

Application Type	Renewal
Facility Type	Non- Municipal
Major / Minor	Minor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

Application No.	PA0112381
APS ID	1090258
Authorization ID	1442960

Applicant and Facility Information

Applicant Name	Columbia Investment Corp.	Facility Name	Madison Estates MHP
Applicant Address	6009 Columbia Boulevard	Facility Address	1947 Millville Road
	Bloomsburg, PA 17815-8800		Bloomsburg, PA 17815-6579
Applicant Contact	Frank Baker	Facility Contact	Frank Baker
Applicant Phone	(570) 387-0902	Facility Phone	(570) 387-0902
Client ID	6750	Site ID	4447
Ch 94 Load Status	Not Overloaded	Municipality	Madison Township
Connection Status	N/A	County	Columbia
Date Application Receiv	ved June 6, 2023	EPA Waived?	Yes
Date Application Accep	ted June 12, 2023	If No, Reason	
Purpose of Application	Renewal of a NPDES Permit for a dis	charge of treated sewa	age

Summary of Review

This subject facility is a non-municipal sewage treatment plant serving a mobile home park in Madison Township, Columbia County. A map of the discharge location is attached.

Sludge use and disposal description and location(s): The facility's wasted sludge is transferred to other WWTPs for further processing.

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Approve	Deny	Signatures	Date
x		Keith C. Allison / Project Manager	April 16, 2024
x		H. 2. M Nicholas W. Hartranft, P.E. / Environmental Engineer Manager	April 17, 2024

Discharge, Receiving	Waters and Water Supply Inform	mation	
Outfall No. <u>001</u> Latitude <u>41º 4</u> Quad Name <u>M</u>	4' 9.33" illville, PA otion: Sewage Effluent	Design Flow (MGD) Longitude Quad Code	0.0045 -76º 30' 26.16"
Receiving Waters NHD Com ID Drainage Area Q ₇₋₁₀ Flow (cfs) Elevation (ft) Watershed No. Existing Use Exceptions to Use Assessment Status	Little Fishing Creek (CWF) 65639703 58.6 mi ² (@ L. Fishing Ck) 6.37 548 5-C N/A None Attaining Use(s)	Stream Code RMI Yield (cfs/mi ²) Q ₇₋₁₀ Basis Slope (ft/ft) Chapter 93 Class. Existing Use Qualifier Exceptions to Criteria	27657 4.56 (@ L. Fishing Ck.) 0.1087 USGS StreamStats 0.00261 CWF N/A None
	m Public Water Supply Intake	<u>United Water Pennsylvania</u> Distance from Outfall (mi)	Approx. 6 miles.

Changes Since Last Permit Issuance: None. Stream flow and drainage area were updated using the USGS StreamStats web application. Other stream characteristics are based on interpolation of USGS topographic maps.

Other Comments: Discharge is to a storm swale that drains to Little Fishing Creek. The first point of aquatic life use has previously been determined to be at the discharge into Little Fishing Creek. Inspections of the facility have not noted any problems in the receiving waters.

No downstream water supply is expected to be affected by this discharge with the limitations and monitoring proposed.

	Treatment Facility Summary							
Treatment Facility Na	me: Madison Estates MHP	Sewer System						
WQM Permit No.	Issuance Date							
1997404	06/05/1997							
Waste Type	Degree of Treatment	Process Type	Disinfection	Avg Annual Flow (MGD)				
Sewage	Secondary	Extended Aeration	Hypochlorite	0.0045				
Hydraulic Capacity	Organic Capacity			Biosolids				
(MGD)	(lbs/day)	Load Status	Biosolids Treatment	Use/Disposal				
0.0045	21	Not Overloaded	Holding Tank	Other WWTP				

Changes Since Last Permit Issuance: None

Other Comments: The treatment plant, as approved under WQM Permit No. 1997404 includes screening, equalization, aeration, clarification, disinfection (tablet chlorinator), and sludge holding.

Compliance History

DMR Data for Outfall 001 (from March 1, 2023 to February 29, 2024)

FEB-24	JAN-24	DEC-23	NOV-23	OCT-23	SEP-23	AUG-23	JUL-23	JUN-23	MAY-23	APR-23	MAR-23
0.00089	0.0012	0.0009	0.001	0.0010	0.0011	0.0010	0.0010	0.0011	0.0010	0.0008	0.0012
0.0014	0.0014	0.0014	0.0014	0.0014	0.0014	0.0014	0.0014	0.0014	0.0014	0.0014	0.0014
0.0014	0.0014	0.0014	0.0014	0.0014	0.0014	0.0014	0.0014	0.0014	0.0014	0.0014	0.0014
6.2	6.0	6.2	6.4	6.4	6.3	6.5	6.1	6.4	6.1	6.2	6.9
			••••				••••		•••	•	
8.3	8.5	7.7	7.2	7.5	7.7	8.8	6.8	6.8	6.7	6.7	7.4
3.9	1.8	3.3	1.2	1.0	0.89	0.57	0.57	0.37	0.28	0.57	0.52
0.13	0.13	0.12	0.12	0.10	0.23	0.20	0.14	0.19	0.15	0.18	0.16
	0.40									a (a	o (=
0.67	0.42	0.21	0.24	0.26	0.89	0.52	0.36	0.63	0.46	0.49	0.47
3.7	3.3	< 1.3	6	2.6	2	< 2	< 1.8	< 1	3.2	1	< 1.6
		_				_				_	
6	5.5	5	7.5	< 4	< 4	4	7.5	4	< 4	5	4
	. 4	4		. 4	47.0		. 1	. 1	. 1	. 1	
< 1	< 1	1	< 1	< 1	17.9	1.4	< 1	< 1	< 1	< 1	< 1
- 1	- 1	1	- 1	- 1	322.3	2.0	- 1	- 1	- 1	- 1	< 1
		1			522.5	2.0					
15.7	98	0.6	10	26	0.28	0.98	40	15	63	0.57	2.0
10.7	0.0	0.0	1.0	2.0	0.20	0.00	7.0	1.0	0.0	0.07	2.0
25.5	16.6	1.1	1.9	2.6	0.35	1.7	5.2	2.1	10.4	0.87	4.0
	0.00089 0.0014 6.2 8.3 3.9 0.13 0.67 3.7 6 <1 <1 <1 <1 15.7	$\begin{array}{c cccc} 0.00089 & 0.0012 \\ \hline 0.0014 & 0.0014 \\ \hline 0.0014 & 0.00$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.00089 0.0012 0.0009 0.001 0.0014 0.0014 0.0014 0.0014 6.2 6.0 6.2 6.4 8.3 8.5 7.7 7.2 3.9 1.8 3.3 1.2 0.13 0.13 0.12 0.12 0.67 0.42 0.21 0.24 3.7 3.3 <1.3 6 6 5.5 5 7.5 <1 <1 1 <1 <1 <1 1 <1 <1 <1 1 <1 <1 <1 1 <1	0.00089 0.0012 0.0009 0.001 0.0010 0.0014 0.0014 0.0014 0.0014 0.0014 6.2 6.0 6.2 6.4 6.4 8.3 8.5 7.7 7.2 7.5 3.9 1.8 3.3 1.2 1.0 0.13 0.13 0.12 0.12 0.10 0.67 0.42 0.21 0.24 0.26 3.7 3.3 < 1.3 6 2.6 6 5.5 5 7.5 < 4 < 1 < 1 < 1 < 1 < 1 < 1 < 1 1 < 1 < 1 < 1 < 1 < 1 1 < 1 < 1 < 1 < 1 < 1 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1	0.00089 0.0012 0.0009 0.001 0.0010 0.0011 0.0014 0.0014 0.0014 0.0014 0.0014 0.0014 6.2 6.0 6.2 6.4 6.4 6.3 8.3 8.5 7.7 7.2 7.5 7.7 3.9 1.8 3.3 1.2 1.0 0.89 0.13 0.13 0.12 0.12 0.10 0.23 0.67 0.42 0.21 0.24 0.26 0.89 3.7 3.3 <1.3 6 2.6 2 6 5.5 5 7.5 <4 <4 <1 <1 1 <1 <1 322.3 4 <1 1 <1 <1 322.3 15.7 9.8 0.6 1.0 2.6 0.28	0.00089 0.0012 0.0009 0.001 0.0010 0.0011 0.0010 0.0014 0.0014 0.0014 0.0014 0.0014 0.0014 0.0014 6.2 6.0 6.2 6.4 6.4 6.3 6.5 8.3 8.5 7.7 7.2 7.5 7.7 8.8 3.9 1.8 3.3 1.2 1.0 0.89 0.57 0.13 0.13 0.12 0.12 0.10 0.23 0.20 0.67 0.42 0.21 0.24 0.26 0.89 0.52 3.7 3.3 <1.3 6 2.6 2 < 2 6 5.5 5 7.5 <4 <4 4 < 1 < 1 < 1 < 1 322.3 2.0 15.7 9.8 0.6 1.0 2.6 0.28 0.98	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

	Compliance History						
Summary of Inspections:	The facility has been inspected approximately annually by the Department over the past permit term. The most recent inspection on March 3, 2024 noted no violations at the time of inspection.						
Other Comments:	There are no open violations in eFACTS for Columbia Investment Corp.						

		Existing Efflue	nt Limitations a	nd Monitoring F	Requirements			
		Effluent Limitations						
Parameter	Mass Units	s (Ibs/day) ⁽¹⁾		Concentrat	ions (mg/L)		Minimum ⁽²⁾	Required
Falameter	Average Monthly	Average Weekly	Minimum	Average Monthly	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report Daily Max	XXX	XXX	XXX	XXX	1/week	Measured
рН (S.U.)	XXX	XXX	6.0 Inst Min	XXX	XXX	9.0	5/week	Grab
DO	XXX	XXX	Report Inst Min	XXX	XXX	xxx	5/week	Grab
TRC	XXX	XXX	xxx	0.5	XXX	1.6	5/week	Grab
CBOD5	XXX	ХХХ	XXX	25	XXX	50	2/month	Grab
TSS	XXX	XXX	XXX	30	XXX	60	2/month	Grab
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	2000 Geo Mean	XXX	10000	2/month	Grab
Fecal Coliform (No./100 ml) May 1 - Sep 30	XXX	XXX	XXX	200 Geo Mean	XXX	1000	2/month	Grab
Total Nitrogen	Report Annl Avg	Report Daily Max	XXX	Report Annl Avg	XXX	xxx	1/year	Grab
Ammonia	XXX	XXX	XXX	Report	XXX	Report	2/month	Grab
Total Phosphorus	Report Annl Avg	Report Daily Max	XXX	Report Annl Avg	XXX	XXX	1/year	Grab

Development of Effluent Limitations

Outfall No.	001	Design Flow (MG	D) 0.0045
Latitude	41º 4' 10.00"	Longitude	-76º 30' 27.00"
Wastewater De	escription:	Sewage Effluent	

Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Pollutant	Limit (mg/l)	SBC	Federal Regulation	State Regulation
CBOD ₅	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
Total Suspended				
Solids	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
рН	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform (5/1 – 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform (5/1 – 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform (10/1 – 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform (10/1 – 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)

Comments: The above limits are included in the existing permit and remain appropriate.

Water Quality-Based Limitations

CBOD5, DO, and NH3-N

The WQM7.0 model allows the Department to evaluate point source discharges of dissolved oxygen (DO), carbonaceous BOD (CBOD₅), and ammonia nitrogen (NH₃-N) into free-flowing streams and rivers. To accomplish this the model simulates two basic processes: the mixing and degradation of NH₃-N in the stream and the mixing and consumption of DO in the stream due to the degradation of CBOD₅ and NH₃-N. WQM7.0 modeling was performed for the previous review for the discharge in the receiving dry swale and in Little Fishing Creek and showed that the secondary treatment limits listed above are adequate to protect the receiving waters. See Attachment B.

<u>TRC</u>

The Department uses a modeling spreadsheet to determine necessary WQBELs for TRC toxicity based on instream dilution. The attached modeling results (See attachment C) show that the BAT limit of 0.5 mg/l is adequate to protect the receiving stream.

Toxics Management

No further "Reasonable Potential Analysis" was performed to determine additional toxic parameters as candidates for limitations for this 0.0045 MGD facility sewage treatment facility receiving no industrial influent.

Dry Stream Discharge

Because the discharge is existing and there have been no noted effects on the storm swale directly receiving the discharge or Little Fishing Creek, the additional discharge requirements from the Department's *Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers* including the Advanced Treatment Requirements will not be required at this time.

Chesapeake Bay Requirements

A portion of the Chesapeake Bay and many of its tidal tributaries have been listed as impaired under Section 303(d) of the Water Pollution Control Act, 33 U.S.C. §1313(d). Total Nitrogen and Total Phosphorus cap loads have been established for significant dischargers in Pennsylvania to reduce the total nutrient load to the Bay and meet State of Maryland Water Quality Standards. The Madison Estates treatment plant is considered an existing Phase 5, insignificant Chesapeake Bay discharger per the Phase III Watershed Implementation Plan (WIP) and thus has not received Cap Loads. Monitoring

NPDES Permit Fact Sheet Madison Estates MHP

under the current permit found the Total Nitrogen and Total Phosphorus to average 21.8 and 3.1 mg/L, respectively. Because the current nutrient load from the discharge has adequately been characterized no further nutrient monitoring will be required at this time.

<u>e. Coli</u>

Annual e. coli monitoring will be required at this time due to recent changes to Chapter 93 of the Departments regulations and Department policy.

Best Professional Judgment (BPJ) Limitations

No additional BPJ limits are needed beyond the water quality and technology-based limits noted above.

Anti-Backsliding

No water quality based or BPJ limits were made less stringent consistent with the anti-backsliding requirements of 40 CFR 122.44(I).

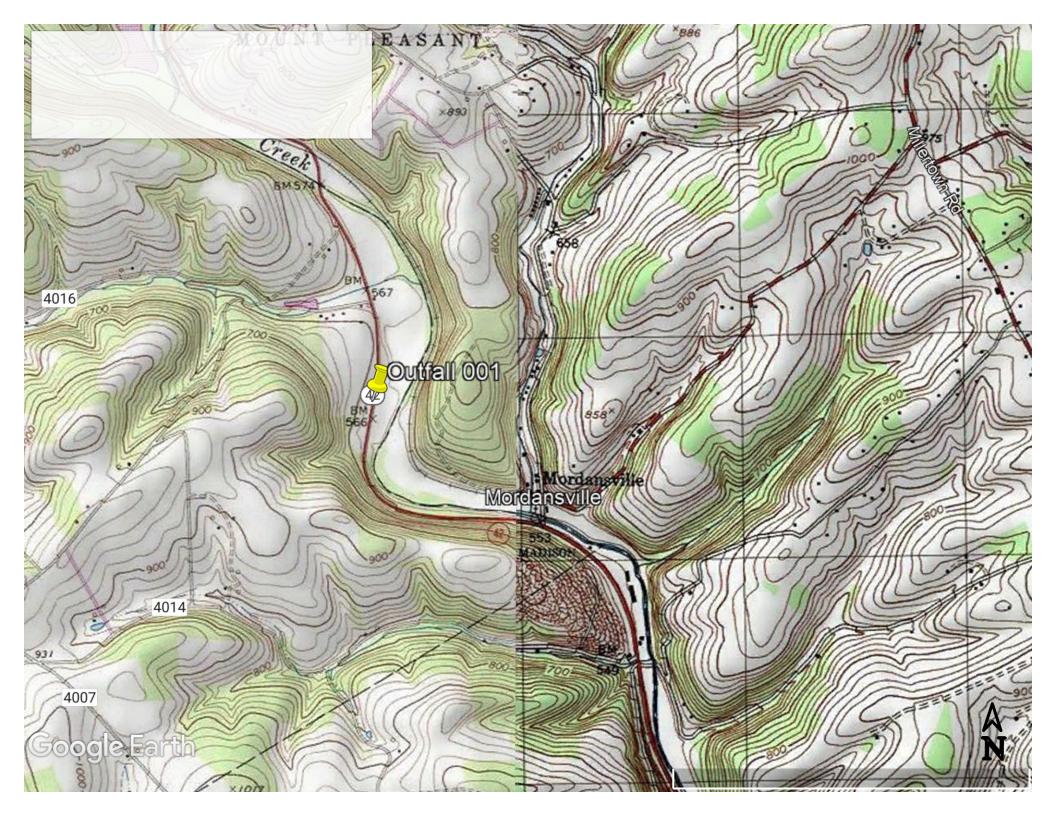
Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (386-0400-001), SOPs and/or BPJ.

	Effluent Limitations							Monitoring Requirements	
Parameter	Mass Units	(lbs/day) ⁽¹⁾		Concentrat	ions (mg/L)		Minimum ⁽²⁾	Required	
	Average Monthly	Average Weekly	Minimum	Average Monthly	Maximum	Instant. Maximum	Measurement Frequency	Sample Type	
Flow (MGD)	Report	Report Daily Max	XXX	XXX	XXX	XXX	1/week	Measured	
pH (S.U.)	XXX	XXX	6.0 Inst Min	XXX	XXX	9.0	5/week	Grab	
DO	XXX	XXX	Report Inst Min	XXX	XXX	xxx	5/week	Grab	
TRC	xxx	xxx	xxx	0.5	xxx	1.6	5/week	Grab	
CBOD5	XXX	xxx	xxx	25	xxx	50	2/month	Grab	
TSS	XXX	XXX	XXX	30	XXX	60	2/month	Grab	
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	2000 Geo Mean	XXX	10000	2/month	Grab	
Fecal Coliform (No./100 ml) May 1 - Sep 30	XXX	XXX	xxx	200 Geo Mean	XXX	1000	2/month	Grab	
Ammonia	XXX	XXX	XXX	Report	XXX	Report	2/month	Grab	
E. Coli (No./100 ml)	XXX	XXX	XXX	XXX	Report Daily Max	XXX	1/year	Grab	

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

Compliance Sampling Location: Outfall 001


Other Comments: Monitoring for Total Nitrogen and Total Phosphorus have been removed as mentioned above. E. coli monitoring has now been included as noted above. The Department's permit writer's manual recommends daily monitoring for pH, DO, and TRC for discharges with design flows greater than 2000 gpd. Given the size of the discharge and the consistent quality of the discharge the sampling frequencies for pH, DO, and TRC above are unchanged.

	Tools and References Used to Develop Permit
\square	WOM for Windows Model (see Attachment P)
	WQM for Windows Model (see Attachment B) Toxics Management Spreadsheet (see Attachment D)
	TRC Model Spreadsheet (see Attachment C)
	Temperature Model Spreadsheet (see Attachment)
	Water Quality Toxics Management Strategy, 361-0100-003, 4/06.
	Technical Guidance for the Development and Specification of Effluent Limitations, 386-0400-001, 10/97.
	Policy for Permitting Surface Water Diversions, 386-2000-019, 3/98.
\square	Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 386-2000-018, 11/96.
	Technology-Based Control Requirements for Water Treatment Plant Wastes, 386-2183-001, 10/97.
	Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 386-2183-002, 12/97.
	Pennsylvania CSO Policy, 386-2000-002, 9/08.
	Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.
	Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 386-2000-008, 4/97.
\times	Determining Water Quality-Based Effluent Limits, 386-2000-004, 12/97.
\times	Implementation Guidance Design Conditions, 386-2000-007, 9/97.
\times	Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 386-2000-016, 6/2004.
	Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 386-2000-012, 10/1997.
	Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 386-2000-009, 3/99.
	Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 386-2000-015, 5/2004.
	Implementation Guidance for Section 93.7 Ammonia Criteria, 386-2000-022, 11/97.
\boxtimes	Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 386-2000-013, 4/2008.
\times	Implementation Guidance Total Residual Chlorine (TRC) Regulation, 386-2000-011, 11/1994.
	Implementation Guidance for Temperature Criteria, 386-2000-001, 4/09.
	Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 386-2000-021, 10/97.
	Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 386-2000-020, 10/97.
	Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 386-2000-005, 3/99.
	Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 386-2000-010, 3/1999.
\times	Design Stream Flows, 386-2000-003, 9/98.
	Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 386-2000-006, 10/98.
	Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 386-3200-001, 6/97.
$ \times $	Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.
\square	SOP: Establishing Effluent Limitations for Individual Sewage Permits, rev. 03/24/2021
	Other:

Attachments:

A. Discharge Location Map B. WQM7.0 Model

C. TRC Model

Discharge to Roadside ditch

Input Data WQM 7.0

	SWP Basir			Str	eam Name		RMI	Ele	evation (ft)	Drainage Area (sq mi)	Slope (fl/ft)		drawal	Apply FC
	05C	276	664 Trib 27	'664 to Li	ttle Fishing (Creek	0.17	70	574.00	0.03	3 0.0000	0	0.00	
					St	ream Dat	a							
Design Cond.	LFY	Trib Flow	Stream Flow	Reh Trav Time	Reh Velocity	WD Ratio	Reh Width	Reh Depth	Ten	Tributaty າp pH		<u>Stream</u> emp	pH	
	(efsm)	(efs)	(cfs)	(days)	(fps)		(ft)	(ft)	('C)	('C)		
Q7-10 Q1-10 Q30-10	0.109	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000 0.000 0.000	0.0	0.00	0.0	00 2	0.00 7	.00	0.00	0.00	
					Di	scharge I	Data							
			Name	Per	mit Numbe	Disc	Permitte Disc Flow (mgd)	Dis Flor	sc Res w Fa	erve Te ctor	i sc mp C)	Disc pH		
		Madis	on Est	PA)112381a	0.004	5 0.000	0.0	0000 (0.000	25.00	7.00		
					Pa	rameter I	Data							
			F	arameter	Name	Di C		Trib Cone	Stream Cone	Fate Coef				
			•	aramotor	lano	(m	g/L) (n	ng/L)	(mg/L)	(1/days)				
			CBOD5				25.00	2.00	0.00	1.50				
			Dissolved	Oxygen			3.00	8.24	0.00	0.00				
			NH3-N				25.00	0.00	0.00	0.70				

Input Data WQM 7.0

	SWP Basin	Strea Cod		Stre	eam Name		RMI		vation (ft)	Drainage Area (sq mi)		ope /ft)	PWS Withdrawal (mgd)	Apply FC
	05C	276	64 Trib 27	7664 to Lit	tle Fishing (Creek	0.00	1	548.00	0.0	5 D.O	0000	0.00	
					St	ream Dat	a							
Design	LFY	Trib Flow	Stream Flow	Reh Trav Time	Reh Velocity	WD Ratio	Reh Width	Reh Depth	Tem	Tributary p pł	4	<u>s</u> Temp	<u>Stream</u> pH	
Cond.	(cfsm)	(els)	(els)	(days)	(fps)		(ft)	(ft)	('C))		('C)		
Q7-10 Q1-10 Q30-10	0.109	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000 0.000 0.000	0.0	0.00	0.00) 20	0.00	7.00	0	.00 0.00	
			Name	Per	mit Numbe	Disc	Permitte Disc Flow (mgd)	Disc Flov	c Res w ⊢a	erve To Ctor	Disc emp 'C)	Dis p⊦	-	
						0.000	0.000	0 0.00	000	0.000	25.00) 7	7.00	
					Pa	arameter								
			I	Paramete	Name			rib S one	Stream Cone	Fate Coef				
						(m	g/L) (n	ng/L)	(mg/L)	(1/days)				
			CB0D5				25.00	2.00	0.00	1.50				
			Dissolved	Oxygen			3.00	8.24	0.00	0.00				
			NH3-N			:	25.00	0.00	0.00	0.70				

	sw	P Basin	Strea	am Code				Stream	Name			
		05C		7664		٦	Frib 2766	4 to Litt	le Fishing	Creek		
RMI	Stream Flow	PWS With	Net Stream Flow	Disc Analysis Flow	•	Depth	Width	W/D Ratio	Velocity	Trav Time	Analysis Temp	Analysis pH
	(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	('C)	
Q7-1(0 Flow											
0.170	0.00	0.00	0.00	NA	0.02914	.278	.91	3.28	0.04	0.256	23.40	7.00
Q1-1(0 Flow											
0.170	0.00	0.00	0.00	NA	0.02914	NA	NA	NA	0.00	0.000	0.00	0.00
Q30-′	10 Flow											
0.170	0.00	0.00	0.00	NA	0.02914	NA	NA	NA	0.00	0.000	0.00	0.00

WQM 7.0 Hydrodynamic Out uts

WQM 7.0 Modeling Specifications

Parameters	D.O.	Use Inputted Q1-10 and Q30-10 Flows	
WLA Method	Simulation	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.36	Temperature Adjust Kr	
D. O. Saturation	90.00%	Use Balanced Technology	
D.O. Goal	6		

<u>SWP Basin</u> S	<u>tream Code</u>			Stream Nam	e	
OSC	27664		Trib 2760	64 to Little Fis	hing Creel	< C
RMI	Total Discharge	Flow (mad)	Ana	lysis Temperat	ure (°C)	Analysis pH
0.170	0.00	4		23.405		7.000
Reach Width (ft)	<u>Reach De</u>	pth <i>(ft</i>)		Reach WDRa	<u>tio</u>	Reach Velocity (fps)
0.911	0.27	8		3.277		0.040
Reach CBOD5 (mg/L)	Reach Kc	<u>1/davs</u>)	B	each NH3-N (r	<u>ma/L)</u>	<u>Reach Kn (1/days)</u>
17.66	1.43	2		17.02		0.910
Reach DO {ma/L)	Reach Kr (<u>1/days</u>)		Kr Equation		<u>Reach DO Goal (mɑ/L</u>)
4.673	29.28	35		Owens		6
Reach Travel Time (days)		Subreach	Results			
0.256	TravTime	CBOD5	NH3-N	D.O.		
	(days)	(mq/L)	(mg/L)	(mg/L)		
	0.026	16.92	16.63	4.71		
	0.051	16.21	16.25	4.79		
	0.077	15.53	15.88	4.89		
	0.102	14.88	15.51	4.99		
	0.128	14.26	15.16	5.10		
	0.153	13.66	14.81	5.20		
	0.179	13.09	14.47	5.30		
	0.205	12.54	14.13	5.40		
	0.230	12.01	13.81	5.49		
	0.256	11.51	13.49	5.59	I	

WQM 7.0 D.O.Simulation

\ev'1-\'.) ,..t *II_r.Jof* f 12, c **'1**

	SWP Basi i			Stre	eam Name		RMI	Eleva (ft)	ition	Drainage Area (sq mi)	Slope (ft/ft)	PWS Withdrawal (mgd)	Apply FC
	05C	276	657 LITTLE	E FISHING	G CREEK		4.56	0 5	48.00	58.60	0.00000	0.00	
					St	tream Da	ta						
Design	LFY	Trib Flow	Stream Flow	Reh Trav Time	Reh Velocity	WO Ratio	Reh Width	Reh Depth	Temp	Tributary pH	Tem	<u>Stream</u> p pH	
Cond.	(efsm)	(efs)	(cfs)	(days)	(fps)		(ft)	(fl)	('C)		('C))	
Q7-10	0.109	0.00	0.00	0.000	0.000	0.0	0.00	0.00	20	.00 7.0	00 (0.00 0.00	
Q1-10		0.00	0.00	0.000	0.000								
Q30-10		0.00	0.00	0.000	0.000								

Input Data WQM 7.0

Name	Dis Permit Number	charge I Existing Disc Flow (mgd)	Perm Di Flo	SC	Design Disc Flow (mgd)		erve ctor	Disc Temp ('C)	Disc pH
Madison Estates	PA0112381	0.004	5 0.0	0000	0.000) (0.000	25.00	7.00
	Para	ameter I	Data						
Para	meter Name	C	i sc oric g/L)	Trib Cond	e C	ream one ig/L)	Fate Coe! (1/days)		
CBOD5			11.51	2.	.00	0.00	1.50)	_
Dissolved Oxy	gen		5.59	8.:	24	0.00	0.00)	
NH3-N			13.49	0.	.00	0.00	0.70)	

Outputs From dry reach

Input Data WQM 7.0

	SWP Basi n			Stre	eam Name		RMI	Elevati (ft)	Α	nage rea դ mi)	Slope (ft/ft)	PWS Withdrawa (mgd)	App al FC
	05C	276	657 LITTL	E FISHIN	G CREEK		3.97	0 54	00.0	60.00	0.0000.C	0	.00
					St	ream Data	a						
Design Cond.	LFY	Trib Flow	Stream Flow	Reh Trav Time	Reh Velocity	WD Ratio	Reh Width	Reh Depth	<u>Trib</u> Temp	utary. pH	Tem	<mark>Stream</mark> ıp pŀ	ł
Conu.	(efsm)	(els)	(els)	(days)	(fps)		(ft)	(ft)	("C)		("C)	
Q7-10 Q1-10 Q30-10	0.109	0.00 0.00 0.00	0.00	0.000 0.000 0.000	0.000 0.000 0.000	0.0	0.00	0.00	20.00	7.00) (0.00 0	.00
					Di	scharge D	Data						
			Name	Per	mit Number	Existing Disc Flow (mgd)	Permitte Disc Flow (mgd)	d Design Disc Flow (mgd)	Reserve Factor	Disc Temp ("C)			
						0.0000			0.000		.00	7.00	
					Pa	arameter D	Data						

Disc

Cone

(mg/L)

25.00

3.00

25.00

Parameter Name

CBOD5

NH3-N

Dissolved Oxygen

Trib

Cone

(mg/L)

2.00

8.24

0.00

Stream

Cone

(mg/L)

0.00

0.00

0.00

Fate

Coef

(1/days)

1.50

0.00

0.70

	SW	P Basin	Strea	m Code				Stream	Name			
		OSC	2	7657	_		LITTL	E FISH	NG CREE	K		
RMI	Stream Flow	PWS With	Net Stream Flow	Disc Analysis Flow	Reach Slope	Depth	Width	W/D Ratio	Velocity	Reach Trav Time	Analysis Temp	Analysis pH
_	(cfs)	(cfs)	(els)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	('C)	
Q7-1	0 Flow											
4.560	6.37	0.00	6.37	.007	0.00257	.713	39.05	54.8	0.23	0.157	20.01	7.00
Q1-1	0 Flow											
4.560	4.08	0.00	4.08	.007	0.00257	NA	NA	NA	0.18	0.202	20.01	7.00
Q30-	10 Flow											
4.560	8.66	0.00	8.66	.007	0.00257	NA	NA	NA	0.27	0.133	20.00	7.00

WQM 7.0 H)t'.drod)t'.namic Out uts

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.36	Temperature Adjust Kr	
D.O. Saturation	90.00%	Use Balanced Technology	
D.O. Goal	6		

	<u>SWP Basin</u>	Stream Code		St	<u>ream Name</u>		
	05C	27657		LITTLE	FISHING CRE	EEK	
NH3-N	Acute Alloca	itions					
RMI	Discharge Na	ame Baseline (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
4.56	0 Madison Esta	tes 9.67	26.98	9.67	26.98	0	0
NH3-N	Chronic Allo	cations					
RMI	Discharge Nan	Baseline ne Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
4.56	0 Madison Esta	tes 1.92	13.49	1.92	13.49	0	0

	Discharge Name	CBOD5		<u>NH3-N</u>		Dissolved Oxy:gen		Critical	Percent
RMI		Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Reach	Reduction
4.56 Madison Estates		11.51	11.51	13.49	13.49	5.59	5.59	0	0

Tuesday, September 18, 2018

SWP Basin	Stream Code			Stream Name	2	
DSC	27657		LITT	LE FISHING C	REEK	
<u>RM</u> I	Total Discharge		Ana	lysis Temperat	ure (ºC)	Analysis pH
4.560	0.00	4		20.005		7.000
Reach Width (ff	<u>Reach De</u>	pth <i>(ft</i>)		Reach WDRa	tio	Reach Velocity (fps)
39.053	0.71	3		54.795		0.229
<u>Reach CBOD5 (mg/L)</u>	Reach Kc (<u>1/davs</u>)	B	each NH3-N (r	na/Ll	<u>Reach Kn (1/days)</u>
2.01	0.00	8		0.01		0.700
Reach DO {mg/l)	<u>Reach Kr (</u>	<u>1/davs</u>)		Kr Equation		<u>Reach DO Goal (mg/L)</u>
8.240	5.59	1		Tsivoglou		6
Reach Travel Time (days	<u>s</u>)	Subreach	Results			
0.157	TravTime	CBOD5	NH3-N	D.O.		
	(days)	(mg/L)	(mg/L)	(mg/L)		
	0.016	2.01	0.01	8.24		
	0.031	2.01	0.01	8.24		
	0.047	2.01	0.01	8.24		
	0.063	2.01	0.01	8.24		
	0.079	2.01	0.01	8.24		
	0.094	2.01	0.01	8.24		
	0.110	2.01	0.01	8.24		
	0.126	2.01	0.01	8.24		
	0.142	2.01	0.01	8.24		
	0.157	2.01	0.01	8.24		

	SWP BasinStream Code05C27657		<u>Stream Name</u> LITTLE FISHING CREEK				
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
4.560	Madison Estates	PA0112381	0.004	CBODS	11.51		
				NH3-N	13.49	26.98	
				Dissolved Oxygen			5.59

WQM 7.0 Effluent Limits

Input levels are protective

TRC_	CAL	LC

TRC EVALUATION								
Input appropria	te values in <i>l</i>	A3:A9 and D3:D9						
0.0528	= Q stream (cfs)	= CV Daily					
0.01	= Q discharg	e (MGD)	0.5	= CV Hourly				
30	= no. sample	S	1	= AFC_Partial Mix Factor				
0.3	= Chlorine D	emand of Stream	1	= CFC_Partial Mix Factor				
0	= Chlorine D	emand of Discharge	15	5 = AFC_Criteria Compliance Time (min)				
	= BAT/BPJ V		720	—	Compliance Time (min)			
0	= % Factor of	of Safety (FOS)		=Decay Coeffic	ient (K)			
Source	Reference	AFC Calculations		Reference	CFC Calculations			
TRC	1.3.2.iii	WLA afc =		1.3.2.iii	WLA cfc = 1.072			
PENTOXSD TRG	5.1a	LTAMULT afc =		5.1c	LTAMULT cfc = 0.581			
PENTOXSD TRG	5.1b	LTA_afc=	0.413	5.1d	LTA_cfc = 0.623			
Source		Effluer	nt Limit Calcul	ations				
PENTOXSD TRG	5.1f		AML MULT =	1.231				
PENTOXSD TRG	5.1g	AVG MON I	_IMIT (mg/l) =	0.500	BAT/BPJ			
INST MAX LIMIT (mg/l) = 1.635								
WLA afc (.019/e(-k*AFC_tc)) + [(AFC_Yc*Qs*.019/Qd*e(-k*AFC_tc)) + Xd + (AFC_Yc*Qs*Xs/Qd)]*(1-FOS/100) LTAMULT afc EXP((0.5*LN(cvh^2+1))-2.326*LN(cvh^2+1)^0.5) LTA_afc wla_afc*LTAMULT_afc								
WLA_cfc (.011/e(-k*CFC_tc) + [(CFC_Yc*Qs*.011/Qd*e(-k*CFC_tc)) + Xd + (CFC_Yc*Qs*Xs/Qd)]*(1-FOS/100) LTAMULT_cfc EXP((0.5*LN(cvd^2/no_samples+1))-2.326*LN(cvd^2/no_samples+1)^0.5)								
LTA_cfcwla_cfc*LTAMULT_cfcAML MULTEXP(2.326*LN((cvd^2/no_samples+1)^0.5)-0.5*LN(cvd^2/no_samples+1))AVG MON LIMITMIN(BAT_BPJ,MIN(LTA_afc,LTA_cfc)*AML_MULT)INST MAX LIMIT1.5*((av_mon_limit/AML_MULT)/LTAMULT_afc)								

L