

Northwest Regional Office CLEAN WATER PROGRAM

Application Type

Renewal

Non
Facility Type

Maior / Minor

Minor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

Application No. PA0217565

APS ID 1102173

Authorization ID 1464096

Applicant Name	John & Lynae Williams	Facility Name	Maple Valley Personal Care Home
Applicant Address	2212 Anthony Run Road	Facility Address	2212 Anthony Run Road
	Indiana, PA 15701-4413		Indiana, PA 15701-4413
Applicant Contact	John Williams	Facility Contact	
Applicant Phone	(724) 465-4343	Facility Phone	
Applicant Email	jwilliams70@verizon.net		
Client ID	349984	Site ID	485285
Ch 94 Load Status	Not Overloaded	Municipality	Armstrong Township
Connection Status	No Limitations	County	Indiana
Date Application Rece	November 17, 2023	EPA Waived?	Yes
Date Application Acce	pted April 1, 2024	If No, Reason	

Summary of Review

This is a renewal Sewage Individual NPDES Permit for an Existing Discharge of 0.006 MGD from a non-municipal minor sewage facility. The existing treatment process consists of extended aeration, final clarification and chlorination. Extended aeration plant has 1 digestor, 2 aeration tanks, 1 settling tank and 1 clearwell.

Act 14 - Proof of Notification was submitted and received.

This facility is currently using eDMR system.

SPECTIAL CONDITIONS: NONE

The EPA waiver is in effect.

There are NO open violations in WMS for the subject Client ID (349984) as of April 5, 2024.

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Approve	Deny	Signatures	Date
Х		Aeshah Shameseldin Aeshah Shameseldin / Civil Engineer	April 5, 2024
		Vacant / Environmental Engineer Manager	Okay to Draft JCD 4/23/2024

Discharge, Receiving Waters a	and Water Supply Infor	mation			
Outfall No. 001		Design Flow (MGD)	.006		
Latitude 40° 37' 48"		Longitude	-79º 16' 26"		
Quad Name Elderton		Quad Code	40079F3		
Wastewater Description: S	Sewage Effluent				
Receiving Waters Anthony	Run (CWF)	Stream Code	46692		
NHD Com ID 1238580)97	RMI	2.38		
Drainage Area 2.89 squ	ıare miles	Yield (cfs/mi²)	0.1		
Q ₇₋₁₀ Flow (cfs) 0.289		Q ₇₋₁₀ Basis	Stream Gage # 03038000, Crooked Creek at Idaho, Pa		
Elevation (ft)1060		Slope (ft/ft)			
Watershed No. 17-E		Chapter 93 Class.	CWF		
Existing Use		Existing Use Qualifier			
Exceptions to Use		Exceptions to Criteria			
Assessment Status I	mpaired				
Cause(s) of Impairment S	Siltation				
Source(s) of Impairment F	Removal of Riparian Vege	etation			
TMDL Status F	- inal	Name Crooked Cre	eek Watershed		
Background/Ambient Data		Data Source			
pH (SU)	7.0	Default			
Temperature (°F)	68	Default			
Hardness (mg/L)	100	Default			
Other:					
Nearest Downstream Public V	Vater Supply Intake	Buffalo Township Municipal W	/ater Authority - Freeport		
PWS Waters Allegheny		Flow at Intake (cfs)	2576		
PWS RMI 30		Distance from Outfall (mi)			

Changes Since Last Permit Issuance: None.

Other Comments: None.

	Tre	eatment Facility Summa	ry	
Treatment Facility Na	me: Maple Valley Persona	I Care Home		
WQM Permit No.	Issuance Date			
3298401 A-1	October 9, 2019			
3298401	July 24, 1998			
	Degree of			Avg Annual
Waste Type	Treatment	Process Type	Disinfection	Flow (MGD)
			Chlorine with	
Sewage	Secondary	Extended Aeration	Dechlorination	0.006
Hydraulic Capacity	Organic Capacity			Biosolids
(MGD)	(lbs/day)	Load Status	Biosolids Treatment	Use/Disposal
0.006		Not Overloaded		Off site

Changes Since Last Permit Issuance: Treatment facilities under WQM 3298401 have been amended to house a sodium bisulfite tablet feeder for dechlorination and a 12" air diffuser inside a new 48" manhole.

Other Comments:

Compliance History

DMR Data for Outfall 001 (from March 1, 2023 to February 29, 2024)

Parameter	FEB-24	JAN-24	DEC-23	NOV-23	OCT-23	SEP-23	AUG-23	JUL-23	JUN-23	MAY-23	APR-23	MAR-23
Flow (MGD)												
Average Monthly	0.004	0.004	0.004	0.004	0.0043	0.004	0.004	0.004	0.004	0.004	0.0045	0.004
Flow (MGD)												
Daily Maximum	0.005	0.005	0.005	0.005	0.0043	0.005	0.005	0.004	0.005	0.004	0.005	0.005
pH (S.U.)												
Instantaneous												
Minimum	6.8	6.8	6.8	6.8	6.8	7.0	6.8	6.8	6.8	6.8	6.8	6.8
pH (S.U.)												
Instantaneous												
Maximum	7.4	7.2	7.5	7.7	7.6	7.7	7.4	7.5	7.4	7.1	7.7	7.2
DO (mg/L)												
Instantaneous												
Minimum	5.0	5.6	5.0	5.0	5.5	5.0	5.0	5.0	5.0	6.0	5.6	5.0
TRC (mg/L)												
Average Monthly	0.07	0.08	0.08	0.09	0.08	0.08	0.07	0.07	0.10	0.07	0.07	0.08
TRC (mg/L)												
Instantaneous												
Maximum	0.15	0.15	0.19	0.20	0.20	0.20	0.20	0.19	0.19	0.22	0.20	0.19
CBOD5 (mg/L)												
Average Monthly	3	3	3	3	3	3	3	5.085	4.765	3	3.02	3
CBOD5 (mg/L)												
Instantaneous		0	0	0	0	0	0	7.47	5 50		0.04	
Maximum TCC (re-r/L)	3	3	3	3	3	3	3	7.17	5.53	3	3.04	3
TSS (mg/L) Average Monthly	1.60	1.0	2.40	17.6	13.8	4.8	10.8	2.8	6	19.6	18.6	9.2
	1.00	1.0	2.40	17.0	13.0	4.0	10.6	2.0	0	19.6	10.0	9.2
TSS (mg/L) Instantaneous												
Maximum	1.60	1.0	3.20	19.6	18.8	8.0	14.8	3.20	10.4	22	29.6	16.8
Fecal Coliform	1.00	1.0	3.20	19.0	10.0	0.0	14.0	3.20	10.4	22	29.0	10.0
(No./100 ml)												
Geometric Mean	2.05	6.3	48.8	42	259	13.8	49.5	101	4	2	11.4	4.0
Fecal Coliform	2.00	0.5	40.0	72	200	13.0	43.5	101	7		11.7	7.0
(No./100 ml)												
Instantaneous												
Maximum	3.1	6.3	104.8	579.4	488.4	191.8	77.1	1046	4	4	16.4	4.0
Total Nitrogen (mg/L)		5.5		0.0								
Daily Maximum			0.5000									

NPDES Permit Fact Sheet Maple Valley Personal Care Home

NPDES Permit No. PA0217565

Ammonia (mg/L) Average Monthly			0.1000	0.5296	0.691	1.9712	0.1812	0.1000	
Ammonia (mg/L) Instantaneous									
Maximum			0.1000	0.9593	1.282	3.687	0.2620	0.1000	
Total Phosphorus (mg/L)									
Daily Maximum		4.01							

Compliance History

Effluent Violations for Outfall 001, from: April 1, 2023 to: February 29, 2024

Parameter	Date	SBC	DMR Value	Units	Limit Value	Units
Fecal Coliform	07/31/23	IMAX	1046	No./100 ml	1000	No./100 ml

Summary of Inspections: Site inspection has been conducted on May 13, 2022. The inspection report did not cite any violations.

Other Comments: None.

	Development of Effluent Limitations				
Outfall No.	001	Design Flow (MGD)	.006		
Latitude	40° 37' 48.00"	Longitude	-79° 16' 26.00"		
Wastewater [Description: Sewage Effluent				

Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Pollutant	Limit (mg/l)	SBC	Federal Regulation	State Regulation
CBOD₅	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
CBOD5	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
Total Suspended	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Solids	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
pН	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform				
(5/1 - 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform				
(5/1 - 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform (10/1 – 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform				
(10/1 – 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)
E. Coli	Report (No./100 ml)	IMAX	-	§ 92a.61

Comments: Monitoring for E. Coli is placed in the permit in accordance with the Department's SOP entitled "Establishing Effluent Limitations for Individual Sewage Permits."

Water Quality-Based Limitations

CBOD5, Ammonia, and DO are evaluated using WQM 7.0 (See Attachment 1). TRC is evaluated using the department's TRC evaluation spreadsheet (See Attachment 2).

The following limitations were determined through water quality modeling (output files attached):

Parameter	Limit (mg/l)	SBC	Model
Dissolved Oxygen	4.0	Daily Min.	WQM 7.0
CBOD5	25	Avg. Monthly	WQM 7.0
	50	IMAX	
Ammonia Nitrogen (May 1 – Oct 31)	21.0	Average Monthly	WQM 7.0
Ammonia Nitrogen (Nov 1 - Apr 30)	Report	IMAX	
TRC	0.5	Average Monthly	TRC evaluation spreadsheet

Comments: WQM 7.0 didn't calculate more stringent average monthly limits for Ammonia-Nitrogen. The current limits established in previous permits are attainable and will be retained.

The TRC evaluation spreadsheet didn't calculate more stringent average monthly TRC limit at perennial conditions using the plant design flow, the current limits established in previous permits are attainable and will be retained.

Best Professional Judgment (BPJ) Limitations

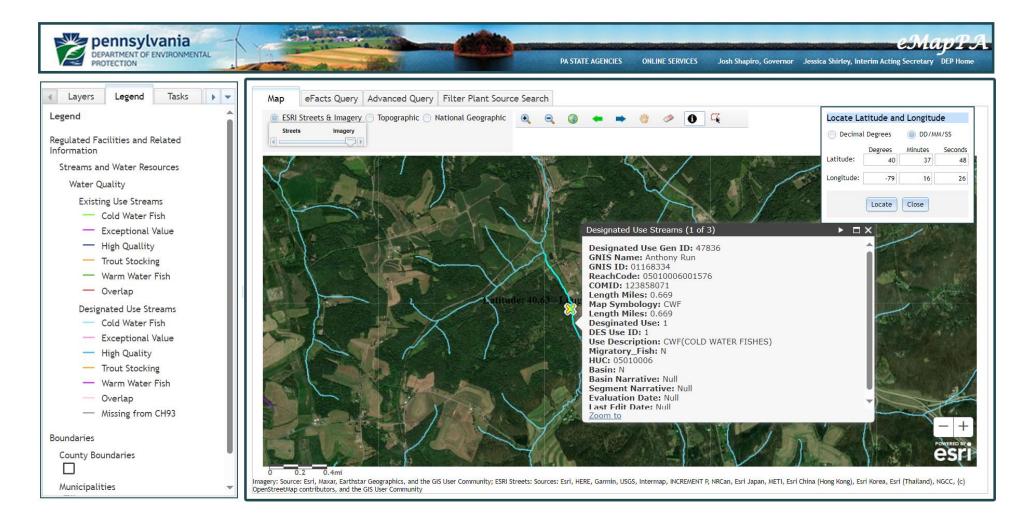
Comments: A dissolved oxygen effluent limit of a minimum of 4.0 mg/L, and monitoring for total nitrogen, total phosphorus and raw sewage influent monitoring for CBOD₅ and TSS are placed in the permit in accordance with the Department's SOP entitled "Establishing Effluent Limitations for Individual Sewage Permits."

Winter monitoring has been established for Ammonia-Nitrogen as part of this renewal. In accordance with the department's SOP "Establishing Effluent Limitations for Individual Sewage Permits" a seasonal multiplier of 3 times the summertime average monthly limit should be established for the winter period. In accordance with Table 6-3 in the "Technical Guidance for the Development and Specification of Effluent Limitations", the frequency supposed to be 2/month sampling, however, since the discharge has consistently achieved effluent concentrations well below the required ammonia nitrogen limits and there are currently no known threatened or endangered mussels in the vicinity of the discharge, the monitoring requirement has been established as "Report" and the sampling frequency has been relaxed to 1/month.

Anti-Backsliding

No backsliding of limits is being proposed.

Proposed Effluent Limitations and Monitoring Requirements


The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (386-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

			Effluent L	imitations			Monitoring Re	quirements
Parameter	Mass Units	(lbs/day) (1)		Concentrat	ions (mg/L)		Minimum (2)	Required
Farameter	Average Monthly	Average Weekly	Minimum	Average Monthly	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	0.006	Report Daily Max	XXX	XXX	XXX	XXX	2/month	Measured
pH (S.U.)	XXX	XXX	6.0 Inst Min	XXX	XXX	9.0	1/day	Grab
DO	XXX	XXX	4.0 Daily Min	XXX	XXX	XXX	1/day	Grab
TRC	XXX	XXX	XXX	0.5	XXX	1.6	1/day	Grab
CBOD5	XXX	XXX	XXX	25	XXX	50	2/month	Grab
TSS	XXX	XXX	XXX	30	XXX	60	2/month	Grab
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	2000 Geo Mean	XXX	10000	2/month	Grab
Fecal Coliform (No./100 ml) May 1 - Sep 30	XXX	XXX	XXX	200 Geo Mean	XXX	1000	2/month	Grab
E. Coli (No./100 ml)	XXX	XXX	XXX	XXX	XXX	Report	1/year	Grab
Total Nitrogen	XXX	XXX	XXX	XXX	Report Daily Max	XXX	1/year	Grab
Ammonia Nov 1 - Apr 30	XXX	XXX	XXX	XXX	XXX	Report	1/month	Grab
Ammonia May 1 - Oct 31	XXX	XXX	XXX	21.0	XXX	42.0	2/month	Grab
Total Phosphorus	XXX	XXX	XXX	XXX	Report Daily Max	XXX	1/year	Grab

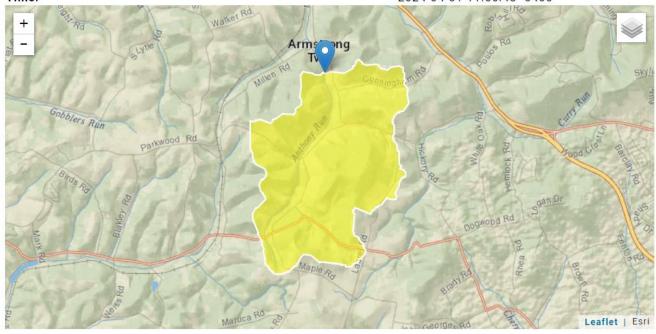
Compliance Sampling Location: Outfall 001, after disinfection.

Outfall Location - eMap with Aerial Imagery

<u>Drainage Area Location at Outfall 001 – StreamStats with Aerial Imagery</u>

StreamStats Report

Region ID:


Workspace ID: Clicked Point (Latitude, Longitude):

Time:

PA

PA20240401155617928000 40.63007, -79.27374

2024-04-01 11:56:43 -0400

Collapse All

> Basin Characteristics

Parameter Code	Parameter Description	Value	Unit
DRNAREA	Area that drains to a point on a stream	2.89	square miles

PA

<u>Downstream Drainage Area Location – StreamStats with Aerial Imagery</u>

StreamStats Report

Region ID:

Workspace ID: PA20240401155912088000

Clicked Point (Latitude, Longitude): 40.64682, -79.27955
Time: 2024-04-01 11:50:34 -04

Collapse All

> Basin Characteristics

Parameter Code	Parameter Description	Value	Unit
DRNAREA	Area that drains to a point on a stream	4.95	square miles

Attachment 1

WQM 7.0 Effluent Limits

		am Code 6692		<u>Stream Nam</u> ANTHONY RU	-		
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
2.380	Maple Valley	PA02175565	0.006	CBOD5	25		
				NH3-N	25	50	
				Dissolved Oxygen			4

Monday, April 1, 2024 Version 1.1 Page 1 of 1

WQM 7.0 D.O.Simulation

17E 4	16692			ANTHONY RUN	
	Total Dissipation				
20 TO THE RESERVE TO	Total Discharge Flow (mgd		<u>) Ana</u>	ysis Temperature (°C	70 (2 1/2 7 7 7
2.380	0.006			20.000	7.000
Reach Width (ft)	Reach Dep			Reach WDRatio	Reach Velocity (fps)
8.284	0.417	,		19.841	0.086
Reach CBOD5 (mg/L)	Reach Kc (<u>1/days)</u>	<u>R</u>	each NH3-N (mg/L)	Reach Kn (1/days)
2.72	0.259			0.78	0.700
Reach DO (mg/L)	Reach Kr (1	(2 CA)		Kr Equation	Reach DO Goal (mg/L)
8.111	21.14	5		Owens	6
Reach Travel Time (days)		Subresch	Rasulas		
0.942			NH3-N	D.O.	
	(days)	(mg/L)	(mg/L)	(mg/L)	
	0.094	2.65	0.73	8.24	
	0.188	2.59	0.68	8.24	
	0.283	2.52	0.64	8.24	
	0.377	2.46	0.60	8.24	
	0.471	2.40	0.56	8.24	
	0.565	2.35	0.52	8.24	
	0.660	2.29	0.49	8.24	
	0.754	2.23	0.46	8.24	
	0.848	2.18	0.43	8.24	
	0.942	2.13	0.40	8.24	

Monday, April 1, 2024 Version 1.1 Page 1 of 1

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.36	Temperature Adjust Kr	•
D.O. Saturation	90.00%	Use Balanced Technology	•
D.O. Goal	6		

Monday, April 1, 2024 Version 1.1 Page 1 of 1

Input Data WQM 7.0

	SWP Basin	Strea Coo		Stre	eam Nam	e	RMI		vation (ft)	Drainag Area (sq mi		lope ft/ft)	PW Withda (mg	rawal	Apply FC
	17E	466	692 ANTH	ONY RUN	1		2.38	30	1060.00	2	2.89 0.0	00000		0.00	✓
·						Stream Dat	a								
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	<u>Tributar</u> np	¥ pH	Tem	<u>Stream</u> p	n pH	
	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C)		
Q7-10 Q1-10	0.100	0.00 0.00	0.00	0.000 0.000	0.000		0.00	0.0	0 2	0.00	7.00	j	0.00	0.00	
Q30-10		0.00	0.00	0.000	0.000)									
						Discharge	Data								
			Name	Per	mit Numl	Disc	Permitte Disc Flow (mgd)	Dis- Flo	c Res w Fa	erve ctor	Disc Temp (°C)	Di: P	sc H		
		Maple	e Valley	PAC	2175565	0.006	0.000	0.0	000	0.000	20.0	0	7.00		
						Parameter	Date								
			î	Paramete	r Name			Frib Conc	Stream Conc	Fate Coef					
			,	aramoto	, Maine	(m	g/L) (n	ng/L)	(mg/L)	(1/days	i)				
			CBOD5				25.00	2.00	0.00	1.5	0	3			
			Dissolved	Oxygen			4.00	8.24	0.00	0.0	0				
			NH3-N				25.00	0.00	0.00	0.7	0				

Input Data WQM 7.0

	SWP Basir	Strea Cod		Stre	eam Nam	е	RMI		vation (ft)	Draina Area (sq m	i	Slope (ft/ft)	PW Withdi (mg	rawal	Apply FC
	17E	460	692 ANTH	ONY RUN	1		1.0	50	1015.00	i	4.95 0	.00000		0.00	✓
<i>y</i>						Stream Dat	a								
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	<u>Tributa</u> np	r <u>y</u> pH	Tem	<u>Stream</u> np	n pH	
oona.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C	()		
Q7-10 Q1-10	0.100	0.00	0.00	0.000	0.000		0.00	0.0	0 2	0.00	7.00		0.00	0.00	
Q30-10		0.00	0.00	0.000	0.000)									
						Discharge	Data								
			Name	Per	mit Numb	Disc	Permitte Disc Flow (mgd)	Dis Flo	c Res w Fa	erve ctor	Disc Temp (°C)		sc H		
						0.000	0.000	0.0	0000	0.000	25.0	00	7.00		
						Parameter	Data								
			ī	Paramete	r Name			Trib Conc	Stream Conc	Fate Coef					
			,	urumete	i ivaliic	(m	ig/L) (r	ng/L)	(mg/L)	(1/day	s)				
	<u> </u>		CBOD5				25.00	2.00	0.00	1.	50				
			Dissolved	Oxygen			3.00	8.24	0.00	0.	00				
			NH3-N				25.00	0.00	0.00	0.	70				

WQM 7.0 Hydrodynamic Outputs

	SW	P Basin	Strea	ım Code				<u>Stream</u>	<u>Name</u>				
	17E			6692	ANTHONY RUN								
RMI	Stream Flow	PWS With	Net Stream Flow	Disc Analysis Flow	Reach Slope	Depth	Width	W/D Ratio	Velocity	Reach Trav Time	Analysis Temp	Analysis pH	
	(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	(°C)		
Q7-10	0 Flow												
2.380	0.29	0.00	0.29	.0093	0.00641	.417	8.28	19.84	0.09	0.942	20.00	7.00	
Q1-10	0 Flow												
2.380	0.18	0.00	0.18	.0093	0.00641	NA	NA	NA	0.07	1.198	20.00	7.00	
Q30-	10 Flow	1											
2.380	0.39	0.00	0.39	.0093	0.00641	NA	NA	NA	0.10	0.797	20.00	7.00	

WQM 7.0 Wasteload Allocations

Stream Name

	17E 4	16692		AN.	THONY RUN		
NH3-N	Acute Allocation	าร					
RMI	Discharge Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
2.38	0 Maple Valley	16.76	50	16.76	50	0	0
IH3-N	Chronic Allocati	ons					
RMI	Discharge Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
2 30	0 Maple Valley	1.89	25	1.89	25	0	0

Dissolved Oxygen Allocations

SWP Basin Stream Code

		CBOD5		<u>NH3-N</u>		Dissolved	d Oxygen	Critical	Percent
RMI	Discharge Name	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Reach	Reduction
2.38	Maple Valley	25	25	25	25	4	4	0	0

Attachment 2

TRC EVALUA	ATION				
Input appropria	te values in <i>i</i>	A3:A9 and D3:D9			
0.289	= Q stream (cfs)	0.5	= CV Daily	
0.006	= Q discharg	je (MGD)	0.5	= CV Hourly	
30	= no. sample	s	1	= AFC_Partial I	flix Factor
0.3	= Chlorine D	emand of Stream	1	= CFC_Partial F	dix Factor
0	= Chlorine D	emand of Discharge	15	= AFC_Criteria	Compliance Time (min)
0.5	= BAT/BPJ V	alue	720	= CFC_Criteria	Compliance Time (min)
0	= % Factor o	of Safety (FOS)	0	=Decay Coeffic	eient (K)
Source	Reference	AFC Calculations		Reference	CFC Calculations
TRC	1.3.2.iii	WLA afc =	9.951	1.3.2.iii	WLA cfc = 9.694
PENTOXSD TRG	5.1a	LTAMULT afc =	0.373	5.1c	LTAMULT cfc = 0.581
PENTOXSD TRG	5.1b	LTA_afc=	3.708	5.1d	$LTA_cfc = 5.636$
Source		Effluei	nt Limit Calcu	lations	
PENTOXSD TRG	5.1f		AML MULT =	1.231	
PENTOXSD TRG	5.1g	AVG MON	_IMIT (mg/l) =	0.500	BAT/BPJ
		INST MAX	_I M IT (mg/l) =	1.635	
WLA afc		FC_tc)) + [(AFC_Yc*Qs*.019		S_tc))	
	Account the country of the country o	C_Yc*Qs*Xs/Qd)]*(1-FOS/10	and the second of the second		
LTAMULT afc		(cvh^2+1))-2.326*LN(cvh^2+	·1)^0.5)		
LTA_afc	wla_afc*LTA	MULT_afc			
WLA_cfc	Accepted avenue of the same	FC_tc) + [(CFC_Yc*Qs*.011/ C_Yc*Qs*Xs/Qd)]*(1-FOS/10	- Carried and the Contract of	_tc))	
LTAMULT_cfc	EXP((0.5*LN	(cvd^2/no_samples+1))-2.32	6*LN(cvd^2/n	io_samples+1)^().5)
LTA_cfc	wla_cfc*LTA	MULT_cfc			
AML MULT		N((cvd^2/no_samples+1)^0.		I^2/no_samples-	-1))
AVG MON LIMIT	The state of the s	J,MIN(LTA_afc,LTA_cfc)*AN	The state of the s		
INST MAX LIMIT	1.5*((av_mo	n_limit/AML_MULT)/LTAMUL	.T_afc)		