

Application Type
Facility Type
Major / Minor

Renewal
Municipal
Minor

**NPDES PERMIT FACT SHEET
INDIVIDUAL SEWAGE**

Application No. PA0218359
APS ID 1063593
Authorization ID 1396595

Applicant and Facility Information

Applicant Name	<u>Green Township Municipal Authority</u>	Facility Name	<u>Green Township Municipal Authority</u>
Applicant Address	PO Box 129 Commodore, PA 15729-0129	Facility Address	11 Sylvia Drive Starford, PA 15729
Applicant Contact	David Putt	Facility Contact	David Putt
Applicant Phone	(724) 254-1343	Facility Phone	(724) 254-1343
Client ID	40964	Site ID	532059
Ch 94 Load Status	Not Overloaded	Municipality	Green Township
Connection Status	No Limitations	County	Indiana
Date Application Received	<u>May 13, 2022</u>	EPA Waived?	Yes
Date Application Accepted	<u>May 13, 2022</u>	If No, Reason	-
Purpose of Application	Renewal of NPDES permit.		

Summary of Review

The applicant is requesting the renewal of an NPDES permit to discharge up to 0.120 MGD of treated sewage into an unnamed tributary of North Branch Two Lick Creek, a Cold-Water Fish (CWF) receiving stream in State Water Plan Basin 18-D (Conemaugh River – Blacklick Creek). As per the Department's current existing use list, the receiving stream does not have an existing use classification that is more protective than its designated use. This discharge is not expected to affect public water supplies.

The receiving stream is subject to the Kiskiminetas-Conemaugh River Watershed TMDL for acid mine drainage. The pollutants of concern, aluminum, iron, manganese, pH and TSS are already monitored in the NPDES permit. The WWTP doesn't currently accept industrial wastewater and eDMR data shows pollutant concentrations from the facility are not expected to exceed Chapter 93 water quality standards. An aggregate waste load allocation was included in the TMDL for these types of facilities and yearly monitoring is required for a WWTP of this design capacity (0.002 MGD - 0.499 MGD).

All limitations and monitoring requirements from the previously issued permit (effective November 1, 2017) are carried over in this renewal and summarized in a table at the end of the fact sheet. Monitoring frequencies for all parameters with limitations are consistent with the recommended frequencies found in Table 6-3 of DEP's Technical Guidance for the Development and Specification of Effluent Limitations (Document No. 362-0400-001).

Sample results submitted with the NPDES renewal application were modeled with DEP's Toxics Management Spreadsheet (TMS). The TMS recommended monitoring requirements for Total Copper since the discharge concentration (9.49 µg/L) is more than 10% of the calculated water quality-based effluent limitation (56.8 µg/L). Yearly monitoring/reporting is included in the renewed permit for Total Copper. The statewide default low flow yield (LFY) of 0.1 cfs/mi² was used to model the discharge. Drainage areas for the modeling points were obtained from the USGS StreamStats interactive map, RMI values were obtained using the Department's eMapPA, and elevations were obtained using the elevation profile tool on StreamStats (see Watershed Information section). Based on drainage areas used in the original modeling performed for this WWTP, it's

Approve	Deny	Signatures	Date
X		 Brian Burden, E.I.T. / Project Manager	December 9, 2024
X		Adam Olesnanik Adam Olesnanik, P.E. / Environmental Engineer Manager	December 11, 2024

Summary of Review

assumed that the point of first aquatic use (first modeling point) is at the confluence of the unnamed tributary and North Branch Two Lick Creek. Note: When modeling at the nearest downstream public water supply intake location using the default LFY of 0.1 cfs/mi² an error was received in the TMS indicating there's not enough stream flow for the PWS withdrawal amount, therefore, the LFY was adjusted upward until adequate flow was generated.

As per current DEP guidance, quarterly monitoring/reporting requirements are included in the renewed permit for E. Coli.

Sludge use and disposal description and location(s): The permit renewal application indicates 3.742 dry tons of sludge was hauled to the Punxsutawney WWTP during the previous calendar year.

The most recently submitted Chapter 94 report for 2023 doesn't show any current or projected hydraulic/organic overloads at the WWTP. Template Part C special conditions are included in the permit.

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Discharge, Receiving Waters and Water Supply Information			
Outfall No.	001	Design Flow (MGD)	0.12
Latitude	40° 41' 42"	Longitude	-78° 57' 36"
Quad Name	Commodore	Quad Code	1314
Wastewater Description: Sewage Effluent			
Receiving Waters	Unnamed tributary to North Branch Two Lick Creek	Stream Code	44341
NHD Com ID	123717725	RMI	1.67
Drainage Area	9.9 mi ²	Yield (cfs/mi ²)	0.1
Q ₇₋₁₀ Flow (cfs)	0.99	Q ₇₋₁₀ Basis	Default LFY
Elevation (ft)	1329	Slope (ft/ft)	0.0045
Watershed No.	18-D	Chapter 93 Class.	CWF
Existing Use	-	Existing Use Qualifier	-
Exceptions to Use	-	Exceptions to Criteria	-
Assessment Status	Impaired		
Cause(s) of Impairment	Metals, Siltation		
Source(s) of Impairment	Acid Mine Drainage		
TMDL Status	Final	Name	Kiskiminetas-Conemaugh River Watersheds TMDL
Background/Ambient Data		Data Source	
pH (SU)	-	-	
Temperature (°F)	-	-	
Hardness (mg/L)	-	-	
Other:	-	-	
Nearest Downstream Public Water Supply Intake		PAWC (6,000,000 gpd safe yield)	
PWS Waters	Two Lick Creek	Flow at Intake (cfs)	9.49
PWS RMI	13.2	Distance from Outfall (mi)	~15.9

Treatment Facility Summary				
Treatment Facility Name: Green Township Municipal Authority WWTP				
WQM Permit No.	Issuance Date			
3200401	August 21, 2000			
Waste Type	Degree of Treatment	Process Type	Disinfection	Avg Annual Flow (MGD)
Sewage	Secondary with Ammonia Reduction	Extended Aeration	Chlorine with Dechlorination	0.12
Hydraulic Capacity (MGD)	Organic Capacity (lbs/day)	Load Status	Biosolids Treatment	Biosolids Use/Disposal
0.12	240	Not Overloaded	Holding Tank	Hauled

Development of Effluent Limitations

Outfall No. 001
Latitude 40° 41' 42"
Wastewater Description: Sewage Effluent

Design Flow (MGD) 0.12
Longitude -78° 57' 36"

Technology-Based Limitations

The NPDES permit application was evaluated based on applicable regulations, policies, procedures and guidelines.

Pollutant	Limit (mg/l)	SBC	Federal Regulation	State Regulation
Total Suspended Solids	30.0	Average Monthly	133.102(b)(1)	92a.47(a)(1)
	45.0	Average Weekly	133.102(b)(2)	92a.47(a)(2)
	60.0	IMAX	-	-
CBOD ₅ (11/1 – 4/30)	25.0	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
	37.5	Average Weekly	-	-
	50.0	IMAX	-	-
pH	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform (5/1 – 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform (10/1 – 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
	10,000 / 100 ml	IMAX	-	92a.47(a)(5)

Comments: Mass-based limitations for TSS are also included in the permit.

Water Quality-Based Limitations

The following concentration limitations were determined through water quality modeling:

Parameter	Limit (mg/l)	SBC	Model
Total Residual Chlorine	0.2	Average Monthly	Previous modeling
	0.7	IMAX	
Dissolved Oxygen	4.0	Minimum	Previous modeling
CBOD ₅ (5/1 – 10/31)	20.0	Average Monthly	Previous modeling
	30.0	Average Weekly	
	40.0	IMAX	
NH ₃ -N (5/1 – 10/31)	5.0	Average Monthly	Previous modeling
	10.0	IMAX	
NH ₃ -N (11/1 – 4/30)	15.0	Average Monthly	
	30.0	IMAX	

Comments: Mass-based limitations for CBOD₅ and NH₃-N are also included in the permit.

Monitoring Requirements

The following monitoring requirements have been established:

Parameter	SBC	Model / Basis
Flow (MGD)	Average Monthly	Standard requirement
	Daily Maximum	
Influent BOD ₅	Average Monthly	Standard requirement for POTWs
Influent TSS	Average Monthly	
Total Nitrogen	Daily Maximum	Standard requirement
Total Phosphorus	Daily Maximum	
Total Aluminum	Daily Maximum	TMDL Metals of Concern
Total Iron	Daily Maximum	
Total Manganese	Daily Maximum	
Total Copper	Daily Maximum	2024 TMS
E. Coli	IMAX	2024 DEP Guidance / § 92a.61

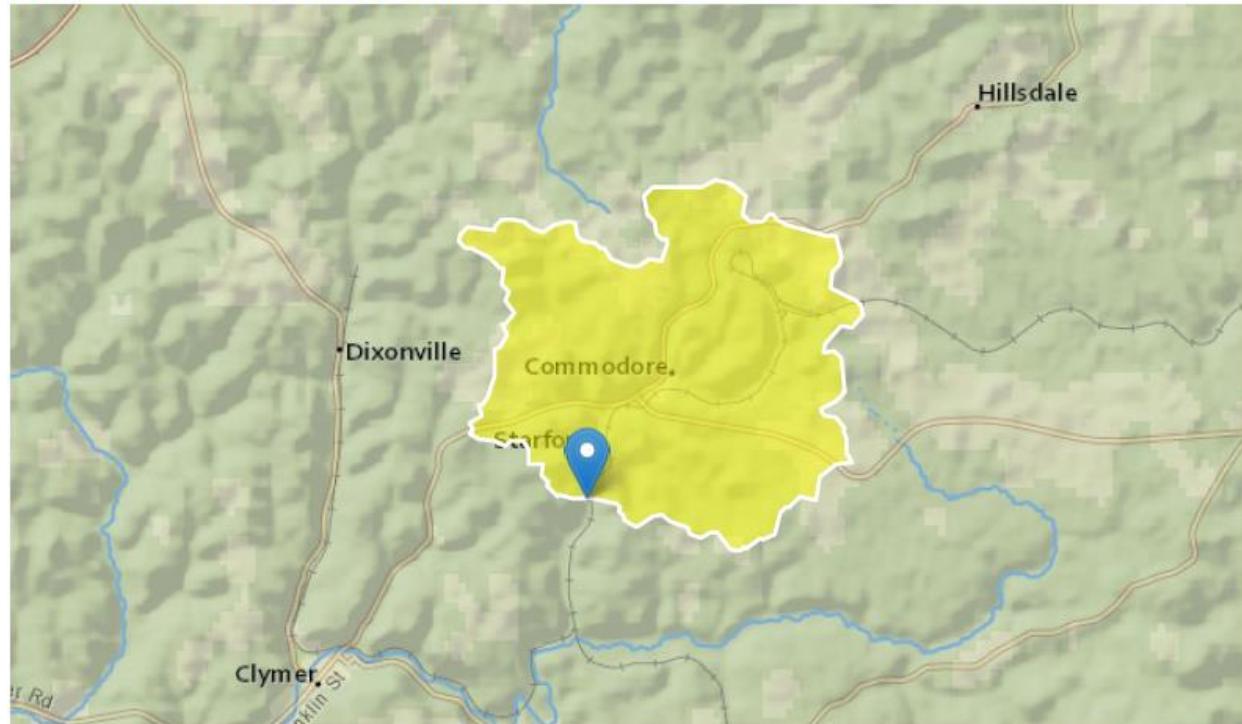
Comments: Mass-based monitoring requirements are included in the permit for influent BOD₅ and influent TSS.

Anti-Backsliding

No limitations were made less stringent or removed from the permit.

Previous Effluent Limitations / Monitoring Requirements from November 1, 2017 Permit

Parameter	Effluent Limitations						Monitoring Requirements	
	Mass Units (lbs/day) ⁽¹⁾		Concentrations (mg/L)				Minimum ⁽²⁾ Measurement Frequency	Required Sample Type
	Average Monthly	Weekly Average	Average Monthly	Weekly Average	Maximum	Instant. Maximum		
Flow	Report	Daily Max	XXX	XXX	XXX	XXX	Continuous	Recorded
pH (S.U.)	XXX	XXX	6.0 Min	XXX	9.0	XXX	1/day	Grab
Dissolved Oxygen	XXX	XXX	4.0 Min	XXX	XXX	XXX	1/day	Grab
Total Residual Chlorine (TRC)	XXX	XXX	0.2	XXX	XXX	0.7	1/day	Grab
Carbonaceous Biochemical Oxygen Demand (CBOD5) Nov 1 - Apr 30	25.0	37.6	25.0	37.5	XXX	50	1/week	8-Hr Composite
Carbonaceous Biochemical Oxygen Demand (CBOD5) May 1 - Oct 31	20.0	30.0	20.0	30.0	XXX	40	1/week	8-Hr Composite
Biochemical Oxygen Demand (BOD5) Raw Sewage Influent	Report	Report Daily Max	Report	XXX	XXX	XXX	1/week	8-Hr Composite
Total Suspended Solids Raw Sewage Influent	Report	Report Daily Max	Report	XXX	XXX	XXX	1/week	8-Hr Composite
Total Suspended Solids	30.0	45.1	30.0	45.0	XXX	60	1/week	8-Hr Composite
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	2000 Geo Mean	XXX	10000	1/week	Grab
Fecal Coliform (No./100 ml) May 1 - Sep 30	XXX	XXX	XXX	200 Geo Mean	XXX	1000	1/week	Grab
Total Nitrogen	XXX	XXX	XXX	Report Daily Max	XXX	XXX	1/year	8-Hr Composite
Ammonia-Nitrogen Nov 1 - Apr 30	15.0	XXX	15.0	XXX	XXX	30	1/week	8-Hr Composite
Ammonia-Nitrogen May 1 - Oct 31	5.0	XXX	5.0	XXX	XXX	10	1/week	8-Hr Composite
Total Phosphorus	XXX	XXX	XXX	Report Daily Max	XXX	XXX	1/year	8-Hr Composite
Aluminum, Total	XXX	XXX	XXX	Report Daily Max	XXX	XXX	1/year	8-Hr Composite
Iron, Total	XXX	XXX	XXX	Report Daily Max	XXX	XXX	1/year	8-Hr Composite
Manganese, Total	XXX	XXX	XXX	Report Daily Max	XXX	XXX	1/year	8-Hr Composite

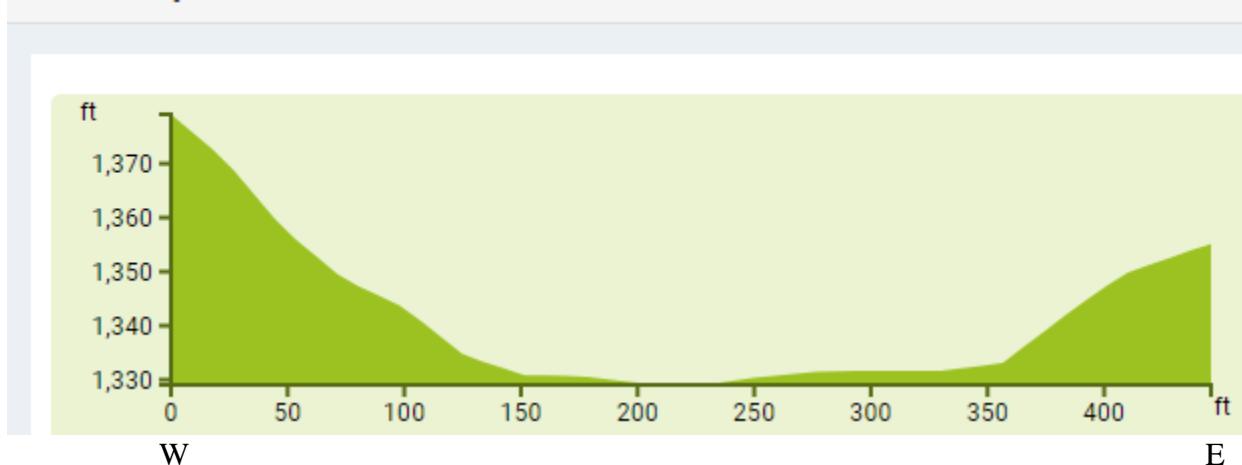

Watershed Information

@ Outfall 001 on North Branch Two Lick Creek (stream code 44341)

RMI = 1.67

Clicked Point (Latitude, Longitude): 40.69478, -78.95973

Time: 2024-11-15 15:19:27 -0500

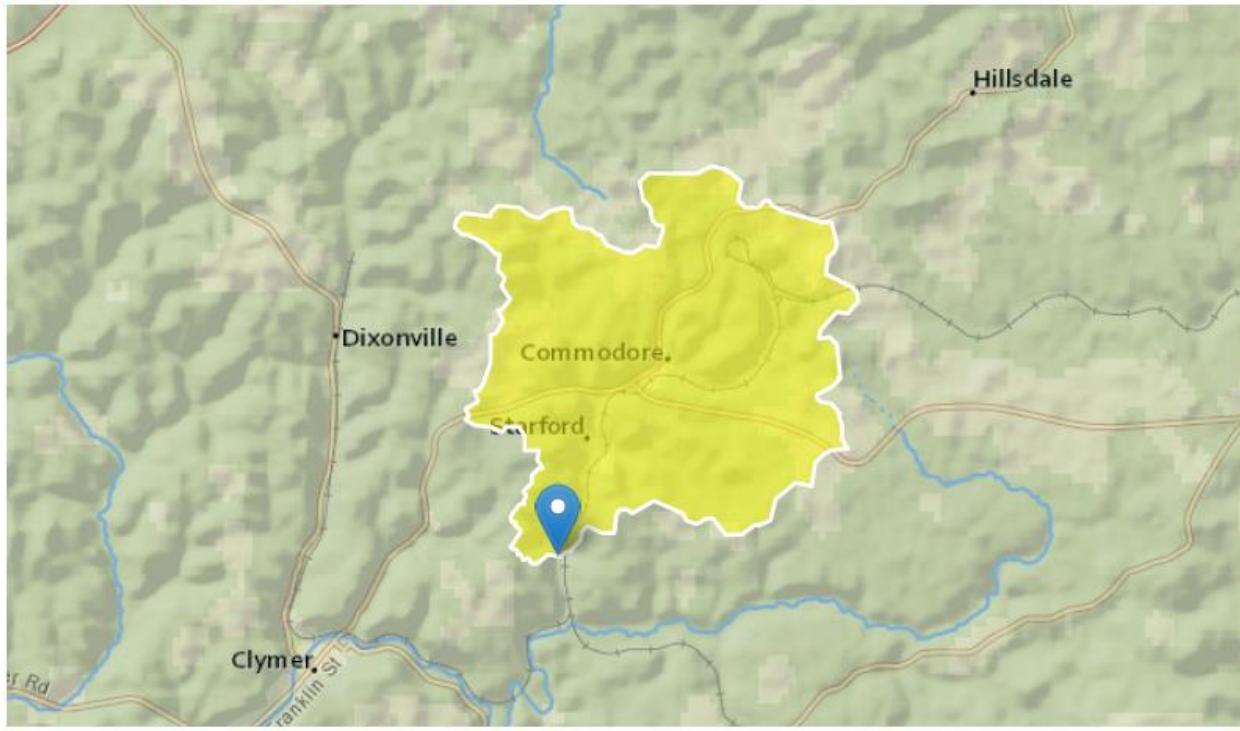

DRNAREA

Area that drains to a point on a stream

9.9

square miles

Elevation: 1329 ft

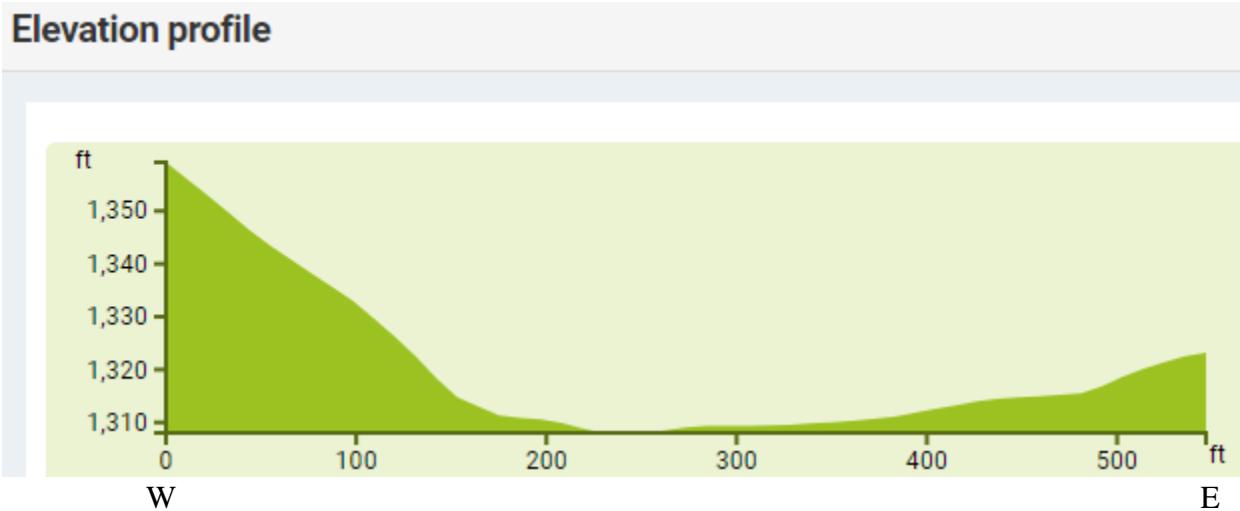

Elevation profile

@ Tributary 44344 to North Branch Two Lick Creek

RMI = 0.8

Clicked Point (Latitude, Longitude): 40.68466, -78.96464

Time: 2024-11-16 09:28:22 -0500

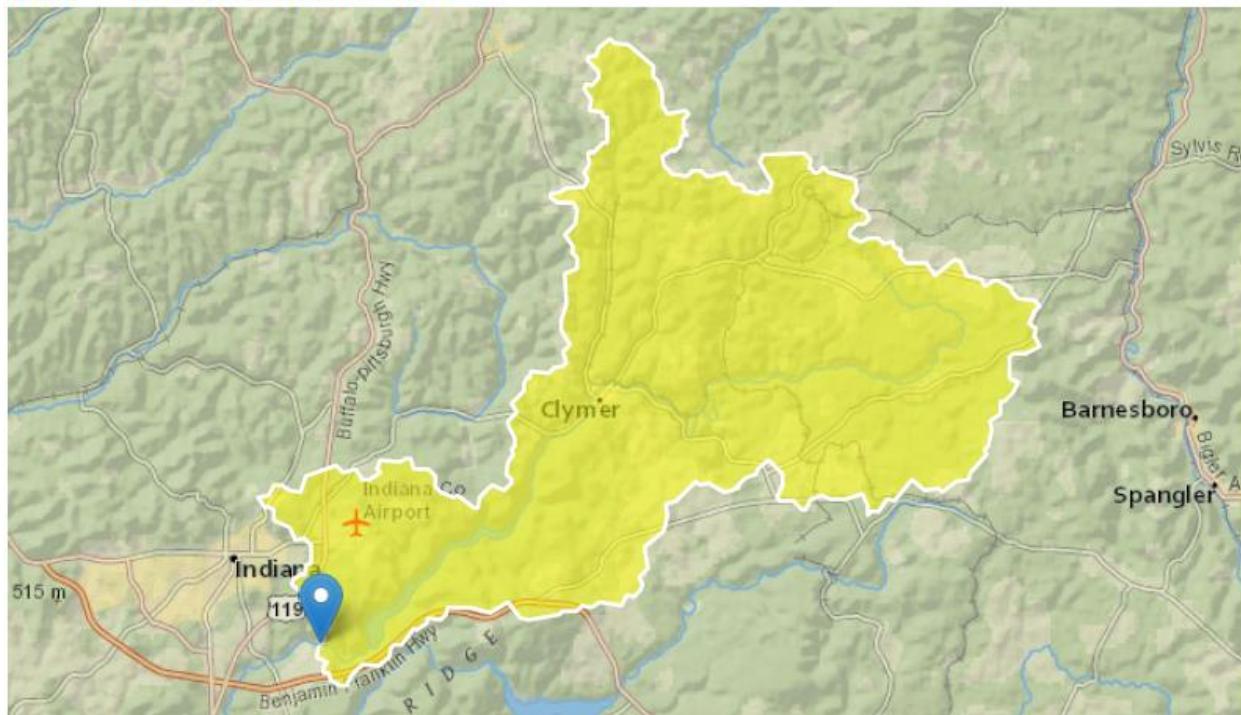

DRNAREA

Area that drains to a point on a stream

10.5 square miles

Elevation: 1308 ft

Elevation profile

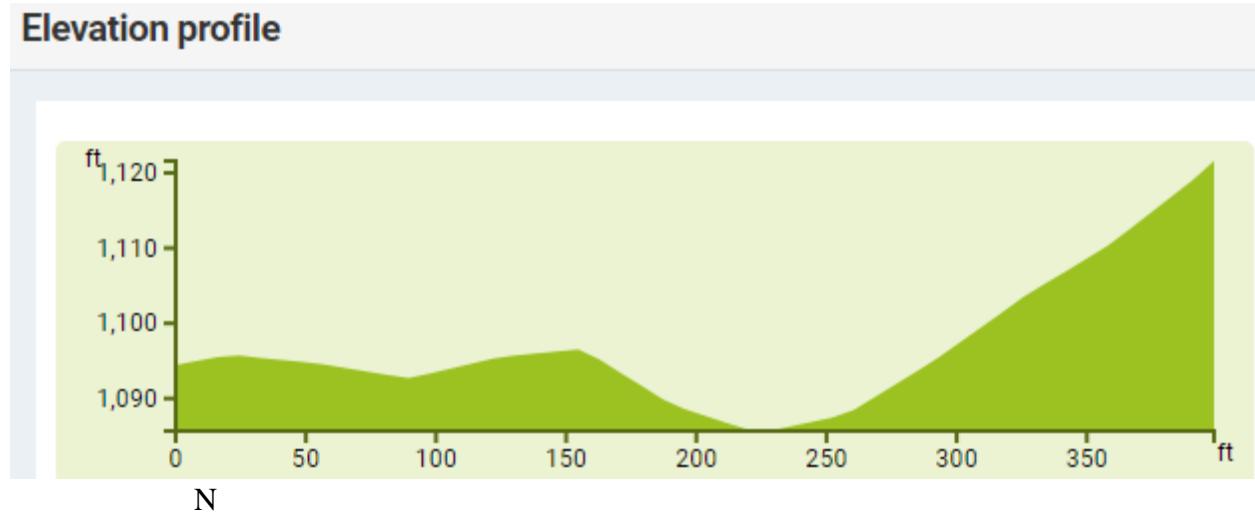


@ nearest downstream PWS intake on Two Lick Creek (6 MGD safe yield)

Distance from Outfall 001: 15.9 miles

Clicked Point (Latitude, Longitude): 40.59618, -79.11914

Time: 2024-11-17 09:45:53 -0500


DRNAREA

Area that drains to a point on a stream

79.1 square miles

Elevation: 1086 ft

Elevation profile

WQM Modeling

Input Data WQM 7.0

SWP Basin	Stream Code	Stream Name	RMI	Elevation (ft)	Drainage Area (sq mi)	Slope (ft/ft)	PWS Withdrawal (mgd)	Apply FC
18D	44341	NORTH BRANCH TWO LICK CREEK	1.670	1329.00	9.90	0.00000	0.00	<input checked="" type="checkbox"/>

Stream Data

Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time (days)	Rch Velocity (fps)	WD Ratio	Rch Width (ft)	Rch Depth (ft)	Tributary Temp (°C)	pH	Stream Temp (°C)	pH
	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C)	
Q7-10	0.100	0.00	0.00	0.000	0.000	0.0	0.00	0.00	20.00	7.00	0.00	0.00
Q1-10		0.00	0.00	0.000	0.000							
Q30-10		0.00	0.00	0.000	0.000							

Discharge Data							
Name	Permit Number	Existing Disc Flow (mgd)	Permitted Disc Flow (mgd)	Design Disc Flow (mgd)	Reserve Factor	Disc Temp (°C)	Disc pH
Green Twp	PA0218359	0.1200	0.1200	0.1200	0.000	25.00	7.00
Parameter Data							
Parameter Name		Disc Conc (mg/L)	Trib Conc (mg/L)	Stream Conc (mg/L)	Fate Coef (1/days)		
CBOD5		25.00	2.00	0.00	1.50		
Dissolved Oxygen		3.00	8.24	0.00	0.00		
NH3-N		25.00	0.00	0.00	0.70		

Input Data WQM 7.0

Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time (days)	Rch Velocity (fps)	WD Ratio	Rch Width (ft)	Rch Depth (ft)	Tributary		Stream Temp (°C)	Stream pH
									Temp	pH		
Q7-10	0.100	0.00	0.00	0.000	0.000	0.0	0.00	0.00	20.00	7.00	0.00	0.00
Q1-10		0.00	0.00	0.000	0.000							
Q30-10		0.00	0.00	0.000	0.000							

Discharge Data							
Name	Permit Number	Existing Disc Flow (mgd)	Permitted Disc Flow (mgd)	Design Disc Flow (mgd)	Reserve Factor	Disc Temp (°C)	Disc pH
		0.0000	0.0000	0.0000	0.000	25.00	7.00

Parameter Data				
Parameter Name	Disc Conc (mg/L)	Trib Conc (mg/L)	Stream Conc (mg/L)	Fate Coef (1/days)
CBOD5	25.00	2.00	0.00	1.50
Dissolved Oxygen	3.00	8.24	0.00	0.00
NH3-N	25.00	0.00	0.00	0.70

WQM 7.0 Hydrodynamic Outputs

SWP Basin	Stream Code	Stream Name										
		18D		44341		NORTH BRANCH TWO LICK CREEK						
RMI	Stream Flow	PWS With	Net Stream Flow	Disc Analysis Flow	Reach Slope	Depth	Width	W/D Ratio	Velocity	Reach Trav Time	Analysis Temp	Analysis pH
	(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(ft)	(fps)	(ft/s)	(days)	(°C)	
Q7-10 Flow												
1.670	0.99	0.00	0.99	.1856	0.00457	.527	16.19	30.75	0.14	0.386	20.79	7.00
Q1-10 Flow												
1.670	0.63	0.00	0.63	.1856	0.00457	NA	NA	NA	0.11	0.472	21.13	7.00
Q30-10 Flow												
1.670	1.35	0.00	1.35	.1856	0.00457	NA	NA	NA	0.16	0.332	20.61	7.00

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	<input checked="" type="checkbox"/>
WLA Method	EMPR	Use Inputted W/D Ratio	<input type="checkbox"/>
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	<input type="checkbox"/>
Q30-10/Q7-10 Ratio	1.36	Temperature Adjust Kr	<input checked="" type="checkbox"/>
D.O. Saturation	90.00%	Use Balanced Technology	<input checked="" type="checkbox"/>
D.O. Goal	5		

WQM 7.0 Wasteload Allocations

SWP Basin	Stream Code	Stream Name			
		18D	44341	NORTH BRANCH TWO LICK CREEK	

NH3-N Acute Allocations

RMI	Discharge Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
1.670	Green Twp	8.91	39.32	8.91	39.32	0	0

NH3-N Chronic Allocations

RMI	Discharge Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
1.670	Green Twp	1.83	15.14	1.83	15.14	0	0

Dissolved Oxygen Allocations

RMI	Discharge Name	CBOD5		NH3-N		Dissolved Oxygen		Critical Reach	Percent Reduction
		Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)		
1.67	Green Twp	25	25	15.14	15.14	3	3	0	0

WQM 7.0 D.O. Simulation

<u>SWP Basin</u>	<u>Stream Code</u>	<u>Stream Name</u>			
18D	44341	NORTH BRANCH TWO LICK CREEK			
<u>RMI</u>		<u>Total Discharge Flow (mgd)</u>		<u>Analysis Temperature (°C)</u>	<u>Analysis pH</u>
1.670		0.120		20.790	7.000
<u>Reach Width (ft)</u>		<u>Reach Depth (ft)</u>		<u>Reach WDRatio</u>	<u>Reach Velocity (fps)</u>
16.193		0.527		30.751	0.138
<u>Reach CBOD5 (mg/L)</u>		<u>Reach Kc (1/days)</u>		<u>Reach NH3-N (mg/L)</u>	<u>Reach Kn (1/days)</u>
5.63		0.950		2.39	0.744
<u>Reach DO (mg/L)</u>		<u>Reach Kr (1/days)</u>		<u>Kr Equation</u>	<u>Reach DO Goal (mg/L)</u>
7.415		6.103		Tsivoglou	5
<u>Reach Travel Time (days)</u>		<u>Subreach Results</u>			
0.386		TravTime (days)	CBOD5 (mg/L)	NH3-N (mg/L)	D.O. (mg/L)
		0.039	5.42	2.32	7.20
		0.077	5.22	2.26	7.04
		0.116	5.02	2.19	6.94
		0.154	4.84	2.13	6.87
		0.193	4.66	2.07	6.84
		0.231	4.48	2.01	6.83
		0.270	4.32	1.96	6.83
		0.308	4.16	1.90	6.85
		0.347	4.00	1.85	6.88
		0.386	3.85	1.79	6.92

WQM 7.0 Effluent Limits

<u>SWP Basin</u>	<u>Stream Code</u>	<u>Stream Name</u>				
18D	44341	NORTH BRANCH TWO LICK CREEK				
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)
1.670	Green Twp	PA0218359	0.120	CBOD5	25	
				NH3-N	15.14	30.28
				Dissolved Oxygen		3

TRC Calculation

TRC EVALUATION														
Input appropriate values in A3:A9 and D3:D9														
Source	Reference	AFC Calculations		Reference	CFC Calculations									
TRC	1.3.2.iii	WLA_afc = 1.720		1.3.2.iii	WLA_cfc = 1.670									
PENTOXSD TRG	5.1a	LTAMULT_afc = 0.373		5.1c	LTAMULT_cfc = 0.581									
PENTOXSD TRG	5.1b	LTA_afc = 0.641		5.1d	LTA_cfc = 0.971									
Effluent Limit Calculations														
PENTOXSD TRG	5.1f	AML MULT = 1.231												
PENTOXSD TRG	5.1g	AVG MON LIMIT (mg/l) = 0.500		BAT/BPJ										
		INST MAX LIMIT (mg/l) = 1.635												
WLA_afc		(.019/e(-k^AFC_tc)) + [(AFC_Yc^Qs^0.19/Qd^e(-k^AFC_tc))... ...+ Xd + (AFC_Yc^Qs^Xs/Qd)]^4(1-FOS/100)												
LTAMULT_afc		EXP((0.5^LN(cvh^2+1))-2.326^LN(cvh^2+1)^0.5)												
LTA_afc		wla_afc^LTAMULT_afc												
WLA_cfc		(.011/e(-k^CFC_tc)) + [(CFC_Yc^Qs^0.11/Qd^e(-k^CFC_tc))... ...+ Xd + (CFC_Yc^Qs^Xs/Qd)]^4(1-FOS/100)												
LTAMULT_cfc		EXP((0.5^LN(cvd^2/no_samples+1))-2.326^LN(cvd^2/no_samples+1)^0.5)												
LTA_cfc		wla_cfc^LTAMULT_cfc												
AML MULT		EXP(2.326^LN((cvd^2/no_samples+1)^0.5)-0.5^LN(cvd^2/no_samples+1))												
AVG MON LIMIT		MIN(BAT_BPJ,MIN(LTA_afc,LTA_cfc)^AML_MULT)												
INST MAX LIMIT		1.5^((av_mon_limit/AML_MULT)/LTAMULT_afc)												

Discharge Information

Instructions			Discharge		Stream						
Facility:	Green Twp		NPDES Permit No.:	PA0218359		Outfall No.:	001				
Evaluation Type:	Major Sewage / Industrial Waste		Wastewater Description: Treated sewage								
Discharge Characteristics											
Design Flow (MGD)*	Hardness (mg/l)*	pH (8U)*	Partial Mix Factors (PMFs)			Complete Mix Times (min)					
			AFC	CFC	THH	CRL	Q ₅₋₁₀	Q ₅			
0.12	100	7									
Group 1	Discharge Pollutant	Units	Max Discharge Conc	0 if left blank		0.5 if left blank		0 if left blank		1 if left blank	
				Trib Conc	Stream Conc	Dally CV	Hourly CV	Stream CV	Fate Coeff	FOS	Criteria Mod
Total Dissolved Solids (PWS)	mg/L	318									
Chloride (PWS)	mg/L	88.9									
Bromide	mg/L	< 0.362									
Sulfate (PWS)	mg/L	59.3									
Fluoride (PWS)	mg/L										
Total Aluminum	ug/L	< 100									
Total Antimony	ug/L										
Total Arsenic	ug/L										
Total Barium	ug/L										
Total Beryllium	ug/L										
Total Boron	ug/L										
Total Cadmium	ug/L										
Total Chromium (III)	ug/L										
Hexavalent Chromium	ug/L										
Total Cobalt	ug/L										
Total Copper	ug/L	9.49									
Free Cyanide	ug/L										
Total Cyanide	ug/L										
Dissolved Iron	ug/L										
Total Iron	ug/L	< 200									
Total Lead	ug/L	< 1.4									
Total Manganese	ug/L	22.4									
Total Mercury	ug/L										
Total Nickel	ug/L										
Total Phenols (Phenolics) (PWS)	ug/L										
Total Selenium	ug/L										
Total Silver	ug/L										
Total Thallium	ug/L										
Total Zinc	ug/L	39.3									
Total Molybdenum	ug/L										
Acrolein	ug/L	<									
Acrylamide	ug/L	<									
Acrylonitrile	ug/L	<									
Benzene	ug/L	<									
Bromoform	ug/L	<									

Discharge Information

11/17/2024

Page 1

Carbon Tetrachloride	ug/L	<							
Chlorobenzene	ug/L	<							
Chlorodibromomethane	ug/L	<							
Chloroethane	ug/L	<							
2-Chloroethyl Vinyl Ether	ug/L	<							
Chloroform	ug/L	<							
Dichlorodibromomethane	ug/L	<							
1,1-Dichloroethane	ug/L	<							
1,2-Dichloroethane	ug/L	<							
1,1-Dichloroethylene	ug/L	<							
1,2-Dichloropropane	ug/L	<							
1,3-Dichloropropylene	ug/L	<							
1,4-Dioxane	ug/L	<							
Ethylbenzene	ug/L	<							
Methyl Bromide	ug/L	<							
Methyl Chloride	ug/L	<							
Methylene Chloride	ug/L	<							
1,1,2,2-Tetrachloroethane	ug/L	<							
Tetrachloroethylene	ug/L	<							
Toluene	ug/L	<							
1,2-trans-Dichloroethylene	ug/L	<							
1,1,1-Trichloroethane	ug/L	<							
1,1,2-Trichloroethane	ug/L	<							
Trichloroethylene	ug/L	<							
Vinyl Chloride	ug/L	<							
2-Chlorophenol	ug/L	<							
2,4-Dichlorophenol	ug/L	<							
2,4-Dimethylphenol	ug/L	<							
4,6-Dinitro-o-Cresol	ug/L	<							
2,4-Dinitrophenol	ug/L	<							
2-Nitrophenol	ug/L	<							
4-Nitrophenol	ug/L	<							
p-Chloro-m-Cresol	ug/L	<							
Pentachlorophenol	ug/L	<							
Phenol	ug/L	<							
2,4,6-Trichlorophenol	ug/L	<							
Acenaphthene	ug/L	<							
Acenaphthylene	ug/L	<							
Anthraene	ug/L	<							
Benzidine	ug/L	<							
Benz(a)Anthracene	ug/L	<							
Benz(a)Pyrrene	ug/L	<							
3,4-Benzofluoranthene	ug/L	<							
Benz(ghi)Perylene	ug/L	<							
Benz(k)Fluoranthene	ug/L	<							
Bis(2-Chloroethoxy)Methane	ug/L	<							
Bis(2-Chloroethyl)Ether	ug/L	<							
Bis(2-Chloroethyl)Propyl Ether	ug/L	<							
Bis(2-Ethylhexyl)Phthalate	ug/L	<							
4-Bromophenyl Phenyl Ether	ug/L	<							
Butyl Benzyl Phthalate	ug/L	<							
2-Chloronaphthalene	ug/L	<							
4-Chlorophenyl Phenyl Ether	ug/L	<							
Chrysene	ug/L	<							
Dibenz(a,h)Anthracene	ug/L	<							
1,2-Dichlorobenzene	ug/L	<							
1,3-Dichlorobenzene	ug/L	<							
1,4-Dichlorobenzene	ug/L	<							
3,3-Dichlorobenzidine	ug/L	<							
Diethyl Phthalate	ug/L	<							
Dimethyl Phthalate	ug/L	<							
Di-n-Butyl Phthalate	ug/L	<							
2,4-Dinitrotoluene	ug/L	<							

Stream / Surface Water Information

Green Twp, NPDES Permit No. PA0218359, Outfall 001

Instructions **Discharge** Stream

Receiving Surface Water Name: North Branch Two Lick Creek No. Reaches to Model: 1

Statewide Criteria
 Great Lakes Criteria
 ORSANCO Criteria

Location	Stream Code*	RMI*	Elevation (ft)*	DA (mi ²)*	Slope (ft/ft)	PWS Withdrawal (MGD)	Apply Fish Criteria*
Point of Discharge	044341	1.67	1329	9.9			Yes
End of Reach 1	044341	0.8	1308	10.5			Yes

Q₇₋₁₀

Location	RMI	LFY (cfs/mi ²)*	Flow (cfs)		W/D Ratio	Width (ft)	Depth (ft)	Velocity (fps)	Travel Time (days)	Tributary		Stream		Analysis	
			Stream	Tributary						Hardness	pH	Hardness*	pH*	Hardness	pH
Point of Discharge	1.67	0.1										100	7		
End of Reach 1	0.8	0.1													

Q_h

Location	RMI	LFY (cfs/mi ²)*	Flow (cfs)		W/D Ratio	Width (ft)	Depth (ft)	Velocity (fps)	Travel Time (days)	Tributary		Stream		Analysis	
			Stream	Tributary						Hardness	pH	Hardness*	pH*	Hardness	pH
Point of Discharge	1.67														
End of Reach 1	0.8														

Model Results

Green Twp, NPDES Permit No. PA0218359, Outfall 001

Instructions		Results		RETURN TO INPUTS		SAVE AS PDF		PRINT		<input type="radio"/> All	<input type="radio"/> Inputs	<input type="radio"/> Results	<input type="radio"/> Limits																																																																																																																																												
<input type="checkbox"/> Hydrodynamics																																																																																																																																																									
<input checked="" type="checkbox"/> Wasteload Allocations																																																																																																																																																									
<input checked="" type="checkbox"/> AFC		CCT (min): 9.864		PMF: 1		Analysis Hardness (mg/L): 100		Analysis pH: 7.00																																																																																																																																																	
<table border="1"> <thead> <tr> <th>Pollutants</th> <th>Stream Conc (µg/L)</th> <th>Stream CV</th> <th>Trib Conc (µg/L)</th> <th>Fate Coef</th> <th>WQC (µg/L)</th> <th>WQ Obj (µg/L)</th> <th>WLA (µg/L)</th> <th colspan="6">Comments</th> </tr> </thead> <tbody> <tr> <td>Total Dissolved Solids (PWS)</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>N/A</td> <td>N/A</td> <td>N/A</td> <td colspan="6"></td> </tr> <tr> <td>Chloride (PWS)</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>N/A</td> <td>N/A</td> <td>N/A</td> <td colspan="6"></td> </tr> <tr> <td>Sulfate (PWS)</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>N/A</td> <td>N/A</td> <td>N/A</td> <td colspan="6"></td> </tr> <tr> <td>Total Aluminum</td> <td>0</td> <td>0</td> <td>0</td> <td>750</td> <td>750</td> <td>4,750</td> <td></td> <td colspan="6"></td> </tr> <tr> <td>Total Copper</td> <td>0</td> <td>0</td> <td>0</td> <td>13.439</td> <td>14.0</td> <td>88.7</td> <td>Chem Translator of 0.96 applied</td> <td colspan="6"></td> </tr> <tr> <td>Total Iron</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>N/A</td> <td>N/A</td> <td>N/A</td> <td colspan="6"></td> </tr> <tr> <td>Total Lead</td> <td>0</td> <td>0</td> <td>0</td> <td>64.581</td> <td>81.6</td> <td>517</td> <td>Chem Translator of 0.791 applied</td> <td colspan="6"></td> </tr> <tr> <td>Total Manganese</td> <td>0</td> <td>0</td> <td>0</td> <td>N/A</td> <td>N/A</td> <td>N/A</td> <td></td> <td colspan="6"></td> </tr> <tr> <td>Total Zinc</td> <td>0</td> <td>0</td> <td>0</td> <td>117.180</td> <td>120</td> <td>759</td> <td>Chem Translator of 0.978 applied</td> <td colspan="6"></td> </tr> </tbody> </table>														Pollutants	Stream Conc (µg/L)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments						Total Dissolved Solids (PWS)	0	0	0	0	N/A	N/A	N/A							Chloride (PWS)	0	0	0	0	N/A	N/A	N/A							Sulfate (PWS)	0	0	0	0	N/A	N/A	N/A							Total Aluminum	0	0	0	750	750	4,750								Total Copper	0	0	0	13.439	14.0	88.7	Chem Translator of 0.96 applied							Total Iron	0	0	0	0	N/A	N/A	N/A							Total Lead	0	0	0	64.581	81.6	517	Chem Translator of 0.791 applied							Total Manganese	0	0	0	N/A	N/A	N/A								Total Zinc	0	0	0	117.180	120	759	Chem Translator of 0.978 applied						
Pollutants	Stream Conc (µg/L)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments																																																																																																																																																	
Total Dissolved Solids (PWS)	0	0	0	0	N/A	N/A	N/A																																																																																																																																																		
Chloride (PWS)	0	0	0	0	N/A	N/A	N/A																																																																																																																																																		
Sulfate (PWS)	0	0	0	0	N/A	N/A	N/A																																																																																																																																																		
Total Aluminum	0	0	0	750	750	4,750																																																																																																																																																			
Total Copper	0	0	0	13.439	14.0	88.7	Chem Translator of 0.96 applied																																																																																																																																																		
Total Iron	0	0	0	0	N/A	N/A	N/A																																																																																																																																																		
Total Lead	0	0	0	64.581	81.6	517	Chem Translator of 0.791 applied																																																																																																																																																		
Total Manganese	0	0	0	N/A	N/A	N/A																																																																																																																																																			
Total Zinc	0	0	0	117.180	120	759	Chem Translator of 0.978 applied																																																																																																																																																		
<input checked="" type="checkbox"/> CFC		CCT (min): 9.864		PMF: 1		Analysis Hardness (mg/L): 100		Analysis pH: 7.00																																																																																																																																																	
<table border="1"> <thead> <tr> <th>Pollutants</th> <th>Stream Conc (µg/L)</th> <th>Stream CV</th> <th>Trib Conc (µg/L)</th> <th>Fate Coef</th> <th>WQC (µg/L)</th> <th>WQ Obj (µg/L)</th> <th>WLA (µg/L)</th> <th colspan="6">Comments</th> </tr> </thead> <tbody> <tr> <td>Total Dissolved Solids (PWS)</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>N/A</td> <td>N/A</td> <td>N/A</td> <td colspan="6"></td> </tr> <tr> <td>Chloride (PWS)</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>N/A</td> <td>N/A</td> <td>N/A</td> <td colspan="6"></td> </tr> <tr> <td>Sulfate (PWS)</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>N/A</td> <td>N/A</td> <td>N/A</td> <td colspan="6"></td> </tr> <tr> <td>Total Aluminum</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>N/A</td> <td>N/A</td> <td>N/A</td> <td colspan="6"></td> </tr> <tr> <td>Total Copper</td> <td>0</td> <td>0</td> <td>0</td> <td>8.956</td> <td>9.33</td> <td>59.1</td> <td>Chem Translator of 0.96 applied</td> <td colspan="6"></td> </tr> <tr> <td>Total Iron</td> <td>0</td> <td>0</td> <td>0</td> <td>1,500</td> <td>1,500</td> <td>9,499</td> <td>WQC = 30 day average; PMF = 1</td> <td colspan="6"></td> </tr> <tr> <td>Total Lead</td> <td>0</td> <td>0</td> <td>0</td> <td>2.517</td> <td>3.18</td> <td>20.1</td> <td>Chem Translator of 0.791 applied</td> <td colspan="6"></td> </tr> <tr> <td>Total Manganese</td> <td>0</td> <td>0</td> <td>0</td> <td>N/A</td> <td>N/A</td> <td>N/A</td> <td></td> <td colspan="6"></td> </tr> <tr> <td>Total Zinc</td> <td>0</td> <td>0</td> <td>0</td> <td>118.139</td> <td>120</td> <td>759</td> <td>Chem Translator of 0.986 applied</td> <td colspan="6"></td> </tr> </tbody> </table>														Pollutants	Stream Conc (µg/L)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments						Total Dissolved Solids (PWS)	0	0	0	0	N/A	N/A	N/A							Chloride (PWS)	0	0	0	0	N/A	N/A	N/A							Sulfate (PWS)	0	0	0	0	N/A	N/A	N/A							Total Aluminum	0	0	0	0	N/A	N/A	N/A							Total Copper	0	0	0	8.956	9.33	59.1	Chem Translator of 0.96 applied							Total Iron	0	0	0	1,500	1,500	9,499	WQC = 30 day average; PMF = 1							Total Lead	0	0	0	2.517	3.18	20.1	Chem Translator of 0.791 applied							Total Manganese	0	0	0	N/A	N/A	N/A								Total Zinc	0	0	0	118.139	120	759	Chem Translator of 0.986 applied						
Pollutants	Stream Conc (µg/L)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments																																																																																																																																																	
Total Dissolved Solids (PWS)	0	0	0	0	N/A	N/A	N/A																																																																																																																																																		
Chloride (PWS)	0	0	0	0	N/A	N/A	N/A																																																																																																																																																		
Sulfate (PWS)	0	0	0	0	N/A	N/A	N/A																																																																																																																																																		
Total Aluminum	0	0	0	0	N/A	N/A	N/A																																																																																																																																																		
Total Copper	0	0	0	8.956	9.33	59.1	Chem Translator of 0.96 applied																																																																																																																																																		
Total Iron	0	0	0	1,500	1,500	9,499	WQC = 30 day average; PMF = 1																																																																																																																																																		
Total Lead	0	0	0	2.517	3.18	20.1	Chem Translator of 0.791 applied																																																																																																																																																		
Total Manganese	0	0	0	N/A	N/A	N/A																																																																																																																																																			
Total Zinc	0	0	0	118.139	120	759	Chem Translator of 0.986 applied																																																																																																																																																		
<input checked="" type="checkbox"/> THH		CCT (min): 9.864		PMF: 1		Analysis Hardness (mg/L): N/A		Analysis pH: N/A																																																																																																																																																	

Model Results

11/17/2024

Page 3

NPDES Permit Fact Sheet
Green Township Municipal Authority WWTP

NPDES Permit No. PA0218359

Pollutants	Stream Conc (µg/L)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	500,000	500,000	N/A	
Chloride (PWS)	0	0		0	250,000	250,000	N/A	
Sulfate (PWS)	0	0		0	250,000	250,000	N/A	
Total Aluminum	0	0		0	N/A	N/A	N/A	
Total Copper	0	0		0	N/A	N/A	N/A	
Total Iron	0	0		0	N/A	N/A	N/A	
Total Lead	0	0		0	N/A	N/A	N/A	
Total Manganese	0	0		0	1,000	1,000	6,333	
Total Zinc	0	0		0	N/A	N/A	N/A	

CRL CCT (min): 3.878 PMF: 1 Analysis Hardness (mg/L): N/A Analysis pH: N/A

Pollutants	Stream Conc (µg/L)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A	
Chloride (PWS)	0	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
Total Aluminum	0	0		0	N/A	N/A	N/A	
Total Copper	0	0		0	N/A	N/A	N/A	
Total Iron	0	0		0	N/A	N/A	N/A	
Total Lead	0	0		0	N/A	N/A	N/A	
Total Manganese	0	0		0	N/A	N/A	N/A	
Total Zinc	0	0		0	N/A	N/A	N/A	

Recommended WQBELs & Monitoring Requirements

No. Samples/Month: 4

Pollutants	Mass Limits		Concentration Limits						Comments
	AML (lbs/day)	MDL (lbs/day)	AML	MDL	IMAX	Units	Governing WQBEL	WQBEL Basis	
Total Copper	Report	Report	Report	Report	Report	µg/L	56.8	AFC	Discharge Conc > 10% WQBEL (no RP)

Other Pollutants without Limits or Monitoring

The following pollutants do not require effluent limits or monitoring based on water quality because reasonable potential to exceed water quality criteria was not determined and the discharge concentration was less than thresholds for monitoring, or the pollutant was not detected and a sufficiently sensitive analytical method was used (e.g., <= Target QL).

Pollutants	Governing WQBEL	Units	Comments
Total Dissolved Solids (PWS)	N/A	N/A	PWS Not Applicable
Chloride (PWS)	N/A	N/A	PWS Not Applicable
Bromide	N/A	N/A	No WQS

Model Results

11/17/2024

Page 6

Sulfate (PWS)	N/A	N/A	PWS Not Applicable
Total Aluminum	3,044	µg/L	Discharge Conc ≤ 10% WQBEL
Total Iron	9,499	µg/L	Discharge Conc ≤ 10% WQBEL
Total Lead	20.1	µg/L	Discharge Conc ≤ 10% WQBEL
Total Manganese	6,333	µg/L	Discharge Conc ≤ 10% WQBEL
Total Zinc	486	µg/L	Discharge Conc ≤ 10% WQBEL

TMS Modeling at Nearest PWS Intake

Toxics Management Spreadsheet

Version 1.4, May 2023

Discharge Information

Instructions			Discharge		Stream							
Facility:	Green Twp		NPDES Permit No.:	PA0218359	Outfall No.:	001						
Evaluation Type:	Major Sewage / Industrial Waste		Wastewater Description: Treated sewage									
Design Flow (MGD)*	Hardness (mg/L)*	pH (SU)*	Discharge Characteristics									
			Partial Mix Factors (PMFs)			Complete Mix Times (min)						
			AFC	CFC	THH	CRL	Q _{0.10}	Q _{0.5}				
0.12	100	7										
			0 if left blank	0.5 if left blank	0 if left blank	1 if left blank						
Discharge Pollutant		Units	Max Discharge Conc	Trib Conc	Stream Conc	Daily CV	Hourly CV	Stream CV	Fate Coeff	FOS	Criteri a Mod	Chem Transf
Group 1												
Total Dissolved Solids (PWS)	mg/L	318										
Chloride (PWS)	mg/L	88.9										
Bromide	mg/L	<	0.362									
Sulfate (PWS)	mg/L	59.3										
Fluoride (PWS)	mg/L											
Total Aluminum	ug/L	<	100									
Total Antimony	ug/L											
Total Arsenic	ug/L											
Total Barium	ug/L											
Total Beryllium	ug/L											
Total Boron	ug/L											
Total Cadmium	ug/L											
Total Chromium (III)	ug/L											
Hexavalent Chromium	ug/L											
Total Cobalt	ug/L											
Total Copper	ug/L		9.49									
Free Cyanide	ug/L											
Total Cyanide	ug/L											
Dissolved Iron	ug/L											
Total Iron	ug/L	<	200									
Total Lead	ug/L	<	1.4									
Total Manganese	ug/L		22.4									
Total Mercury	ug/L											
Total Nickel	ug/L											
Total Phenols (Phenolics) (PWS)	ug/L											
Total Selenium	ug/L											
Total Silver	ug/L											
Total Thallium	ug/L											
Total Zinc	ug/L		39.3									
Total Molybdenum	ug/L											
Acrolein	ug/L	<										
Acrylamide	ug/L	<										
Acrylonitrile	ug/L	<										
Benzene	ug/L	<										
Bromofom	ug/L	<										

Discharge Information

11/18/2024

Page 1

Group 3	Carbon Tetrachloride	ug/L	<											
	Chlorobenzene	ug/L	<											
	Chlorodibromomethane	ug/L	<											
	Chloroethane	ug/L	<											
	2-Chloroethyl Vinyl Ether	ug/L	<											
	Chloroform	ug/L	<											
	Dichlorobromomethane	ug/L	<											
	1,1-Dichloroethane	ug/L	<											
	1,2-Dichloroethane	ug/L	<											
	1,1-Dichloroethylene	ug/L	<											
	1,2-Dichloropropane	ug/L	<											
	1,3-Dichloropropylene	ug/L	<											
	1,4-Dioxane	ug/L	<											
	Ethylbenzene	ug/L	<											
	Methyl Bromide	ug/L	<											
	Methyl Chloride	ug/L	<											
	Methylene Chloride	ug/L	<											
	1,1,2,2-Tetrachloroethane	ug/L	<											
	Tetrachloroethylene	ug/L	<											
	Toluene	ug/L	<											
	1,2-trans-Dichloroethylene	ug/L	<											
	1,1,1-Trichloroethane	ug/L	<											
	1,1,2-Trichloroethane	ug/L	<											
	Trichloroethylene	ug/L	<											
	Vinyl Chloride	ug/L	<											
Group 4	2-Chlorophenol	ug/L	<											
	2,4-Dichlorophenol	ug/L	<											
	2,4-Dimethylphenol	ug/L	<											
	4,6-Dinitro- <i>o</i> -Cresol	ug/L	<											
	2,4-Dinitrophenol	ug/L	<											
	2-Nitrophenol	ug/L	<											
	4-Nitrophenol	ug/L	<											
	p-Chloro- <i>m</i> -Cresol	ug/L	<											
	Pentachlorophenol	ug/L	<											
	Phenol	ug/L	<											
	2,4,6-Trichlorophenol	ug/L	<											
	Acenaphthene	ug/L	<											
	Acenaphthylene	ug/L	<											
	Anthracene	ug/L	<											
	Benzidine	ug/L	<											
	Benz(a)Anthracene	ug/L	<											
Group 5	Benz(a)Pyrene	ug/L	<											
	3,4-Benzofurananthene	ug/L	<											
	Benzog(h)iPerylene	ug/L	<											
	Benzog(k)Fluoranthene	ug/L	<											
	Bis(2-Chloroethoxy)Methane	ug/L	<											
	Bis(2-Chloroethyl)Ether	ug/L	<											
	Bis(2-Chloroethylpropyl)Ether	ug/L	<											
	Bis(2-EthylHexyl)Phthalate	ug/L	<											
	4-Bromophenyl Phenyl Ether	ug/L	<											
	Butyl Benzyl Phthalate	ug/L	<											
	2-Chloronaphthalene	ug/L	<											
	4-Chlorophenyl Phenyl Ether	ug/L	<											
	Chrysene	ug/L	<											
Group 6	Dibenz(a,h)Anthracene	ug/L	<											
	1,2-Dichlorobenzene	ug/L	<											
	1,3-Dichlorobenzene	ug/L	<											
	1,4-Dichlorobenzene	ug/L	<											
	3,3-Dichlorobenzidine	ug/L	<											
	Diethyl Phthalate	ug/L	<											
	Dimethyl Phthalate	ug/L	<											
Group 7	Di-n-Butyl Phthalate	ug/L	<											
	2,4-Dinitrotoluene	ug/L	<											

Stream / Surface Water Information

Green Twp, NPDES Permit No. PA0218359, Outfall 001

Instructions **Discharge** Stream

Receiving Surface Water Name: North Branch Two Lick Creek No. Reaches to Model: 1

Statewide Criteria
 Great Lakes Criteria
 ORBANCO Criteria

Location	Stream Code*	RMI*	Elevation (ft)*	DA (mi ²)*	Slope (ft/ft)	FWS Withdrawal (MGD)	Apply Fish Criteria*
Point of Discharge	044341	15.9	1329	9.9			Yes
End of Reach 1	044341	0.01	1086	79.1		6	Yes

Q₇₋₁₀

Location	RMI	LFY (cfs/mi ²)*	Flow (cfs)		W/D Ratio	Width (ft)	Depth (ft)	Velocity (fps)	Travel Time (days)	Tributary		Stream		Analysis	
			Stream	Tributary						Hardness	pH	Hardness*	pH*	Hardness	pH
Point of Discharge	15.9	0.1										100	7		
End of Reach 1	0.01	0.12													

Q₈

Location	RMI	LFY (cfs/mi ²)*	Flow (cfs)		W/D Ratio	Width (ft)	Depth (ft)	Velocity (fps)	Travel Time (days)	Tributary		Stream		Analysis	
			Stream	Tributary						Hardness	pH	Hardness*	pH*	Hardness	pH
Point of Discharge	15.9														
End of Reach 1	0.01														

Model Results

Green Twp, NPDES Permit No. PA0218359, Outfall 001

Instructions		Results		RETURN TO INPUTS		SAVE AS PDF		PRINT		<input checked="" type="radio"/> All	<input type="radio"/> Inputs	<input type="radio"/> Results	<input type="radio"/> Limits	
<input type="checkbox"/> Hydrodynamics														
<input checked="" type="checkbox"/> Wasteload Allocations														
<input checked="" type="checkbox"/> AFC		CCT (min): 12.929		PMF: 1		Analysis Hardness (mg/L): 100		Analysis pH: 7.00						
Pollutants		Current Conc (µg/L)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments					
Total Dissolved Solids (PWS)		0	0	0	0	N/A	N/A	N/A						
Chloride (PWS)		0	0	0	0	N/A	N/A	N/A						
Sulfate (PWS)		0	0	0	0	N/A	N/A	N/A						
Total Aluminum		0	0	0	750	750	4,750							
Total Copper		0	0	0	13.439	14.0	88.7		Chem Translator of 0.96 applied					
Total Iron		0	0	0	0	N/A	N/A	N/A						
Total Lead		0	0	0	64.581	81.6	517		Chem Translator of 0.791 applied					
Total Manganese		0	0	0	0	N/A	N/A	N/A						
Total Zinc		0	0	0	117.180	120	759		Chem Translator of 0.978 applied					
<input checked="" type="checkbox"/> CFC		CCT (min): 12.929		PMF: 1		Analysis Hardness (mg/L): 100		Analysis pH: 7.00						
Pollutants		Current Conc (µg/L)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments					
Total Dissolved Solids (PWS)		0	0	0	0	N/A	N/A	N/A						
Chloride (PWS)		0	0	0	0	N/A	N/A	N/A						
Sulfate (PWS)		0	0	0	0	N/A	N/A	N/A						
Total Aluminum		0	0	0	0	N/A	N/A	N/A						
Total Copper		0	0	0	8.956	9.33	59.1		Chem Translator of 0.96 applied					
Total Iron		0	0	0	1,500	1,500	9,499		WQC = 30 day average; PMF = 1					
Total Lead		0	0	0	2.517	3.18	20.1		Chem Translator of 0.791 applied					
Total Manganese		0	0	0	0	N/A	N/A	N/A						
Total Zinc		0	0	0	118.139	120	759		Chem Translator of 0.986 applied					
<input checked="" type="checkbox"/> THH		CCT (min): 12.929		THH PMF: 1		Analysis Hardness (mg/L): N/A		Analysis pH: N/A		PWS PMF: 1				

Model Results

11/18/2024

Page 5

Pollutants	Stream Conc (µg/L)	Stream CV	Trb Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0	0	500,000	500,000	25,532,321		WQC applied at RMI 0.01 with a design stream flow of 9,294 cfs
Chloride (PWS)	0	0	0	250,000	250,000	12,766,160		WQC applied at RMI 0.01 with a design stream flow of 9,294 cfs
Sulfate (PWS)	0	0	0	250,000	250,000	12,766,160		WQC applied at RMI 0.01 with a design stream flow of 9,294 cfs
Total Aluminum	0	0	0	N/A	N/A	N/A		
Total Copper	0	0	0	N/A	N/A	N/A		
Total Iron	0	0	0	N/A	N/A	N/A		
Total Lead	0	0	0	N/A	N/A	N/A		
Total Manganese	0	0	0	1,000	1,000	6,333		
Total Zinc	0	0	0	N/A	N/A	N/A		

 CRL

CCT (min): 5,083

PMF: 1

Analysis Hardness (mg/l):

N/A

Analysis pH:

N/A

Pollutants	Stream Conc (µg/L)	Stream CV	Trb Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0	0	0	N/A	N/A	N/A	
Chloride (PWS)	0	0	0	0	N/A	N/A	N/A	
Sulfate (PWS)	0	0	0	0	N/A	N/A	N/A	
Total Aluminum	0	0	0	0	N/A	N/A	N/A	
Total Copper	0	0	0	0	N/A	N/A	N/A	
Total Iron	0	0	0	0	N/A	N/A	N/A	
Total Lead	0	0	0	0	N/A	N/A	N/A	
Total Manganese	0	0	0	0	N/A	N/A	N/A	
Total Zinc	0	0	0	0	N/A	N/A	N/A	

 Recommended WQBELs & Monitoring Requirements

No. Samples/Month:

4

Pollutants	Mass Limits		Concentration Limits					Comments	
	AML (lbs/day)	MDL (lbs/day)	AML	MDL	IMAX	Units	Governing WQBEL	WQBEL Basis	
Total Copper	Report	Report	Report	Report	Report	µg/L	56.8	AFC	Discharge Conc > 10% WQBEL (no RP)

 Other Pollutants without Limits or Monitoring

The following pollutants do not require effluent limits or monitoring based on water quality because reasonable potential to exceed water quality criteria was not determined and the discharge concentration was less than thresholds for monitoring, or the pollutant was not detected and a sufficiently sensitive analytical method was used (e.g., < Target QL).

Pollutants	Governing WQBEL	Units	Comments
Total Dissolved Solids (PWS)	25,532	mg/L	Discharge Conc < 10% WQBEL
Chloride (PWS)	12,766	mg/L	Discharge Conc < 10% WQBEL
Bromide	N/A	N/A	No WQS

Sulfate (PWS)	12,766	mg/L	Discharge Conc ≤ 10% WQBEL
Total Aluminum	3,044	µg/L	Discharge Conc ≤ 10% WQBEL
Total Iron	9,499	µg/L	Discharge Conc ≤ 10% WQBEL
Total Lead	20.1	µg/L	Discharge Conc ≤ 10% WQBEL
Total Manganese	6,333	µg/L	Discharge Conc ≤ 10% WQBEL
Total Zinc	486	µg/L	Discharge Conc ≤ 10% WQBEL