

Southwest Regional Office CLEAN WATER PROGRAM

Application Type	Renewal
Facility Type	Municipal
Major / Minor	Minor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

Application No.	PA0218316
APS ID	1093833
Authorization ID	1449121

Applicant and Facility Information

Applicant Name	Dunbar Township Municipal Authority Fayette County	Facility Name	Dunbar Township Municipal Authority STP
Applicant Address	1257 University Drive	Facility Address	546 Adelaide Rd
	Dunbar, PA, 15431-0815		Connellsville, PA 15425
Applicant Contact	Lewis Falton	Facility Contact	Same as Applicant
Applicant Phone	(724) 626-1941	Facility Phone	Same as Applicant
Client ID	74736	Site ID	528539
Ch 94 Load Status	Not Overloaded	Municipality	Dunbar Township
Connection Status	No Limitations	County	Fayette
Date Application Receiv	ved July 25, 2023	EPA Waived?	Yes
Date Application Accep	ted August 1, 2023	If No, Reason	
Purpose of Application	Renewal of NPDES Permit.		

Summary of Review

Dunbar Township Municipal Authority (DTMA) has submitted for renewal of NPDES Permit PA0218316. NPDES Permit PA0218316 was last issued on December 23, 2018 and authorizes a discharge of 0.450 MGD from the DTMA sewage treatment plant (STP).

WQM permit No. 2600403 issued on October 24, 2000 authorized construction of the plant to treat an average design flow of 0.30 MGD. The existing treatment process consists of Bar screen, Influent Trough, SBRs, Sludge holding tanks, and Ultraviolet disinfection. The receiving stream, Youghiogheny River, is classified as a warm water fishery (WWF) per CH93 designation.

WQM permit 2600403 A-1 issued on July 15, 2011 authorized a plant expansion to handle the new designed flow of 0.45 MGD.

This facility is serving the Dunbar Township which treats raw sewer influent with no bypass or overflows within the collection system. The separated system has an estimated capacity of 1,500 EDUs.

Since this facility is located within the floodplain of the Youghiogheny River per eMapPA; Part C7 for "Develop an Operation and Maintenance Plan" will be included on this renewal permit.

Per application and CH94 reports, no industrial or commercial users are served by this facility.

No hydraulic or organic overloads are projected to occur within the next five years per CH94 report for 2022.

Approve	Deny	Signatures	Date
х		Hain Blodalli	
		Hazim Aldalli / Environmental Engineering Specialist	November 7, 2023
х		MAHBURA IASMIN	
		Mahbuba lasmin, Ph.D. P.E. / Environmental Engineering Manager	May 23, 2024

Summary of Review

Operations compliance report mentioned that facility is in compliance with no open enforcement. The report shows inconsistent violations for Fecal Coliform. Inspection reports reviewed did not identify this problem or any other violations.

Recent eDMRs (2020-2022) for Fecal Coliform did not show limit exceedances.

Per application and CH94 reports, no changes/upgrades are implemented or proposed for the next five years; thus no Act 537 needed.

An appropriate evidence of the Act – 14 PL 834, municipal notifications were provided by April 27, 2023 letters and no comments were received.

Sludge use and disposal description and location(s): Sludge is aerobically digested and dewatered using a belt filter press prior to ultimate disposal at a permitted landfill with County Hauling Corp. Last year total sludge/biosolids production was 15.43 Dry Tons. This facility didn't receive any additional sludge from other sources.

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Discharge, Receiving Waters and Water Supply Inform	mation	
Outfall No. 001	Design Flow (MGD)	0.45
Latitude40° 2' 45"	Longitude	-79º 36' 50"
Quad Name Connellsville	Quad Code	_40079A5
Wastewater Description: Sewage Effluent		
Receiving Waters <u>Youghiogheny River (WWF)</u>	Stream Code	37456
NHD Com ID69917161	RMI	41.35
Drainage Area 1370	Yield (cfs/mi ²)	0.33
Q ₇₋₁₀ Flow (cfs)460	Q7-10 Basis	USACE As of Dec. 1, 2017
Elevation (ft) 2233	Slope (ft/ft)	*N/A
Watershed No. 19-D	Chapter 93 Class.	WWF
Existing Use	Existing Use Qualifier	
Exceptions to Use <u>None</u> .	Exceptions to Criteria	None.
Assessment Status Not Assessed.		
Cause(s) of Impairment		
Source(s) of Impairment		
TMDL Status	Name	
Background/Ambient Data	Data Source	
pH (SU)		
Temperature (°F)		
Hardness (mg/L)		
Other:		
Nearest Downstream Public Water Supply Intake	Westmoreland County Munici	pal Authority - McKeesport
PWS Waters Youghiogheny River	Flow at Intake (cfs)	510
PWS RMI 1.8	Distance from Outfall (mi)	>40.0

Changes Since Last Permit Issuance:

- Elevation, drainage area, and low flow yield were all updated to match USGS Stream Stats new data (see Attachment A).
- DEP updated its WQM 7.0 criteria for Ammonia-Nitrogen (NH₃-N) in 2019. Limits and conditions of this permit need to be redeveloped to an adequate level to protect water quality.
- *E. Coli* monitoring requirements will be introduced to this renewal which is in compliance with DEP SOP No. BCW-PMT-033 revised March 24, 2021.

Other Comments: * Hydraulic slope will depend on locks and dam operation.

Treatment Facility Summary

Treatment Facility Name: Dunbar Township Municipal Authority STP

WQM Permit No.	Issuance Date			
2600403 A-2	02/12/2013			
2600403 A-1	07/15/2011			
2600403	10/24/2000			
	Degree of			Avg Annual
Waste Type	Treatment	Process Type	Disinfection	Flow (MGD)
	Secondary with	Sequencing Batch		
Sewage	Ammonia Reduction	Reactor	Ultraviolet	0.219
lydraulic Capacity	Organic Capacity			Biosolids
(MGD)	(lbs/day)	Load Status	Biosolids Treatment	Use/Disposal
		Projected Organic		Combination of

Changes Since Last Permit Issuance: None.

Other Comments: None.

Operations Compliance Check Summary Report

Facility: Dunbar Township Municipal Authority STP **NPDES Permit No.:** PA0218316 **Compliance Review Period:** 8/15/2018-8/15/2023 **Inspection Summary:**

INSPECTED DATE	INSP TYPE	AGENCY	INSPECTION RESULT DESC
06/16/2022	Compliance Evaluation	PA Dept of Environmental Protection	Violation(s) Noted
12/10/2018	Compliance Evaluation	PA Dept of Environmental Protection	No Violations Noted

Violation Summary:

VIOLATION	VIOLATION		RESOLVED
DATE	TYPE	VIOLATION TYPE DESC	DATE
06/16/2022	92A.44	NPDES - Violation of effluent limits in Part A of permit	8/16/2023

The following additional violations are shown on the mobile inspection report for the CEI on 6/16/22: 25 Pa. Code 252.4(a): Failure to register on-site laboratory

Since field measurements are being taken at the facility Dunbar Township must register the on-site lab to be in compliance. This was noted in the past two inspections and needs addressed as soon as possible.

25 Pa. Code 92a.41(a)(10): Failure to use an NIST thermometer. Need an NIST thermometer placed in the composite sampler.

25 Pa. Code 92a.41(a)(10): Failure to maintain proper sample temperature. Power was out.

25 Pa. Code 92a.41(a)(12): Failure to submit monitoring reports or properly complete monitoring reports. Late DMR 1/2022

25 Pa. Code 92a.41(a)(12): Failure to submit a required DMR supplemental report. Make sure you are using the state influent/process control supplemental form to record influent BOD, influent TSS, DO, settleability, and mixed liquor suspended solids.

25 Pa. Code 92a.41(a)(8): Failure to provide information or records required by the permit or otherwise needed to

determine compliance.

Three years of records must be kept onsite to include Chapter 94 reports and five years worth of sludge records at a minimum.

25 Pa. Code 92a.41(a)(9): Failure to provide access to facility or records Three years of records must be kept onsite to include Chapter 94 reports and five years worth of sludge records at a minimum.

P.L. 1987, No. 394, Sec 611: Failure to properly operate facilities in compliance with terms and conditions of a WQM permit.

Open Violations by Client ID:

No open violations for Client ID 74736.

Enforcement Summary:

NOV was issued after inspection on 6/16/22.

Effluent Violation Summary:

Jun-231Fecal Coliform> 301200No./100 mlGeometric Mean InstantaneousJun-231Fecal Coliform121001000No./100 mlMaximum InstantaneousMay-231Fecal Coliform12001000No./100 mlMaximum	MON PD END	<u>OUTFALL</u>	PARAMETER	<u>SAMPLE</u>	PERMIT	<u>UNIT</u>	STAT BASE CODE
Jun-23 1 Fecal Coliform 12100 1000 No./100 ml Maximum Instantaneous	Jun-23	1	Fecal Coliform	> 301	200	No./100 ml	Geometric Mean
Instantaneous							Instantaneous
	Jun-23	1	Fecal Coliform	12100	1000	No./100 ml	Maximum
May-23 1 Fecal Coliform 1200 1000 No./100 ml Maximum							Instantaneous
	May-23	1	Fecal Coliform	1200	1000	No./100 ml	Maximum
Instantaneous							Instantaneous
Aug-22 1 Fecal Coliform 3850 1000 No./100 ml Maximum	Aug-22	1	Fecal Coliform	3850	1000	No./100 ml	Maximum
Instantaneous							Instantaneous
Jul-21 1 Fecal Coliform 1628 1000 No./100 ml Maximum	Jul-21	1	Fecal Coliform	1628	1000	No./100 ml	Maximum
Instantaneous							Instantaneous
Jul-19 1 Fecal Coliform 2310 1000 No./100 ml Maximum	Jul-19	1	Fecal Coliform	2310	1000	No./100 ml	Maximum
Dec-18 1 Flow 0.382 0.3 MGD Average Monthly	Dec-18	1	Flow	0.382	0.3	MGD	Average Monthly
Nov-18 1 Flow 0.379 0.3 MGD Average Monthly	Nov-18	1	Flow	0.379	0.3	MGD	Average Monthly
Oct-18 1 Flow 0.379 0.3 MGD Average Monthly	Oct-18	1	Flow	0.379	0.3	MGD	Average Monthly
Sep-18 1 Flow 0.52 0.3 MGD Average Monthly	Sep-18	1	Flow	0.52	0.3	MGD	Average Monthly

<u>Compliance Status</u>: Facility has no open violations or pending enforcements at this time. Follow up inspections will be conducted as necessary regarding exceedances that have occurred since last inspection. <u>Completed by</u>: Amanda Schmidt <u>Completed date</u>: 8/15/23

Development of Effluent Limitations

Outfall No.	001		Design Flow (MGD)	0.45	
Latitude	40º 2' 45"		Longitude	-79º 36' 50"	
Wastewater	Description:	Sewage Effluent			

Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Pollutant	Limit (mg/l)	SBC	Federal Regulation	State Regulation
CBOD₅	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
CBOD5	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
Total Suspended	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Solids	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
рН	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform (5/1 – 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform (5/1 – 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform (10/1 – 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform (10/1 – 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)
E. Coli (No./100 ml)	Report	IMAX	-	92a.61
D.O. (mg/L)	4.0	Min	-	BPJ
	25	Average Monthly		
NH ₃ -N (mg/L)	50	IMAX	-	BPJ
Total N (mg/L)	Report	Average Monthly	-	92a.61
Total P (mg/L)	Report	Average Monthly	-	92a.61

Comments: The existing discharge was evaluated using WQM 7.0 to evaluate the CBOD₅, Ammonia Nitrogen and Dissolved Oxygen parameters.

The Total Suspended Solids, pH, and Fecal Coliform parameters are not evaluated using WQM 7.0. The bases for the proposed technology-based limitations are listed in the above table.

Water Quality-Based Limitations

The following limitations were determined through water quality modeling (see Attachment B):

Parameter	Limit (mg/l)	SBC	Model
CBOD5 (May1-Oct 31)	25	Average Monthly	WQM7.0
CBOD5 (Nov 1- Apr 30)	25	Average Monthly	WQM7.0
NH3-N (May1-Oct 31)	25	Average Monthly	WQM7.0
NH3-N (Nov 1- Apr 30)	25	Average Monthly	WQM7.0
Dissolved Oxygen	4.0	Minimum	WQM7.0

Best Professional Judgment (BPJ) Limitations

A minimum Dissolved Oxygen (DO) limit of 4.0 mg/L should be established based on Best Professional Judgment (BPJ) to ensure adequate operation and maintenance. Due to antibacksliding, the current limit for Dissolved Oxygen of 5.0 mg/L will be carried over into the renewed permit.

Per DEP-SOP – Establishing Effluent Limitations for Individual Sewage Permits Revised, March 24, 2021, for existing discharges, if WQM modeling results for summer indicates that an average monthly limit of 25 mg/L is acceptable, the application manager will generally establish a year-round monitoring requirement for ammonia-nitrogen, at a minimum.

DEP WQM 7.0 ver. 1.1 was used to determine the newly imposed limit for Ammonia-Nitrogen (NH₃-N) of 25.0 mg/L year round.

Checking on the eDMR, the facility can meet the newly imposed NH₃-N limit of 25 mg/L. As the plant has achieved effluent sampling results of NH₃-N lower than this limit, no compliance schedule is necessary.

TN and TP Monitoring

Per SOP (No. BCW-PMT-033: Establishing Effluent Limitations for Individual Sewage Permits):

- Nutrient monitoring is required, at a minimum, to establish the nutrient load from the wastewater treatment facility and the impacts that load may have on the quality of the receiving stream(s). Sewage discharges with design flows > 2,000 gpd require monitoring, at a minimum, for Total Nitrogen and Total Phosphorus in new and reissued permits.

The receiving stream is not impaired with nutrients. Annual monitoring is recommended.

Total Dissolved Solids (TDS) and its Major Constituents

Total Dissolved Solids (TDS) and its major constituents including sulfate, chloride, and bromide have emerged as pollutants of concern. The conservative nature of these solids allows them to accumulate in surface waters and they may remain a concern even if the immediate downstream public water supply is not directly impacted. Bromide has been linked to formation of disinfection byproducts at increased levels in public water systems.

Because of actions associated with Triennial Review 13, the Environmental Quality Board has directed DEP to collect additional data if the Bromide is greater than 1 mg/l (i.e., <0.10 mg/l as of 7/25/2023) and the TDS is greater than 1000 mg/l (i.e., 400 mg/l as of 7/25/2023).

Monitoring is not required for Bromide, Chloride, and Sulfate. Bromide is less than 1 mg/l.

<u>E. Coli</u>

Pursuant to 25 Pa. code § 92a.61(b) quarterly monitoring for *E. Coli* will be imposed at Outfall 001 to determine if *E. Coli* will be a pollutant of concern, which is consistent with DEP SOP No. BCW-PMT-033 revised on March 24, 2021.

Disinfection

Ultraviolet (UV) disinfection is used therefore Total Residual Chlorine (TRC) limits are not applicable. Routine monitoring of UV intensity will be at the same monitoring frequency that is used for TRC. Part C33 will be added to the permit document.

Mass Loadings

Mass loading limits are applicable for publicly owned treatment works. Current policy requires average monthly mass loading limits be established for CBOD₅, TSS, and NH₃-N and average weekly mass loading limits be established for CBOD₅ and TSS.

Average monthly mass loading limits (lbs/day) are determined based on the formula: design flow (MGD) x concentration limit (mg/L) x conversion factor (8.34).

Influent Monitoring

For POTWs with design flows greater than 2,000 GPD, influent BOD₅ and TSS monitoring must be established in the permit, and the monitoring should be consistent with the same frequency and sample type as is used for other effluent parameters.

Monitoring Frequency Considerations

For pH, Dissolved Oxygen (DO) and UV, a monitoring frequency of 1/day will be imposed.

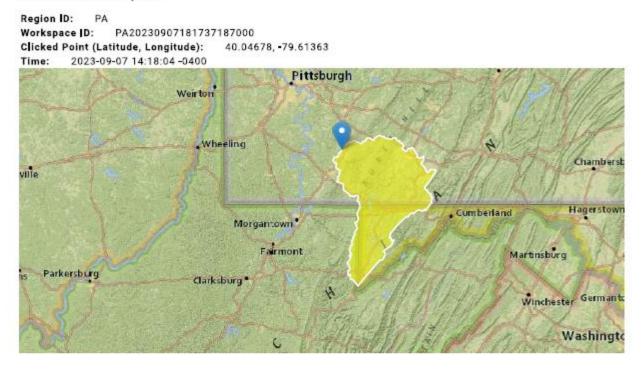
In general, less frequent monitoring may be established only when the permittee demonstrates that there will be no discharge on days where monitoring is not required. The permittee may remain in compliance with the permit by using a No Discharge Indicator (NODI) code on the "Daily Effluent Monitoring" supplemental form to identify the lack of a discharge on a particular day.

The daily monitoring frequencies are consistent with current policy and Table 6-3 of DEP's Technical Guidance for the Development and Specification of Effluent Limitations.

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (386-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.


			Effluent L	imitations			Monitoring R	equirements
Deremeter	Mass Units	(lbs/day) (1)		Concentrati	ions (mg/L)		Minimum ⁽²⁾	•
Parameter -	Average Monthly	Weekly Average	Daily Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Required Sample Type
Flow (MGD)	Report	XXX	XXX	ХХХ	XXX	XXX	Continuous	Recorded
pH (S.U.)	XXX	XXX	6.0 Inst Min	xxx	XXX	9.0	1/day	Grab
DO	XXX	XXX	5.0 Inst Min	xxx	XXX	XXX	1/day	Grab
CBOD5	93.0	142.0	xxx	25	38	50	1/week	8-Hr Composite
BOD5 Raw Sewage Influent	Report	Report	XXX	Report	Report	ххх	1/week	8-Hr Composite
TSS	112.0	168.0	XXX	30	45	60	1/week	8-Hr Composite
TSS Raw Sewage Influent	Report	Report	XXX	Report	Report	xxx	1/week	8-Hr Composite
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	XXX	xxx	2000 Geo Mean	XXX	10000	1/week	Grab
Fecal Coliform (No./100 ml) May 1 - Sep 30	XXX	XXX	xxx	200 Geo Mean	XXX	1000	1/week	Grab
Ammonia-Nitrogen	93.0	XXX	xxx	25	XXX	50	1/week	8-Hr Composite
Ultraviolet light Transmittance (%)	XXX	XXX	Report	ххх	XXX	XXX	1/day	Measured
<i>E. Coli</i> (No./100 ml)	XXX	XXX	xxx	XXX	XXX	Report	1/quarter	Grab
Total Nitrogen	XXX	XXX	xxx	Report Daily Max	XXX	ххх	1/year	8-Hr Composite
Total Phosphorus	XXX	XXX	xxx	Report Daily Max	XXX	ххх	1/year	8-Hr Composite

Compliance Sampling Location: Outfall 001.

Other Comments: None.

ATTACHMENT A: USGS StreamStats

StreamStats Report

Collapse All

asin Characteristi	cs		
Parameter Code	Parameter Description	Value	Unit
DRNAREA	Area that drains to a point on a stream	1370	square miles
ELEV	Mean Basin Elevation	2233	feet

> Low-Flow Statistics

Low-Flow Statistics Parameters [99.	.9 Percent (1370 square mile	s) Low Flow Region 4]
-------------------------------------	------------------------------	-----------------------

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	1370	square miles	2.26	1400
ELEV	Mean Basin Elevation	2233	feet	1050	2580

Low-Flow Statistics Flow Report [99.9 Percent (1370 square miles) Low Flow Region 4]

PII: Prediction Interval-Lower, Plu: Prediction Interval-Upper, ASEp: Average Standard Error of Prediction, SE: Standard Error (other -- see report)

Statistic	Value	Unit	SE	ASEp
7 Day 2 Year Low Flow	177	ft^3/s	43	43
30 Day 2 Year Low Flow	252	ft^3/s	38	38
7 Day 10 Year Low Flow	86.1	ft^3/s	66	66
30 Day 10 Year Low Flow	113	ft^3/s	54	54
90 Day 10 Year Low Flow	188	ft^3/s	41	41

Low-Flow Statistics Citations

Stuckey, M.H.,2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5130, 84 p. (http://pubs.usgs.gov/sir/2006/5130/)

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.

USGS Product Names Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Application Version: 4.17.0 StreamStats Services Version: 1.2.22 NSS Services Version: 2.2.1 ATTACHMENT B: WQM7.0 Model Results (Summer)

	SWF Basir			Stre	eam Name		RMI	E	levation (ft)	Draina Are (sq r	a	Slope (ft/ft)	PW Withdr (mg	awal	Apply FC
	19D	374	456 YOUG	HIOGHE	NY RIVER		41.35	50	2233.0	0 137	70.00	0.00100		0.00	~
					St	ream Data	a								
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Dept		<u>Tributa</u> mp	ary pH	Tem	<u>Stream</u> Ip	pН	
Conu.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°	C)		(°C)		
Q7-10 Q1-10	0.330	0.00		0.000	0.000	0.0	0.00	0	.00	0.00	0.00) 2	5.00	7.00	
Q30-10		0.00	0.00	0.000	0.000										
					Di	scharge [
			Name	Per	mit Number	Disc	Permitte Disc Flow (mgd)	D	isc Re	eserve actor	Disc Temp (°C)		sc H		
		Dunb	ar STP	PA	0218316	0.4500	0.450	0 0	.4500	0.000	20	.00	7.00		
					Pa	arameter [Data								
				Paramete	r Name	Dis		rib onc	Stream Conc	Fate Coe					
				araillete	Iname	(m	g/L) (n	ng/L)	(mg/L)	(1/da)	ys)				
	-		CBOD5			2	25.00	2.00	0.0	0 1	.50				

Input Data WQM 7.0

4.00

25.00

8.24

0.00

0.00

0.00

0.00

0.70

Dissolved Oxygen

NH3-N

	SWP Basir			Stre	eam Name		RMI		Elevat (ft)	ion	Drainage Area (sq mi)	Slope (ft/ft)	PWS Withdrawal (mgd)	Apply FC
	19D	374	456 YOUG	HIOGHE	NY RIVER		36.68	80	221	8.00	1390.00	0.00100	0.00	\checkmark
					S	tream Da	ta							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Ro De	ch pth	Tem	<u>Tributary</u> Ip pH	Ten	<u>Stream</u> np pH	
Cond.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(1	ft)	(°C)	(°C	;)	
Q7-10 Q1-10 Q30-10	0.330	0.00 0.00 0.00	0.00	0.000 0.000 0.000	0.000 0.000 0.000	0.0	0.00		0.00		0.00 0.	00 2	5.00 7.0	D

	Dis	charge Da	ata						
Name	Permit Number	Existing Disc Flow (mgd)	Perm Dis Flo (mg	sc ow	Desig Disc Flow (mgd	Rese Fac	erve To ctor)isc emp °C)	Disc pH
Dunbar STP	PA0218316	0.0000	0.0	000	0.00	00 00	0.000	20.00	7.00
	Pa	rameter Da	ata						
	arameter Name	Discor	-	Trib Con	-	tream Conc	Fate Coef		
E.	arameter Name	(mg	/L)	(mg/	L) ((mg/L)	(1/days)		
 CBOD5		2	5.00	2	.00	0.00	1.50		
Dissolved C	Dxygen	4	4.00	8	.24	0.00	0.00		
NH3-N		2	5.00	0	.00	0.00	0.70		

				17.0	nyui	ouyn	anne	Out	Juis			
	SW	P Basin	Strea	m Code				Stream	Name			
		19D	3	7456			YOU	GHIOGH	ENY RIVE	R		
RMI	Stream Flow	PWS With	Net Stream Flow	Disc Analysis Flow	Reach Slope	Depth	Width	W/D Ratio	Velocity	Reach Trav Time	Analysis Temp	Analysis pH
	(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	(°C)	
Q7-10	0 Flow											
41.350	460.00	0.00	460.00	.6962	0.00100	1.13	353.59	312.82	1.15	0.248	24.99	7.00
Q1-10	0 Flow											
41.350	294.40	0.00	294.40	.6962	0.00100	NA	NA	NA	0.90	0.318	24.99	7.00
Q30-	10 Flow	1										
41.350	625.60	0.00	625.60	.6962	0.00100	NA	NA	NA	1.37	0.208	24.99	7.00

WQM 7.0 Hydrodynamic Outputs

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	\checkmark
WLA Method	EMPR	Use Inputted W/D Ratio	\checkmark
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.36	Temperature Adjust Kr	~
D.O. Saturation	90.00%	Use Balanced Technology	~
D.O. Goal	5		

WQM 7.0 D.O.Simulation

SWP Basin	Stream Code			Stream Nar	ne	
19D	37456		YOU	GHIOGHEN	Y RIVER	
RMI	Total Discharge	Flow (mgd) Ana	lysis Tempera	ature (°C)	Analysis pH
41.350	0.45	0		24.992		7.000
Reach Width (ft)	Reach De	pth (ft)		Reach WDF	Ratio	Reach Velocity (fps)
353.591	1.13	0		312.824		1.153
Reach CBOD5 (mg/L)	Reach Kc	1/days)	<u>R</u>	each NH3-N	(mg/L)	Reach Kn (1/days)
2.03	0.02			0.04		1.028
Reach DO (mg/L)	Reach Kr (Kr Equation	_	Reach DO Goal (mg/L)
8.237	6.05	3		Tsivoglo	u	5
Reach Travel Time (days)	Subreach	Results			
0.248	TravTime	CBOD5	NH3-N	D.O.		
	(days)	(mg/L)	(mg/L)	(mg/L)		
	0.025	2.03	0.04	7.54		
	0.050	2.03	0.04	7.54		
	0.074	2.03	0.04	7.54		
	0.099	2.03	0.03	7.54		
	0.124	2.03	0.03	7.54		
	0.149	2.03	0.03	7.54		
	0.173	2.02	0.03	7.54		
	0.198	2.02	0.03	7.54		
	0.223	2.02	0.03	7.54		
	0.248	2.02	0.03	7.54		

	SWP Basin	Strea	am Code		St	ream Name			
	19D	3	7456		YOUGH	IOGHENY RIV	/ER		
NH3-N	Acute Allo	cation	s						
RM	I Discharge	Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction	ı
41.3	350 Dunbar STF	,	6.77	50	6.77	50	0	0	-
NH3-N RMI	I Chronic All Discharge N		ons Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction	
			(ing/L)	(ing/L)	(IIIg/L)	(mg/L)			-
41.3	350 Dunbar STF	>	1.34	(119/2)		25	0	0	-
	ved Oxygen	Alloc	1.34 ations	25 CBOD5 ne Multiple	1.34 <u>NH3-N</u> Baseline Mu	25	ved Oxygen	L Critical	- Percent Reductio

WQM 7.0 Wasteload Allocations

WQM 7.0 Effluent Limits

	SWP Basin	Stream Code		Stream Name	<u>e</u>		
	19D	37456		YOUGHIOGHENY	RIVER		
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
41.350	Dunbar STF	P PA0218316	0.450	CBOD5	25		
				NH3-N	25	50	
				Dissolved Oxygen			4

ATTACHMENT B: WQM7.0 Model Results (Winter)

	SWF Basi			Stre	eam Name		RMI	Eleva		Drainage Area (sq mi)	Slope (ft/ft)	PWS Withdrawal (mgd)	Apply FC
	19D	37	456 YOUG	HIOGHEI	NY RIVER		41.3	50 223	33.00	1370.00	0.00100	0.00	~
					S	tream Dat	a						
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	<u>Tributary</u> p pH	Tem	<u>Stream</u> p pH	
oona	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)	(°C)		
Q7-10 Q1-10	0.660	0.00	0.00	0.000	0.000	0.0	0.00	0.00		0.00 0.	00 5	5.00 7.0)
Q30-10		0.00	0.00	0.000		ischarge	Data						
					-			ed Design		Dis	sc Dis	sc	

Input Data WQM 7.0

		Dis	charge Da	ata						
	Name	Permit Number	Existing Disc Flow (mgd)	Perm Di Flo (mg	w	Design Disc Flow (mgd)	Rese Fac	erve Te ctor)isc emp ℃)	Disc pH
	Dunbar STP	PA0218316	0.4500	0.4	500	0.4500	0	0.000	15.00	7.00
		Par	ameter D	ata						
	Pa	arameter Name	Dis Cor	-	Trib Conc	Stre Co		Fate Coef		
	10	and inclose Name	(mg	/L)	(mg/L)) (m <u>c</u>	J/L)	(1/days)		
_	CBOD5		2	5.00	2.0	00	0.00	1.50		
	Dissolved O	xygen	4	4.00	12.5	51	0.00	0.00		
	NH3-N		2	5.00	0.0	00	0.00	0.70		

Input Data WQM 7.0

	SWF Basir			Stre	am Name		RMI	E	levation (ft)	Drainage Area (sq mi)	Slope (ft/ft)	PWS Withdrawal (mgd)	Apply FC
	19D	37	456 YOUG	HIOGHE	NY RIVER		36.68	80	2218.00	1390.00	0.00100	0.00	✓
					s	tream Da	ta						
Design	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Dep		<u>Tributary</u> np pH	Tem	<u>Stream</u> 1p pH	
Cond.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°(C)	(°C)	
Q7-10 Q1-10 Q30-10	0.660	0.00 0.00 0.00	0.00	0.000 0.000 0.000	0.000 0.000 0.000	0.0	0.00	C).00	0.00 0.	00	5.00 7.0)

	Dis	charge D	ata				
Name	Permit Number	Existing Disc Flow (mgd)	Permitted Disc Flow (mgd)	Design Disc Flow (mgd)	Reserve Factor		Disc pH
Dunbar STP	PA0218316	0.0000	0.0000	0.0000	0.00	0 15.00	7.0
	Par	rameter D	ata				
Pa	rameter Name	Dis Co				ate Coef	
Ta	rameter Name	(mg	/L) (mg	/L) (m	g/L) (1/	/days)	
CBOD5		2	5.00 2	2.00	0.00	1.50	
Dissolved O	xygen		4.00 12	2.51	0.00	0.00	
NH3-N		2	5.00 (0.00	0.00	0.70	

		VVQI	0.71	nyar	oayn	amic	Out	Juis			
SW	P Basin	Strea	m Code				Stream	Name			
	19D	3	7456			YOU	GHIOGH	ENY RIVE	R		
Stream Flow	PWS With	Net Stream Flow		Reach Slope	Depth	Width	W/D Ratio	Velocity	Trav	Analysis Temp	Analysis pH
(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	(°C)	
0 Flow											
460.00	0.00	460.00	.6962	0.00100	1.13	353.59	312.82	1.15	0.248	5.02	7.00
0 Flow											
294.40	0.00	294.40	.6962	0.00100	NA	NA	NA	0.90	0.318	5.02	7.00
10 Flow											
625.60	0.00	625.60	.6962	0.00100	NA	NA	NA	1.37	0.208	5.01	7.00
	Stream Flow (cfs) D Flow 460.00 D Flow 294.40 10 Flow	Flow With (cfs) (cfs) 0 Flow 460.00 0.00 0 Flow 294.40 0.00 10 Flow	SWP BasinStream19D3StreamPWSFlowWith(cfs)(cfs)O Flow460.000.00460.000.00294.400.00294.400.0010 Flow	SWP BasinStream Code19D37456StreamPWS WithNet Stream Flow (cfs)Disc Stream (cfs)O Flow 294.400.00460.00.6962O Flow 294.400.00294.40.6962	SWP BasinStream Code19D37456StreamPWS WithNet Stream Flow (cfs)Disc Flow (cfs)Reach Analysis Flow (cfs)O Flow 294.400.00460.00.69620.00100O Flow 294.400.00294.40.69620.00100	SWP BasinStream Code19D37456StreamPWS With (cfs)Net Stream Flow (cfs)Disc Analysis 	SWP BasinStream Code19D37456YOUStreamPWS With (cfs)Net Stream (cfs)Disc Analysis Slope (cfs)Depth (ft)Width (ft)O Flow 294.400.00460.00.69620.001001.13353.59O Flow 294.400.00294.40.69620.00100NANA	SWP BasinStream CodeStream19D37456YOUGHIOGHStreamNetDiscReachDepthWidthW/DFlowWithStreamAnalysisSlopeDepthWidthW/D(cfs)(cfs)(cfs)(cfs)(ft)(ft)(ft)(ft)0Flow0.00460.00.69620.001001.13353.59312.820Flow294.400.00294.40.69620.00100NANANA10FlowNANANANANANANA	19D 37456 YOUGHIOGHENY RIVE Stream Flow PWS With (cfs) Net Stream (cfs) Disc Flow (cfs) Reach Flow (cfs) Depth (ft) Width (ft) W/D Ratio Velocity Ratio 0 Flow 460.00 0.00 460.00 .6962 0.00100 1.13 353.59 312.82 1.15 0 Flow 294.40 0.00 294.40 .6962 0.00100 NA NA NA 0.90 10 Flow 10 Flow 10 10 10 10 10	SWP Basin 19D Stream Code 37456 Stream Name YOUGHIOGHENY RIVER Stream Flow (cfs) PWS With (cfs) Net Stream Flow (cfs) Disc Analysis Flow (cfs) Reach Analysis Flow (cfs) Depth (ft) Width (ft) W/D Ratio Velocity (fps) Reach Trav Time (days) P Flow 460.00 0.00 460.00 .6962 0.00100 1.13 353.59 312.82 1.15 0.248 P Flow 294.40 0.00 294.40 .6962 0.00100 NA NA NA 0.90 0.318 10 Flow 10 Flow 10 Flow 10 Flow 1.6962 0.00100 NA NA NA 0.90 0.318	SWP Basin Stream Code Stream Name 19D 37456 YOUGHIOGHENY RIVER Stream PWS Flow Net (cfs) Disc Flow Reach Analysis Flow Depth Width W/D Ratio Velocity (fps) Reach Trav Time (days) Analysis Temp O Flow 0.00 460.00 .6962 0.00100 1.13 353.59 312.82 1.15 0.248 5.02 O Flow 294.40 0.00 294.40 .6962 0.00100 NA NA NA 0.90 0.318 5.02

WQM 7.0 Hydrodynamic Outputs

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	\checkmark
WLA Method	EMPR	Use Inputted W/D Ratio	~
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.36	Temperature Adjust Kr	~
D.O. Saturation	90.00%	Use Balanced Technology	~
D.O. Goal	5		

WQM 7.0 D.O.Simulation

SWP Basin	Stream Code			Stream Name	
19D	37456		YOU	GHIOGHENY RIVE	ER
RMI	Total Discharge	Flow (mad) Ana	lysis Temperature (°C) Analysis pH
41.350	0.45			5.015	7.000
Reach Width (ft)	Reach De	pth (ft)		Reach WDRatio	Reach Velocity (fps)
353.591	1.13	0		312.824	1.153
Reach CBOD5 (mg/L)	Reach Kc	(1/days)	R	each NH3-N (mg/L	Reach Kn (1/days)
2.03	0.02	-		0.04	0.221
Reach DO (mg/L)	Reach Kr (Kr Equation	Reach DO Goal (mg/L)
12.497	3.76	9		Tsivoglou	5
Reach Travel Time (day	<u>'s)</u>	Subreach	Results		
0.248	TravTime	CBOD5	NH3-N	D.O.	
	(days)	(mg/L)	(mg/L)	(mg/L)	
	0.025	2.03	0.04	11.45	
	0.050	2.03	0.04	11.45	
	0.074	2.03	0.04	11.45	
	0.099	2.03	0.04	11.45	
	0.124	2.03	0.04	11.45	
	0.149	2.03	0.04	11.45	
	0.173	2.03	0.04	11.45	
	0.198	2.03	0.04	11.45	
	0.223		0.04	11.45	
	0.248	2.03	0.04	11.45	

41.35 Dunbar STP

	<u>SWP Basin</u> 19D		<u>am Code</u> 7456			ream Name IOGHENY RIV	/ER		
NH3-N	Acute Alloo	ation	s						
RMI	Discharge	Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction	
41.3	50 Dunbar STP	•	20.59	50	20.59	50	0	0	•
NH3-N RMI	Chronic All Discharge N		ons Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction	
RMI		lame	Baseline Criterion	WLA	Criterion	WLA			
RMI 41.3	Discharge N	lame	Baseline Criterion (mg/L) 4.08	WLA (mg/L)	Criterion (mg/L)	WLA (mg/L)	Reach	Reduction	

WQM 7.0 Effluent Limits

	SWP Basin	Stream Code		Stream Name	2		
	19D	37456		YOUGHIOGHENY	RIVER		
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
41.350	Dunbar STF	PA0218316	0.450	CBOD5	25		
				NH3-N	25	50	
				Dissolved Oxygen			4