Based Control Requirements for Water Treatment Plant Wastes, 362-2183-003, 10/97.
	Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 362-2183-004, 12/97.
	Pennsylvania CSO Policy, 385-2000-011, 9/08.
	Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.
	Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 391-2000-002, 4/97.
	Determining Water Quality-Based Effluent Limits, 391-2000-003, 12/97.
	Implementation Guidance Design Conditions, 391-2000-006, 9/97.
	Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 391-2000-007, 6/2004.
	Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 391-2000-008, 10/1997.
	Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 391-2000-010, 3/99.
	Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 391-2000-011, 5/2004.
	Implementation Guidance for Section 93.7 Ammonia Criteria, 391-2000-013, 11/97.
	Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 391-2000-014, 4/2008.
	Implementation Guidance Total Residual Chlorine (TRC) Regulation, 391-2000-015, 11/1994.
	Implementation Guidance for Temperature Criteria, 391-2000-017, 4/09.
	Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 391-2000-018, 10/97.
	Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 391-2000-019, 10/97.
	Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 391-2000-021, 3/99.
	Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 391-2000-022, 3/1999.
	Design Stream Flows, 391-2000-023, 9/98.
	Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 391-2000-024, 10/98.
	Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 391-3200-013, 6/97.
	Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.
	SOP:
\boxtimes	Toxics Management Spreadsheet (see Attachment B,D)

Attachments

Attachment A: StreamStats Report Attachment B: Outfall 002 Toxics Management Spreadsheet Attachment C: Site Thermal Discharge Evaluation Attachment D: IMP 114 Toxics Management Spreadsheet Attachment E: IMP 214 Toxics Management Spreadsheet Attachment A:

StreamStats Report

NAH Outfall 002 StreamStats Report

Basin Characteristics			
Parameter Code	Parameter Description	Value	Unit
DRNAREA	Area that drains to a point on a stream	146	square miles
ELEV	Mean Basin Elevation	2254.2	feet
PRECIP	Mean Annual Precipitation	42	inches

Low-Flow Statistics F	Parameters(100 Percent (145 square miles) Low I	Flow Region 3]			
Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	146	square miles	2.33	1720
ELEV	Mean Basin Elevation	2254.2	feet	898	2700
PRECIP	Mean Annual Precipitation	42	inches	38.7	47.9
PII: Prediction Interv Standard Error (othe Statistic	ral-Lower, Plu: Prediction Interval r see report)	-Upper, SE Value		r of Prediction	n, SE: SEp
7 Day 2 Year Low	Flow	20.4	ft^3/s	43	43
30 Day 2 Year Lo		06.0	ft^3/s	38	
	w Flow	26.8	11 3/3	20	38
7 Day 10 Year Lo		10.3	ft^3/s	54	38 54

Low-Flow Statistics Citations

90 Day 10 Year Low Flow

Stuckey, M.H.,2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5130, 84 p. (http://pubs.usgs.gov/sir/2006/5130/)

18.3 ft^3/s

41

41

Attachment B:

Outfall 002 Toxics Management Spreadsheet

Toxics Management Spreadsheet Version 1.1, October 2020

Discharge Information

Instructions Disc	harge Stream		
Facility: North	American Hoganas	NPDES Permit No.: PA0110655	Outfall No.: 002
Evaluation Type:	Major Sewage / Industrial Waste	Wastewater Description: NCCW	

			Discharge	Characterist	tics			
Design Flow	Hardness (mg/l)*	-H (SII)*	Partial Mix Factors (PMFs) Comp				Complete Mi	x Times (min)
(MGD)*	Haroness (mg/l)*	pH (SU)*	AFC	CFC	THH	CRL	Q ₇₋₁₀	Qh
0.325	81.8	7.88						

					Γ	01	r lef	t blank	0.5 lf le	eft blank	0	if left blan	k	1 If lef	t blank
	Discharge Pollutant	Units	Ma	x Discharge Conc		Tril Con		Stream Conc	Daily CV	Hourly CV	Strea m CV	Fate Coeff	FOS	Criteri a Mod	Chem Transl
	Total Dissolved Solids (PWS)	mg/L		182.4	-										
5	Chloride (PWS)	mg/L		18.84	Fì	7									
Group	Bromide	mg/L	<	0.243											
6	Sulfate (PWS)	mg/L		62.98		_									
	Fluoride (PWS)	mg/L	<	0.122	H										
	Total Aluminum	µg/L		67.6		T									
	Total Antimony	µg/L	<	1	Ц	-									
	Total Arsenic	µg/L	<	1	H	+									
	Total Barium	µg/L		35.1	Fi	T									
	Total Beryllium	µg/L		1											
	Total Boron	µg/L		50	H	-									
	Total Cadmium	µg/L		0.2	F	7									
	Total Chromium (III)	µg/L		1		Ì									
	Hexavalent Chromium	µg/L	<	5	\square	-									
	Total Cobalt	µg/L		0.5	H										
	Total Copper	µg/L		14.8	Fi	T									
5	Free Cyanide	µg/L													
Group	Total Cyanide	µg/L	<	10		-									
5	Dissolved Iron	µg/L		200	F	7									
-	Total Iron	µg/L		330											
	Total Lead	µg/L		1	H	-	_								
	Total Manganese	µg/L		140	F	+									
	Total Mercury	µg/L	<	0.2		Ť									
	Total Nickel	µg/L		6.2		ļ									
	Total Phenols (Phenolics) (PWS)	µg/L		5	H	-	_								
	Total Selenium	µg/L	<	1	Ħ										
	Total Silver	µg/L	<	0.2											
	Total Thallium	µg/L	<	0.2	H	-									
	Total Zinc	µg/L		23	Ħ	+	-								
	Total Molybdenum	µg/L		21.4											

Toxics Management Spreadsheet Version 1.1, October 2020

Stream / Surface Water Information

North American Hoganas, NPDES Permit No. PA0110655, Outfall 002

nstructions Discharge Stream

Receiving Surface Water Name: Stonycreek River

Location	Stream Code*	RMI*	Elevation (ft)*	DA (mi ²)*	Slope (ft/ft)	PWS Withdrawal (MGD)	Apply Fish Criteria*
Point of Discharge	045084	17.4	1535	146	0.001		Yes
End of Reach 1	045084	17	1534	147	0.001		Yes

Statewide Criteria O Great Lakes Criteria ORSANCO Criteria

Q 7-10

Location	RMI	LFY	Flow	(cfs)	W/D	Width	Depth	Velocit	Time	Tributa	ary	Strea	m	Analys	is
Location	ISIMU	(cfs/mi ²)*	Stream	Tributary	Ratio	(ft)	(ft)	y (fps)	(days)	Hardness	pН	Hardness*	pH*	Hardness	pН
Point of Discharge	17.4	0.1	10.3									100	7		
End of Reach 1	17	0.1	10.3												

No. Reaches to Model: 1

Qh

Location	RMI	LFY	Flow	(cfs)	W/D	Width	Depth	Velocit	Time	Tributa	iry	Stream	m	Analys	is
Location	TXIVII	(cfs/mi ²)	Stream	Tributary	Ratio	(ft)	(ft)	y (fps)	(daws)	Hardness	pН	Hardness	pН	Hardness	pН
Point of Discharge	17.4														
End of Reach 1	17														

PENNSYLVANIA DEPARTMENT OF ENVIRONMENTAL PROTECTION

Toxics Management Spreadsheet Version 1.1, October 2020

Model Results

North American Hoganas, NPDES Permit No. PA0110655, Outfall 002

Instructions Results RETURN TO INPUTS SAVE AS PDF PRINT All Inputs Results Limits

Hydrodynamics

Wasteload Allocations

AFC cc	T (min): 1	15	PMF:	0.296	Ana	lysis Hardne	ss (mg/l):	97.424 Analysis pH: 7.08
Pollutants	Conc	Stream	Trib Conc	Fate	WQC	WQ Obj	WLA (µg/L)	Comments
Foliutants	(ug(L)	CV	(µg/L)	Coef	(µg/L)	(µg/L)	WEA (pg/E)	Comments
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A	
Chloride (PWS)	0	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
Fluoride (PWS)	0	0		0	N/A	N/A	N/A	
Total Aluminum	0	0		0	750	750	5,300	
Total Antimony	0	0		0	1,100	1,100	7,773	
Total Arsenic	0	0		0	340	340	2,403	Chem Translator of 1 applied
Total Barium	0	0		0	21,000	21,000	148,394	
Total Boron	0	0		0	8,100	8,100	57,238	
Total Cadmium	0	0		0	1.963	2.08	14.7	Chem Translator of 0.945 applied
Total Chromium (III)	0	0		0	557.717	1,765	12,472	Chem Translator of 0.316 applied
Hexavalent Chromium	0	0		0	16	16.3	115	Chem Translator of 0.982 applied
Total Cobalt	0	0		0	95	95.0	671	
Total Copper	0	0		0	13.113	13.7	96.5	Chem Translator of 0.96 applied
Dissolved Iron	0	0		0	N/A	N/A	N/A	
Total Iron	0	0		0	N/A	N/A	N/A	
Total Lead	0	0		0	62.772	79.0	558	Chem Translator of 0.795 applied
Total Manganese	0	0		0	N/A	N/A	N/A	
Total Mercury	0	0		0	1.400	1.65	11.6	Chem Translator of 0.85 applied
Total Nickel	0	0		0	458.013	459	3,243	Chem Translator of 0.998 applied
Total Phenols (Phenolics) (PWS)	0	0		0	N/A	N/A	N/A	
Total Selenium	0	0		0	N/A	N/A	N/A	Chem Translator of 0.922 applied
Total Silver	0	0		0	3.076	3.62	25.6	Chem Translator of 0.85 applied
Total Thallium	0	0		0	65	65.0	459	
Total Zinc	0	0		0	114.618	117	828	Chem Translator of 0.978 applied

NPDES Permit Fact Sheet North American Höganäs

NPDES Permit No. PA0110655

CFC CC	CT (min): ###	****	PMF:	1	Ana	lysis Hardne	ss (mg/l):	99.153 Analysis pH: 7.02
Pollutants	Conc (uo/L)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A	
Chloride (PWS)	0	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
Fluoride (PWS)	0	0		0	N/A	N/A	N/A	
Total Aluminum	0	0		0	N/A	N/A	N/A	
Total Antimony	0	0		0	220	220	4,727	
Total Arsenic	0	0		0	150	150	3,223	Chem Translator of 1 applied
Total Barium	0	0		0	4,100	4,100	88,094	
Total Boron	0	0		0	1,600	1,600	34,378	
Total Cadmium	0	0		0	0.245	0.27	5.78	Chem Translator of 0.909 applied
Total Chromium (III)	0	0		0	73.600	85.6	1,839	Chem Translator of 0.86 applied
Hexavalent Chromium	0	0		0	10	10.4	223	Chem Translator of 0.962 applied
Total Cobalt	0	0		0	19	19.0	408	
Total Copper	0	0		0	8.891	9.26	199	Chem Translator of 0.96 applied
Dissolved Iron	0	0		0	N/A	N/A	N/A	
Total Iron	0	0		0	1,500	1,500	32,229	WQC = 30 day average; PMF = 1
Total Lead	0	0		0	2.493	3.15	67.6	Chem Translator of 0.792 applied
Total Manganese	0	0		0	N/A	N/A	N/A	
Total Mercury	0	0		0	0.770	0.91	19.5	Chem Translator of 0.85 applied
Total Nickel	0	0		0	51.634	51.8	1,113	Chem Translator of 0.997 applied
Total Phenols (Phenolics) (PWS)	0	0		0	N/A	N/A	N/A	
Total Selenium	0	0		0	4.600	4.99	107	Chem Translator of 0.922 applied
Total Silver	0	0		0	N/A	N/A	N/A	Chem Translator of 1 applied
Total Thallium	0	0		0	13	13.0	279	
Total Zinc	0	0		0	117.291	119	2,556	Chem Translator of 0.986 applied
	CT (min): ###		PMF:	1	Ana	ilysis Hardne	ss (mg/l):	N/A Analysis pH: N/A
Pollutants	Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0	(Pg/2)	0	500,000	500,000	N/A	
Chloride (PWS)	0	0		0	250,000	250,000	N/A	
Sulfate (PWS)	0	0		0	250,000	250,000	N/A	
Fluoride (PWS)	0	0		0	2.000	2.000	N/A	
Total Aluminum	0	0		0	2,000 N/A	2,000 N/A	N/A	
Total Antimony	0	0		0	5.6	5.6	120	
Total Arsenic	0	0		0	10	10.0	215	
Total Barium	0	0		0	2,400	2.400	51.567	
Total Boron	0	0		0	3,100	3,100	66,608	
Total Cadmium	0	0		0	3,100 N/A	3,100 N/A	N/A	
Total Chromium (III)	0	0		0	N/A	N/A	N/A	
Total Chromium (III)	U	U		U	N/A	N/A	N/A	

Hexavalent Chromium	0	0		0	N/A	N/A	N/A	
Total Cobalt	0	0		0	N/A	N/A	N/A	
Total Copper	0	0		0	N/A	N/A	N/A	
Dissolved Iron	0	0		0	300	300	6,446	
Total Iron	0	0		0	N/A	N/A	N/A	
Total Lead	0	0		0	N/A	N/A	N/A	
Total Manganese	0	0		0	1.000	1.000	21,486	
Total Mercury	0	0		0	0.050	0.05	1.07	
Total Nickel	0	0		0	610	610	13,107	
Total Phenols (Phenolics) (PWS)	0	0		0	5	5.0	N/A	
Total Selenium	0	0		0	N/A	N/A	N/A	
Total Silver	0	0		0	N/A	N/A	N/A	
Total Thallium	0	0		0	0.24	0.24	5.16	
Total Zinc	0	0		0	N/A	N/A	N/A	
CRL CC	r (min): 61.	.299	PMF:	1	Ana	lysis Hardne	ss (mg/l):	N/A Analysis pH: N/A
	Stream							
Pollutants	Conc	Stream CV	Trib Conc	Fate	WQC	WQ Obj	WLA (µg/L)	Comments
Total Disselved Collide (DMC)	(uall)		(µg/L)	Coef	(µg/L)	(µg/L)		
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A N/A	
Chloride (PWS)		0			N/A	N/A		
Sulfate (PWS)	0	-		0	N/A	N/A	N/A	
Fluoride (PWS)	0	0		0	N/A	N/A	N/A	
Total Aluminum	0	0		0	N/A	N/A	N/A	
Total Antimony	0	0		0	N/A	N/A	N/A	
Total Arsenic	0	0		0	N/A	N/A	N/A	
Total Barium	0	0		0	N/A	N/A	N/A	
Total Boron	0	0		0	N/A	N/A	N/A	
Total Cadmium	0	0		0	N/A	N/A	N/A	
Total Chromium (III)	0	0		0	N/A	N/A	N/A	
Hexavalent Chromium	0	0		0	N/A	N/A	N/A	
Total Cobalt	0	0		0	N/A	N/A	N/A	
Total Copper	0	0		0	N/A	N/A	N/A	
Dissolved Iron	0	0		0	N/A	N/A	N/A	
Total Iron	0	0		0	N/A	N/A	N/A	
Total Lead	0	0		0	N/A	N/A	N/A	
Total Manganese	0	0		0	N/A	N/A	N/A	
Total Mercury	0	0		0	N/A	N/A	N/A	
Total Nickel	0	0		0	N/A	N/A	N/A	
Total Phenols (Phenolics) (PWS)	0	0		0	N/A	N/A	N/A	
Total Selenium	0	0		0	N/A	N/A	N/A	
Total Silver	0	0		0	N/A	N/A	N/A	
Total Thallium	0	0		0	N/A	N/A	N/A	
Total Zinc	0	0		0	N/A	N/A	N/A	

Recommended WQBELs & Monitoring Requirements

No. Samples/Month: 4

	Mass	Limits		Concentra	tion Limits				
Pollutants	AML (lbs/day)	MDL (lbs/day)	AML MDL		IMAX	Units	Governing WQBEL	WQBEL Basis	Comments
Total Copper	Report	Report	Report	Report	Report	µg/L	61.9	AFC	Discharge Conc > 10% WQBEL (no RP)

Other Pollutants without Limits or Monitoring

The following pollutants do not require effluent limits or monitoring based on water quality because reasonable potential to exceed water quality criteria was not determined and the discharge concentration was less than thresholds for monitoring, or the pollutant was not detected and a sufficiently sensitive analytical method was used (e.g., <= Target QL).

Pollutants	Governing WQBEL	Units	Comments
Total Dissolved Solids (PWS)	N/A	N/A	PWS Not Applicable
Chloride (PWS)	N/A	N/A	PWS Not Applicable
Bromide	N/A	N/A	No WQS
Sulfate (PWS)	N/A	N/A	PWS Not Applicable
Fluoride (PWS)	N/A	N/A	Discharge Conc < TQL
Total Aluminum	3,397	µg/L	Discharge Conc ≤ 10% WQBEL
Total Antimony	N/A	N/A	Discharge Conc < TQL
Total Arsenic	N/A	N/A	Discharge Conc < TQL
Total Barium	51,567	µg/L	Discharge Conc ≤ 10% WQBEL
Total Beryllium	N/A	N/A	No WQS
Total Boron	34,378	µg/L	Discharge Conc ≤ 10% WQBEL
Total Cadmium	5.78	µg/L	Discharge Conc ≤ 10% WQBEL
Total Chromium (III)	1,839	µg/L	Discharge Conc ≤ 10% WQBEL
Hexavalent Chromium	73.8	µg/L	Discharge Conc ≤ 10% WQBEL
Total Cobalt	408	µg/L	Discharge Conc ≤ 10% WQBEL
Total Cyanide	N/A	N/A	No WQS
Dissolved Iron	6,446	µg/L	Discharge Conc ≤ 10% WQBEL
Total Iron	32,229	µg/L	Discharge Conc ≤ 10% WQBEL
Total Lead	67.6	µg/L	Discharge Conc ≤ 10% WQBEL
Total Manganese	21,486	µg/L	Discharge Conc ≤ 10% WQBEL
Total Mercury	1.07	µg/L	Discharge Conc < TQL
Total Nickel	1,113	µg/L	Discharge Conc ≤ 10% WQBEL
Total Phenols (Phenolics) (PWS)		µg/L	PWS Not Applicable
Total Selenium	107	µg/L	Discharge Conc < TQL
Total Silver	16.4	µg/L	Discharge Conc < TQL
Total Thallium	5.16	µg/L	Discharge Conc < TQL
Total Zinc	531	µg/L	Discharge Conc ≤ 10% WQBEL
Total Molybdenum	N/A	N/A	No WQS
	-		

Attachment C:

Site Thermal Discharge Evaluation

Facility:	North America	n Hoganas					
Permit Number:	PA0110655						PMF
Stream Name:	Stoneycreek Riv	ver					1.00
Analyst/Engineer:	Adam Olesnani	k					
Stream Q7-10 (cfs):	10.3						
		Facilit	y Flows			Stream Flows	
	Intake	Intake	Consumptive	Discharge	Upstream	Adjusted	Downstream
	(Stream)	(External)	Loss	Flow	Stream Flow	Stream Flow	Stream Flow
	(MGD)	(MGD)	(MGD)	(MGD)	(cfs)	(cfs)	(cfs)
Jan 1-31	0	1.517	0	1.517	32.96	32.96	35.31
Feb 1-29	0	1.517	0	1.517	36.05	36.05	38.40
Mar 1-31	0	1.517	0	1.517	72.10	72.10	74.45
Apr 1-15	0	1.517	0	1.517	95.79	95.79	98.14
Apr 16-30	0	1.517	0	1.517	95.79	95.79	98.14
May 1-15	0	1.517	0	1.517	52.53	52.53	54.88
May 16-30	0	1.517	0	1.517	52.53	52.53	54.88
Jun 1-15	0	1.517	0	1.517	30.90	30.90	33.25
Jun 16-30	0	1.517	0	1.517	30.90	30.90	33.25
Jul 1-31	0	1.517	0	1.517	17.51	17.51	19.86
Aug 1-15	0	1.517	0	1.517	14.42	14.42	16.77
Aug 16-31	0	1.517	0	1.517	14.42	14.42	16.77
Sep 1-15	0	1.517	0	1.517	11.33	11.33	13.68
Sep 16-30	0	1.517	0	1.517	11.33	11.33	13.68
Oct 1-15	0	1.517	0	1.517	12.36	12.36	14.71
Oct 16-31	0	1.517	0	1.517	12.36	12.36	14.71
Nov 1-15	0	1.517	0	1.517	16.48	16.48	18.83
Nov 16-30	0	1.517	0	1.517	16.48	16.48	18.83
Dec 1-31	0	1.517	0	1.517	24.72	24.72	27.07

Please forward all comments to Tom Starosta at 717-787-4317, tstarosta@state.pa.us.

Version 2.0 -- 07/01/2005 Reference: Implementation Guidance for Temperature Criteria, DEP-ID: 391-2000-017

NOTE: The user can only edit fields that are blue.

NOTE: MGD x 1.547 = cfs.

Facility:	North American I	loganas				
Permit Number:	PA0110655					
Stream:	Stoneycreek River					
	WWF Criteria	CWF Criteria	TSF Criteria	316 Criteria	Q7-10 Multipliers	Q7-10 Multipliers
	(°F)	(°F)	(°F)	(°F)	(Used in Analysis)	(Default - Info Only
Jan 1-31	40	38	40	0	3.2	3.2
Feb 1-29	40	38	40	0	3.5	3.5
Mar 1-31	46	42	46	0	7	7
Apr 1-15	52	48	52	0	9.3	9.3
Apr 16-30	58	52	58	0	9.3	9.3
May 1-15	64	54	64	0	5.1	5.1
May 16-30	72	58	68	0	5.1	5.1
Jun 1-15	80	60	70	0	3	3
Jun 16-30	84	64	72	0	3	3
Jul 1-31	87	66	74	0	1.7	1.7
Aug 1-15	87	66	80	0	1.4	1.4
Aug 16-31	87	66	87	0	1.4	1.4
Sep 1-15	84	64	84	0	1.1	1.1
Sep 16-30	78	60	78	0	1.1	1.1
Oct 1-15	72	54	72	0	1.2	1.2
Oct 16-31	66	50	66	0	1.2	1.2
Nov 1-15	58	46	58	0	1.6	1.6
Nov 16-30	50	42	50	0	1.6	1.6
Dec 1-31	42	40	42	0	2.4	2.4
NOTES:						
WWF= Warm wate	er fishes					
CWF= Cold water f						
TSF= Trout stockin						

Facility:	North American	Hoganas				
Permit Number:	PA0110655					PMF
Stream:	Stoneycreek River					1.0
	TSF			TSF	TSF	
	Ambient Stream	Ambient Stream	Target Maximum	Daily	Daily	
	Temperature (°F)	Temperature (°F)	Stream Temp. ¹	WLA ²	WLA ³	at Discharge
	(Default)	(Site-specific data)	(°F)	(Million BTUs/day)	(°F)	Flow (MGD)
Jan 1-31	34	0	40	N/A Case 2	110.0	1.517
Feb 1-29	35	0	40	N/A Case 2	110.0	1.517
Mar 1-31	39	0	46	N/A Case 2	110.0	1.517
Apr 1-15	46	0	52	N/A Case 2	110.0	1.517
Apr 16-30	52	0	58	N/A Case 2	110.0	1.517
May 1-15	56	0	64	N/A Case 2	110.0	1.517
May 16-30	60	0	68	N/A Case 2	110.0	1.517
Jun 1-15	65	0	70	N/A Case 2	110.0	1.517
Jun 16-30	69	0	72	N/A Case 2	110.0	1.517
Jul 1-31	73	0	74	N/A Case 2	81.5	1.517
Aug 1-15	72	0	80	N/A Case 2	110.0	1.517
Aug 16-31	70	0	87	N/A Case 2	110.0	1.517
Sep 1-15	68	0	84	N/A Case 2	110.0	1.517
Sep 16-30	62	0	78	N/A Case 2	110.0	1.517
Oct 1-15	57	0	72	N/A Case 2	110.0	1.517
Oct 16-31	53	0	66	N/A Case 2	110.0	1.517
Nov 1-15	47	0	58	N/A Case 2	110.0	1.517
Nov 16-30	41	0	50	N/A Case 2	110.0	1.517
Dec 1-31	36	0	42	N/A Case 2	105.2	1.517
either the design (m	edian) temperature for			perature may be I on site-specific data enter	ed by the user.	
	ove ambient stream te					
		alid for Case 1 scenario			2)	
	in °F is valid only if the 110°F are displayed a		charge flow limit (may	be used for Case 1 or Cas	e 2).	

Attachment D:

IMP 114 Toxics Management Spreadsheet

Toxics Management Spreadsheet Version 1.1, October 2020

Discharge Information

Inst	ructions D	ischarge Stream													
Fac	ility: Nor	th American Hogan	as				NP	DES Per	mit No.:	PA0110	655		Outfall	No.: 114	
Eva	luation Type:	Major Sewage	Industr	ial V	Vaste		Wa	stewater	Descrip	tion: RO	Reject				
					Discha	rge	Cha	aracterist	tics						
De	sign Flow							ial Mix Fa		PMFs)		Com	plete Mi	x Times	(min)
	(MGD)*	Hardness (mg/l)*	pH (SU)	AFC	:	Τ	CFC	THE	1	CRL	Q	7-10	G	h .
	0.0168	81.8	7.	88											
							0 If le	ft blank	0.5 If le	eft blank	(0 if left blan	k	1 If left	blank
	Disch	arge Pollutant	Units	Ма	x Discharge Conc	I	Trib Conc	Stream Conc	Daily CV	Hourly CV	Strea m CV	Fate Coeff	FOS	Criteri a Mod	
	Total Dissalu	ed Solids (PWS)			1060										
-	Chloride (PW	1 1	mg/L mg/L		71.7	Ħ									
Group	Bromide	5)	mg/L	<	0.2	\vdash	++								
8		ulfate (PWS)			239	Ħ									
–	Fluoride (PW	1	mg/L mg/L	<	0.3	Ħ	++	-							
	Total Aluminu	im	µg/L		24	Ħ									
	Total Antimony		µg/L	<	1										
	Total Arsenic		µg/L	<	1			-							
	Total Barium		µg/L		84.8	Ť	11								
	Total Berylliur	m	µg/L	<	1										
	Total Boron		µg/L	<	20	Ħ	++								
	Total Cadmiu		µg/L	<	0.2										
	Total Chromiu	1.1	µg/L		2.4	⊢	++					<u> </u>			
	Hexavalent C Total Cobalt	hromium	µg/L	<	5	Ħ									
	Total Copper		µg/L	-	15.8	╞╡	++				<u> </u>				
2	Free Cyanide		µg/L µg/L	-	10.0	⊢	++				<u> </u>			$\left \right $	
9	Total Cyanide		µg/L	<	10	Ħ					<u> </u>	<u> </u>			
Group	Dissolved Iror		µg/L		340	Ħ	++	-							
ľ	Total Iron	-	µg/L		80	H									
	Total Lead		µg/L	<	1										
	Total Mangan	ese	µg/L		30	Ħ	++								
	Total Mercury		µg/L	<	0.1										
	Total Nickel		µg/L		9.2										
		(Phenolics) (PWS)	µg/L	<	5										
	Total Seleniu	m	µg/L	<	1										
	Total Silver		µg/L	<	0.2										
	Total Thallium	1	µg/L	<	0.2	H									
	Total Zinc		µg/L		7.3	Ļ									
	Total Molybde	enum	µg/L		4.5										

Toxics Management Spreadsheet Version 1.1, October 2020

Stream / Surface Water Information

North American Hoganas, NPDES Permit No. PA0110655, Outfall 102

Statewide Criteria O Great Lakes Criteria ORSANCO Criteria

Instructions	Discharge	Stream
--------------	-----------	--------

Receiving Surface Water Name: Stonycreek River

Location	Stream Code*	RMI*	Elevation (ft)*	DA (mi²)*	Slope (ft/ft)	PWS Withdrawal (MGD)	Apply Fish Criteria*
Point of Discharge	045084	17.4	1535	146	0.001		Yes
End of Reach 1	045084	17	1534	147	0.001		Yes

Q 7-10

Location	RMI	LFY	Flow	(cfs)	W/D	Width	Depth	Velocit	Time (days)	Tributa	Tributary Stream		Analys	Analysis	
	TAN/II	(cfs/mi ²)*	Stream	Tributary	Ratio	(ft)	(ft)	y (fps)		Hardness	pН	Hardness*	pH"	Hardness	pН
Point of Discharge	17.4	0.1	10.3									100	7		
End of Reach 1	17	0.1	10.3												

No. Reaches to Model: 1

G	1 n	

Location	RMI	LFY	Flow	(cfs)	W/D	Width	Depth	Velocit	Time	Tributa	iry	Stream	m	Analys	sis
Location	RMI	(cfs/mi ²)	Stream	Tributary	Ratio	(ft)	(ft)	y (fps)	(days)	Hardness	pН	Hardness	pН	Hardness	pН
Point of Discharge	17.4														
End of Reach 1	17														

pennsylvania DEPARTMENT OF ENVIRONMENTAL PROTECTION

Toxics Management Spreadsheet Version 1.1, October 2020

Model Results

North American Hoganas, NPDES Permit No. PA0110655, Outfall 102

Instructions Results RETURN TO INPUTS SAVE AS PDF PRINT @ All O Inputs O Results O Limits

Hydrodynamics

Wasteload Allocations

AFC	CCT (min):	15	PMF:	0.287	Ana	lysis Hardne	ss (mg/l):	99.841 Analysis pH: 7.00
Pollutants	Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	(ug/1)	0	are -/	0	N/A	NA	N/A	
Chloride (PWS)	0	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
Fluoride (PWS)	0	0		0	N/A	N/A	N/A	
Total Aluminum	0	0		0	750	750	85,929	
Total Antimony	0	0		0	1,100	1,100	126,029	
Total Arsenic	0	0		0	340	340	38,954	Chem Translator of 1 applied
Total Barium	0	0		0	21,000	21,000	2,406,001	
Total Boron	0	0		0	8,100	8,100	928,029	
Total Cadmium	0	0		0	2.011	2.13	244	Chem Translator of 0.944 applied
Total Chromium (III)	0	0		0	569.022	1,801	206,309	Chem Translator of 0.316 applied
Hexavalent Chromium	0	0		0	16	16.3	1,867	Chem Translator of 0.982 applied
Total Cobalt	0	0		0	95	95.0	10,884	
Total Copper	0	0		0	13.419	14.0	1,601	Chem Translator of 0.96 applied
Dissolved Iron	0	0		0	N/A	N/A	N/A	
Total Iron	0	0		0	N/A	N/A	N/A	
Total Lead	0	0		0	64.470	81.5	9,335	Chem Translator of 0.791 applied
Total Manganese	0	0		0	N/A	N/A	N/A	
Total Mercury	0	0		0	1.400	1.65	189	Chem Translator of 0.85 applied
Total Nickel	0	0		0	467.606	469	53,682	Chem Translator of 0.998 applied
Total Phenols (Phenolics) (PWS	i) O	0		0	N/A	N/A	N/A	
Total Selenium	0	0		0	N/A	N/A	N/A	Chem Translator of 0.922 applied
Total Silver	0	0		0	3.208	3.77	432	Chem Translator of 0.85 applied
Total Thallium	0	0		0	65	65.0	7,447	
Total Zinc	0	0		0	117.023	120	13,709	Chem Translator of 0.978 applied

NPDES Permit Fact Sheet North American Höganäs

CFC CC1	T (min): ###	****	PMF:	1	Ana	ilysis Hardne	ess (mg/l):	99.954 Analysis pH: 7.00
Pollutants	Conc (un/L)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A	
Chloride (PWS)	0	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
Fluoride (PWS)	0	0		0	N/A	N/A	N/A	
Total Aluminum	0	0		0	N/A	N/A	N/A	
Total Antimony	0	0		0	220	220	87,409	
Total Arsenic	0	0		0	150	150	59,597	Chem Translator of 1 applied
Total Barium	0	0		0	4,100	4,100	1,628,981	
Total Boron	0	0		0	1,600	1,600	635,700	
Total Cadmium	0	0		0	0.246	0.27	107	Chem Translator of 0.909 applied
Total Chromium (III)	0	0		0	74.087	86.1	34,227	Chem Translator of 0.86 applied
Hexavalent Chromium	0	0		0	10	10.4	4,130	Chem Translator of 0.962 applied
Total Cobalt	0	0		0	19	19.0	7,549	
Total Copper	0	0		0	8.952	9.33	3,705	Chem Translator of 0.96 applied
Dissolved Iron	0	0		0	N/A	N/A	N/A	
Total Iron	0	0		0	1,500	1,500	595,969	WQC = 30 day average; PMF = 1
Total Lead	0	0		0	2.515	3.18	1,263	Chern Translator of 0.791 applied
Total Manganese	0	0		0	N/A	N/A	N/A	
Total Mercury	0	0		0	0.770	0.91	360	Chem Translator of 0.85 applied
Total Nickel	0	0		0	51.986	52.1	20,717	Chern Translator of 0.997 applied
Total Phenols (Phenolics) (PWS)	0	0		0	N/A	N/A	N/A	
Total Selenium	0	0		0	4.600	4.99	1,982	Chem Translator of 0.922 applied
Total Silver	0	0		0	N/A	N/A	N/A	Chem Translator of 1 applied
Total Thallium	0	0		0	13	13.0	5,165	
Total Zinc	0	0		0	118.093	120	47,586	Chem Translator of 0.986 applied
✓ THH CC1	T (min): ###		PMF:	1	Ana	alysis Hardne	ess (mg/l):	N/A Analysis pH: N/A
Pollutants	Conc (uoll)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	500,000	500,000	N/A	
Chloride (PWS)	0	0		0	250,000	250,000	N/A	
Sulfate (PWS)	0	0		0	250,000	250,000	N/A	
Fluoride (PWS)	0	0		0	2,000	2,000	N/A	
Total Aluminum	0	0		0	N/A	N/A	N/A	
Total Antimony	0	0		0	5.6	5.6	2,225	
Total Arsenic	0	0		0	10	10.0	3,973	
Total Barium	0	0		0	2,400	2,400	953,550	
Total Boron	0	0		0	3,100	3,100	1,231,668	
Total Cadmium	0	0		0	N/A	N/A	N/A	
Total Chromium (III)	0	0		0	N/A	N/A	N/A	

NPDES Permit Fact Sheet North American Höganäs

-				-				
Hexavalent Chromium	0	0		0	N/A	N/A	N/A	
Total Cobalt	0	0		0	N/A	N/A	N/A	
Total Copper	0	0		0	N/A	N/A	N/A	
Dissolved Iron	0	0		0	300	300	119,194	
Total Iron	0	0		0	N/A	N/A	N/A	
Total Lead	0	0		0	N/A	N/A	N/A	
Total Manganese	0	0		0	1,000	1,000	397,312	
Total Mercury	0	0		0	0.050	0.05	19.9	
Total Nickel	0	0		0	610	610	242,361	
Total Phenols (Phenolics) (PWS)	0	0		0	5	5.0	N/A	
Total Selenium	0	0		0	N/A	N/A	N/A	
Total Silver	0	0		0	N/A	N/A	N/A	
Total Thallium	0	0		0	0.24	0.24	95.4	
Total Zinc	0	0		0	N/A	N/A	N/A	
⊘ CRL CC	T (min): 59.	<u> </u>	PMF:	1		lysis Hardne	ess (mg/l):	N/A Analysis pH: N/A
Pollutants	Conc (ug/L)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A	
Chloride (PWS)	0	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
Fluoride (PWS)	0	0		0	N/A	N/A	N/A	
Total Aluminum	0	0		0	N/A	N/A	N/A	
Total Antimony	0	0		0	N/A	N/A	N/A	
Total Arsenic	0	0		0	N/A	N/A	N/A	
Total Barium	0	0		0	N/A	N/A	N/A	
Total Boron	0	0		0	N/A	N/A	N/A	
Total Cadmium	0	0		0	N/A	N/A	N/A	
Total Chromium (III)	0	0		0	N/A	N/A	N/A	
Hexavalent Chromium	0	0		0	N/A	N/A	N/A	
Total Cobalt	0	0		0	N/A	N/A	N/A	
Total Copper	0	0		0	N/A	N/A	N/A	
Dissolved Iron	0	0		0	N/A	N/A	N/A	
Total Iron	0	0		0	N/A	N/A	N/A	
Total Lead	0	0		0	N/A	N/A	N/A	
Total Manganese	0	0		0	N/A	N/A	N/A	
Total Mercury	0	0		0	N/A	N/A	N/A	
Total Nickel	0	0		0	N/A	N/A	N/A	
Total Phenols (Phenolics) (PWS)	0	0		0	N/A	N/A	N/A	
Total Selenium	0	0		0	N/A	N/A	N/A	
Total Silver	0	0		0	N/A	N/A	N/A	
Total Thallium	0	0		0	N/A	N/A	N/A	
Total Zinc	0	0		0	N/A	N/A	N/A	
	-	-		-				I

Recommended WQBELs & Monitoring Requirements

No. Samples/Month: 4

	Mass	Limits		Concentra	tion Limits				
Pollutants	AML (lbs/day)	MDL (lbs/day)	AML	MDL	IMAX	Units	Governing WQBEL	WQBEL Basis	Comments

Other Pollutants without Limits or Monitoring

The following pollutants do not require effluent limits or monitoring based on water quality because reasonable potential to exceed water quality criteria was not determined and the discharge concentration was less than thresholds for monitoring, or the pollutant was not detected and a sufficiently sensitive analytical method was used (e.g., <= Target QL).

Pollutants	Governing WQBEL	Units	Comments
Total Dissolved Solids (PWS)	N/A	N/A	PWS Not Applicable
Chloride (PWS)	N/A	N/A	PWS Not Applicable
Bromide	N/A	N/A	No WQS
Sulfate (PWS)	N/A	N/A	PWS Not Applicable
Fluoride (PWS)	N/A	N/A	PWS Not Applicable
Total Aluminum	55,077	µg/L	Discharge Conc ≤ 10% WQBEL
Total Antimony	N/A	N/A	Discharge Conc < TQL
Total Arsenic	N/A	N/A	Discharge Conc < TQL
Total Barium	953,550	µg/L	Discharge Conc ≤ 10% WQBEL
Total Beryllium	N/A	N/A	No WQS
Total Boron	594,829	µg/L	Discharge Conc < TQL
Total Cadmium	107	µg/L	Discharge Conc < TQL
Total Chromium (III)	34,227	µg/L	Discharge Conc ≤ 10% WQBEL
Hexavalent Chromium	1,197	µg/L	Discharge Conc ≤ 10% WQBEL
Total Cobalt	6,976	µg/L	Discharge Conc ≤ 10% WQBEL
Total Copper	1,026	µg/L	Discharge Conc ≤ 10% WQBEL
Total Cyanide	N/A	N/A	No WQS
Dissolved Iron	119,194	µg/L	Discharge Conc ≤ 10% WQBEL
Total Iron	595,969	µg/L	Discharge Conc ≤ 10% WQBEL
Total Lead	1,263	µg/L	Discharge Conc < TQL
Total Manganese	397,312	µg/L	Discharge Conc ≤ 10% WQBEL
Total Mercury	19.9	µg/L	Discharge Conc < TQL
Total Nickel	20,717	µg/L	Discharge Conc ≤ 10% WQBEL
Total Phenols (Phenolics) (PWS)		µg/L	Discharge Conc < TQL
Total Selenium	1,982	µg/L	Discharge Conc < TQL
Total Silver	277	µg/L	Discharge Conc < TQL
Total Thallium	95.4	µg/L	Discharge Conc < TQL
Total Zinc	8,787	µg/L	Discharge Conc ≤ 10% WQBEL
Total Molybdenum	N/A	N/A	No WQS

Attachment E:

IMP 214 Toxics Management Spreadsheet

Toxics Management Spreadsheet Version 1.1, October 2020

Discharge Information

Instructions Dis	scharge Stream			
Facility: North	h American Hogan	as	NPDES Permit No.: PA0110655	Outfall No.: 214
Evaluation Type:	Major Sewage	Industrial Waste	Wastewater Description: NCCW	
		Discha	rge Characteristics	
Design Flow			Partial Mix Factors (PMFs)	Complete Mix Times (min)

			Discharge	onaraoterisi	105			
Design Flow	Hardness (mg/l)*	pH (SU)*	P	artial Mix Fa	actors (PMF	s)	Complete Mix	x Times (min)
(MGD)*	naruness (ing/i)*	рн (30)-	AFC	CFC	THH	CRL	Q ₇₋₁₀	Qh
0.08	81.8	7.88						

					0 If let	t blank	0.5 If le	eft blank	0) if left blani	k	1 If lef	t blank
	Discharge Pollutant	Units	Ma	x Discharge Conc	Trib Conc	Stream Conc	Daily CV	Hourly CV	Strea m CV	Fate Coeff	FOS	Criteri a Mod	Chem Transl
	Total Dissolved Solids (PWS)	mg/L		182.4									
5	Chloride (PWS)	mg/L		18.84									
Group	Bromide	mg/L	<	0.243									
5	Sulfate (PWS)	mg/L		62.98									
	Fluoride (PWS)	mg/L	<	0.122									
	Total Aluminum	µg/L		67.6									
	Total Antimony	µg/L	<	1									
	Total Arsenic	µg/L	<	1									
	Total Barium	µg/L		35.1									
	Total Beryllium	µg/L		1									
	Total Boron	µg/L		50									
	Total Cadmium	µg/L		0.2									
	Total Chromium (III)	µg/L		1									
	Hexavalent Chromium	µg/L	<	5									
	Total Cobalt	µg/L		0.5									
	Total Copper	µg/L		14.8									
5	Free Cyanide	µg/L											
	Total Cyanide	µg/L	<	10									
Group	Dissolved Iron	µg/L		200									
-	Total Iron	µg/L		330									
	Total Lead	µg/L		1									
	Total Manganese	µg/L		140									
	Total Mercury	µg/L	<	0.2									
	Total Nickel	µg/L		6.2									
	Total Phenols (Phenolics) (PWS)	µg/L		5									
	Total Selenium	µg/L	<	1									
	Total Silver	µg/L	<	0.2									
	Total Thallium	µg/L	<	0.2									
	Total Zinc	µg/L		23									
	Total Molybdenum	µg/L		21.4									

Toxics Management Spreadsheet Version 1.1. October 2020

Analysis

Analysis

Hardness pH

pН

Hardness

Stream / Surface Water Information

North American Hoganas, NPDES Permit No. PA0110655, Outfall 214

berning training	An. pH* Hardnes 7	H [*] Hard 7	Ana
End of Reach 1 045084 17 1534 147 0.001 Yes Q_7.0 Location RMI LFY Flow (ofs) W/D Width Depth Velocit Time Tributary Stream Point of Discharge 17.4 0.1 10.3 0	pH* Hardnes	H [*] Hard 7	lardnes Ana
Q 7-10 Image: Construct of the second se	pH* Hardnes	H [*] Hard 7	lardnes Ana
Location RMI LFY (ofs/mi ²)* Flow (ofs) W/D Ratio Width (ft) Depth (ft) Velocit y (fps) Tributary Stream Point of Discharge 17.4 0.1 10.3 Image: Construct of the stream Image: Constream Image: Co	pH* Hardnes	H [*] Hard 7	lardnes Ana
Location RMI LFY (cfs/mi ²)* Flow (cfs) W/D (ft) Width (ft) Depth (ft) Velocit y (fps) Tributary (daws) Stream Point of Discharge 17.4 0.1 10.3 Image: Comparison of the comparison o	pH* Hardnes	H [*] Hard 7	lardnes Ana
Point of Discharge 17.4 0.1 10.3 Point of Discharge 17.4 Discharge Discharge 17.4 Discharge Discharge 17.4 Discharge	7 An	7	Ana
End of Reach 1 17 0.1 10.3 Image: Constraint of the state	An		
Qn Location RMI LFY (ofs/mi ²) Flow (ofs) W/D Width (ft) Depth (ft) Velocit y (fps) Tributary Stream Point of Discharge 17.4 Image: Construction of the stream Image: Construction Image: Construction of the stream			
Location RMI LFY (cfs/mi ²) Flow (cfs) W/D Width Ratio Depth (ft) Velocit y (fps) Travel Time (down) Tributary Stream Point of Discharge 17.4 Image: Stream Tributary Ratio (ft) (ft) y (fps) Image: Stream Hardness PH			
Location RMI LPT Prow (cis) W/D Width Depth Velocit Time Tributary Stream Point of Discharge 17.4 Stream Tributary Ratio (ft) (ft) y (fps) Hardness pH			
Point of Discharge 17.4 Stream Tributary Ratio (ft) (ft) y (fps) Hardness pH Hardness End of Reach 1 17 17 10 <	pH Hardne:	H Hard	lardnes
End of Reach 1 17			
DEPARTMENT OF ENVIRONMENTAL Version			
PROTECTION Version			
All O Inputs O Results		1.1, October 20	er 2020
Hydrodynamics			
Wasteload Allocations			

WQ Obj WQC Stream Trib Conc Fate WLA (µg/L) Pollutants Conc Comments cv (µg/L) Coef (µg/L) (µg/L) Total Dissolved Solids (PWS) 0 0 0 N/A N/A N/A Chloride (PWS) N/A 0 0 0 N/A N/A Sulfate (PWS) 0 0 N/A 0 N/A N/A 0 0 Fluoride (PWS) 0 N/A N/A N/A Total Aluminum 0 0 0 750 750 18,760 Total Antimony 0 0 0 1,100 1,100 27,515 Total Arsenic 0 0 0 340 340 8,505 Chem Translator of 1 applied Total Barium 0 0 0 21,000 21,000 525,291 Total Boron 0 0 0 8,100 8,100 202.612 Chem Translator of 0.944 applied 0 Total Cadmium 0 0 1,999 2.12 53.0 Total Chromium (III) 0 0 0 566.366 1,792 44,832 Chem Translator of 0.316 applied Hexavalent Chromium 0 0 0 16 16.3 408 Chem Translator of 0.982 applied Total Cobalt 0 0 0 95 95.0 2,376 Total Copper 0 0 0 13.347 13.9 348 Chem Translator of 0.96 applied Dissolved Iron 0 0 0 N/A N/A N/A Total Iron 0 0 0 N/A N/A N/A Total Lead 0 0 0 64.070 80.9 2.023 Chem Translator of 0.792 applied Total Manganese 0 0 0 N/A N/A N/A Total Mercury 0 0 0 1.400 1.65 41.2 Chem Translator of 0.85 applied 0 465.352 11,664 Chem Translator of 0.998 applied Total Nickel 0 0 466 Total Phenols (Phenolics) (PWS) 0 0 0 N/A N/A N/A Total Selenium 0 0 0 N/A N/A N/A Chem Translator of 0.922 applied Total Silver 0 0 0 3.177 3.74 93.5 Chem Translator of 0.85 applied Total Thallium 0 65.0 1,626 0 0 65 0 116.458 Chem Translator of 0.978 applied Total Zinc 0 0 119 2,979

✓ CFC cc	T (min): ###	****	PMF:	1	Ana	lysis Hardne	ess (mg/l):	99.784 Analysis pH: 7.00
Pollutants	Conc (uo/L)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A	
Chloride (PWS)	0	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
Fluoride (PWS)	0	0		0	N/A	N/A	N/A	
Total Aluminum	0	0		0	N/A	N/A	N/A	
Total Antimony	0	0		0	220	220	18,530	
Total Arsenic	0	0		0	150	150	12,634	Chem Translator of 1 applied
Total Barium	0	0		0	4,100	4,100	345,325	
Total Boron	0	0		0	1,600	1,600	134,761	
Total Cadmium	0	0		0	0.246	0.27	22.8	Chem Translator of 0.909 applied
Total Chromium (III)	0	0		0	73.983	86.0	7,246	Chem Translator of 0.86 applied
Hexavalent Chromium	0	0		0	10	10.4	876	Chem Translator of 0.962 applied
Total Cobalt	0	0		0	19	19.0	1,600	
Total Copper	0	0		0	8.939	9.31	784	Chem Translator of 0.96 applied
Dissolved Iron	0	0		0	N/A	N/A	N/A	
Total Iron	0	0		0	1,500	1,500	126,338	WQC = 30 day average; PMF = 1
Total Lead	0	0		0	2.511	3.17	267	Chem Translator of 0.791 applied
Total Manganese	0	0		0	N/A	N/A	N/A	
Total Mercury	0	0		0	0.770	0.91	76.3	Chem Translator of 0.85 applied
Total Nickel	0	0		0	51.911	52.1	4,385	Chem Translator of 0.997 applied
Total Phenols (Phenolics) (PWS)	0	0		0	N/A	N/A	N/A	
Total Selenium	0	0		0	4.600	4.99	420	Chem Translator of 0.922 applied
Total Silver	0	0		0	N/A	N/A	N/A	Chem Translator of 1 applied
Total Thallium	0	0		0	13	13.0	1,095	
Total Zinc	0	0		0	117.923	120	10,073	Chem Translator of 0.986 applied
<i>⊡ тнн</i> сс	T (min): ###	****	PMF:	1	Ana	lysis Hardne	ss (mg/l):	N/A Analysis pH: N/A
Pollutants	Conc (up/L)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	500,000	500,000	N/A	
Chloride (PWS)	0	0		0	250,000	250,000	N/A	
Sulfate (PWS)	0	0		0	250,000	250,000	N/A	
Fluoride (PWS)	0	0		0	2,000	2,000	N/A	
Total Aluminum	0	0		0	N/A	N/A	N/A	
Total Antimony	0	0		0	5.6	5.6	472	
Total Arsenic	0	0		0	10	10.0	842	
Total Barium	0	0		0	2,400	2,400	202,141	
Total Boron	0	0		0	3,100	3,100	261,099	
Total Cadmium	0	0		0	N/A	N/A	N/A	
Total Chromium (III)	0	0		0	N/A	N/A	N/A	

Hexavalent Chromium	0	0		0	N/A	N/A	N/A	
Total Cobalt	0	0		0	N/A	N/A	N/A	
Total Copper	0	0		0	N/A	N/A	N/A	
Dissolved Iron	0	0		0	300	300	25,268	
Total Iron	0	0		0	N/A	N/A	N/A	
Total Lead	0	0		0	N/A	N/A	N/A	
Total Manganese	0	0		0	1,000	1,000	84,226	
Total Mercury	0	0		0	0.050	0.05	4.21	
Total Nickel	0	0		0	610	610	51,378	
Total Phenols (Phenolics) (PWS)	0	0		0	5	5.0	N/A	
Total Selenium	0	0		0	N/A	N/A	N/A	
Total Silver	0	0		0	N/A	N/A	N/A	
Total Thallium	0	0		0	0.24	0.24	20.2	
Total Zinc	0	0		0	N/A	N/A	N/A	
✓ CRL CC	T (min): 59.		PMF:	1	•	alysis Hardne	ss (mgn).	N/A Analysis pH: N/A
Dellutente	0	Stream	Trib Conc	Fate	WQC	WQ Obj	MARIA COMPANY	Community
Pollutants	Conc	CV CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Pollutants Total Dissolved Solids (PWS)							WLA (µg/L) N/A	Comments
	(unit)	CV		Coef	(µg/L)	(µg/L)		Comments
Total Dissolved Solids (PWS)	(ug/l.) 0	CV 0		Coef 0	(µg/L) N/A	(µg/L) N/A	N/A	Comments
Total Dissolved Solids (PWS) Chloride (PWS)	0	CV 0 0		Coef 0 0	(µg/L) N/A N/A	(µg/L) N/A N/A	N/A N/A	Comments
Total Dissolved Solids (PWS) Chloride (PWS) Sulfate (PWS)	(uc(l)) 0 0 0	CV 0 0		Coef 0 0	(µg/L) N/A N/A N/A	(µg/L) N/A N/A N/A	N/A N/A N/A	Comments
Total Dissolved Solids (PWS) Chloride (PWS) Sulfate (PWS) Fluoride (PWS)	(uall) 0 0 0 0	CV 0 0 0		Coef 0 0 0	(µg/L) N/A N/A N/A N/A N/A N/A	(µg/L) N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A	Comments
Total Dissolved Solids (PWS) Chloride (PWS) Sulfate (PWS) Fluoride (PWS) Total Aluminum	(unit) 0 0 0 0 0	CV 0 0 0 0		Coef 0 0 0 0	(µg/L) N/A N/A N/A N/A N/A	(µg/L) N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A	Comments
Total Dissolved Solids (PWS) Chloride (PWS) Sulfate (PWS) Fluoride (PWS) Total Aluminum Total Antimony	(unit) 0 0 0 0 0 0	CV 0 0 0 0 0		Coef 0 0 0 0 0 0	(µg/L) N/A N/A N/A N/A N/A N/A	(µg/L) N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A	Comments
Total Dissolved Solids (PWS) Chloride (PWS) Sulfate (PWS) Fluoride (PWS) Total Aluminum Total Antimony Total Arsenic Total Barium Total Boron	(unit) 0 0 0 0 0 0 0 0	CV 0 0 0 0 0 0 0		Coef 0 0 0 0 0 0 0	(µg/L) N/A N/A N/A N/A N/A N/A N/A	(µg/L) N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A	Comments
Total Dissolved Solids (PWS) Chloride (PWS) Sulfate (PWS) Fluoride (PWS) Total Aluminum Total Antimony Total Arsenic Total Barium	(uol) 0 0 0 0 0 0 0 0	CV 0 0 0 0 0 0 0 0		Coef 0 0 0 0 0 0 0 0	(µg/L) N/A N/A N/A N/A N/A N/A N/A N/A	(µg/L) N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A	Comments
Total Dissolved Solids (PWS) Chloride (PWS) Sulfate (PWS) Fluoride (PWS) Total Aluminum Total Antimony Total Arsenic Total Barium Total Barium Total Boron Total Cadmium Total Chromium (III)	(und)) 0 0 0 0 0 0 0 0 0 0 0 0 0 0	CV 0 0 0 0 0 0 0 0 0 0 0 0 0 0		Coef 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(µg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	(µg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	Comments
Total Dissolved Solids (PWS) Chloride (PWS) Sulfate (PWS) Fluoride (PWS) Total Aluminum Total Antimony Total Antimony Total Arsenic Total Barium Total Barium Total Boron Total Cadmium Total Chromium (III) Hexavalent Chromium	(und) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	CV 0 0 0 0 0 0 0 0 0 0 0 0 0		Coef 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(µg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	(µg/L) N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	Comments
Total Dissolved Solids (PWS) Chloride (PWS) Sulfate (PWS) Fluoride (PWS) Total Aluminum Total Antimony Total Antimony Total Barium Total Boron Total Boron Total Comnium (III) Hexavalent Chromium Total Cobalt	(und) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	CV 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		Coef 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(µg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	(µg/L) N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	Comments
Total Dissolved Solids (PWS) Chloride (PWS) Sulfate (PWS) Fluoride (PWS) Total Aluminum Total Antimony Total Antimony Total Barium Total Boron Total Boron Total Commum Total Chromium Total Chromium Total Cobalt Total Copper	(und)) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	CV 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		Coef 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(µg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	(µg/L) N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	Comments
Total Dissolved Solids (PWS) Chloride (PWS) Sulfate (PWS) Fluoride (PWS) Total Aluminum Total Antimony Total Antimony Total Assenic Total Barium Total Boron Total Cadmium Total Chromium (III) Hexavalent Chromium Total Copper Dissolved Iron	Cuent) 0 0 0 0 0 0 0 0 0 0 0 0 0	CV 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		Coef 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(µg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	(µg/L) N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	Comments
Total Dissolved Solids (PWS) Chloride (PWS) Sulfate (PWS) Fluoride (PWS) Total Aluminum Total Antimony Total Arsenic Total Barium Total Boron Total Boron Total Cadmium Total Chromium (III) Hexavalent Chromium Total Cobalt Total Copper	(und)) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	CV 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		Coef 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(µg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	(µg/L) N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	Comments

0

0

0

0

0

0

0

0

0

Total Lead

Total Manganese

Total Mercury

Total Nickel

Total Phenols (Phenolics) (PWS)

Total Selenium

Total Silver

Total Thallium

Total Zinc

0

0

0

0

0

0

0

0

0

+++ -

Ŧ

0

0

0

0

0

0

0

0

0

N/A

Recommended WQBELs & Monitoring Requirements

No. Samples/Month: 4

	Mass Limits		Concentration Limits						
Pollutants	AML (lbs/day)	MDL (lbs/day)	AML	MDL	IMAX	Units	Governing WQBEL	WQBEL Basis	Comments

Other Pollutants without Limits or Monitoring

The following pollutants do not require effluent limits or monitoring based on water quality because reasonable potential to exceed water quality criteria was not determined and the discharge concentration was less than thresholds for monitoring, or the pollutant was not detected and a sufficiently sensitive analytical method was used (e.g., <= Target QL).

Pollutants	Governing WQBEL	Units	Comments	
Total Dissolved Solids (PWS)	N/A	N/A	PWS Not Applicable	
Chloride (PWS)	N/A	N/A	PWS Not Applicable	
Bromide	N/A	N/A	No WQS	
Sulfate (PWS)	N/A	N/A	PWS Not Applicable	
Fluoride (PWS)	N/A	N/A	Discharge Conc < TQL	
Total Aluminum	12,025	µg/L	Discharge Conc ≤ 10% WQBEL	
Total Antimony	N/A	N/A	Discharge Conc < TQL	
Total Arsenic	N/A	N/A	Discharge Conc < TQL	
Total Barium	202,141	µg/L	Discharge Conc ≤ 10% WQBEL	
Total Beryllium	N/A	N/A	No WQS	
Total Boron	129,866	µg/L	Discharge Conc ≤ 10% WQBEL	
Total Cadmium	22.8	µg/L	Discharge Conc ≤ 10% WQBEL	
Total Chromium (III)	7,246	µg/L	Discharge Conc ≤ 10% WQBEL	
Hexavalent Chromium	261	µg/L	Discharge Conc ≤ 10% WQBEL	
Total Cobalt	1,523	µg/L	Discharge Conc ≤ 10% WQBEL	
Total Copper	223	µg/L	Discharge Conc ≤ 10% WQBEL	
Total Cyanide	N/A	N/A	No WQS	
Dissolved Iron	25,268	µg/L	Discharge Conc ≤ 10% WQBEL	
Total Iron	126,338	µg/L	Discharge Conc ≤ 10% WQBEL	
Total Lead	267	µg/L	Discharge Conc ≤ 10% WQBEL	
Total Manganese	84,226	µg/L	Discharge Conc ≤ 10% WQBEL	
Total Mercury	4.21	µg/L	Discharge Conc < TQL	
Total Nickel	4,385	µg/L	Discharge Conc ≤ 10% WQBEL	
Total Phenols (Phenolics) (PWS)		µg/L	PWS Not Applicable	
Total Selenium	420	µg/L	Discharge Conc < TQL	
Total Silver	59.9	µg/L	Discharge Conc < TQL	
Total Thallium	20.2	µg/L	Discharge Conc < TQL	
Total Zinc	1,909	µg/L	Discharge Conc ≤ 10% WQBEL	
Total Molybdenum	N/A	N/A	No WQS	