

Application Type
Facility Type
Major / Minor

Renewal
Industrial
Minor

**NPDES PERMIT FACT SHEET
INDIVIDUAL INDUSTRIAL WASTE (IW)
AND IW STORMWATER**

Application No. **PA0218464**
APS ID **1128264**
Authorization ID **1511162**

Applicant and Facility Information

Applicant Name	Gans Energy LLC	Facility Name	Gans Power Station
Applicant Address	1 Tower Center Boulevard 21st Floor E. Brunswick, NJ 08816	Facility Address	Sr 3002 Gans Road Gans, PA 15439
Applicant Contact	Jamille Ford	Facility Contact	Joseph Dearman
Applicant Phone	(724) 274-3628	Facility Phone	(724) 725-6005
Client ID	336060	Site ID	531375
SIC Code	4911	Municipality	Springhill Township
SIC Description	Electric Services (fossil fuel electric power generation)	County	Fayette
Date Application Received	<u>December 30, 2024</u>	EPA Waived?	<u>Yes</u>
Date Application Accepted	<u>May 08, 2025</u>	If No, Reason	
Purpose of Application	Renewal of NPDES permit for the discharge of non-contact cooling water, industrial wastewater, and industrial stormwater from the electric generating facility.		

Summary of Review

The Department received an NPDES permit renewal application from Gans Energy, LLC on December 18, 2024 for coverage of the discharge from its Gans Generating Facility in Springhill Township of Fayette County. The facility is an 88-megawatt capacity natural gas simple-cycle combustion turbine electric generating facility with an SIC Code 4911 (Electric Services). Water Quality Management (WQM) Permit 2600201 was approved on September 27, 2000.

Gans Generating Facility (Gans) produces electricity during periods of peak demand. Operation of the facility is based upon energy demand and economic dispatch. While the station can be operated remotely and has the potential to be called online at any time, its air permit limits operation to a total of 4875 unit-operating hours during any rolling 12-month period. Operation of the combustion turbines is most typically for several hours per day during peak heating and cooling seasons (December through February and June through August). There have been no changes to the operations at this facility since the last permit review.

The facility contains two identical parallel trains, each equipped with a generator building, condensing structures, emissions control equipment, a 75-foot stack, and a cooling tower. Other site features include a water treatment building/ office, a gas regulator building, a maintenance/ storage building, step-up and step-down electrical transformers, a switchyard, and a gravel/ paved lot.

The facility has one outfall, Outfall 001, which discharges to an Unnamed Tributary (UNT) to Grassy Run, designated in 25 PA Code Chapter 93 as a Warm Water Fishery (WWF). Outfall 001 discharges wastewater from internal monitoring points (IMP) 101 and 201. IMP 101 discharges non-contact cooling tower blowdown at an Average Flow of 0.0033 MGD, Maximum Flow of 0.010 MGD, and Design Flow of 0.0057 MGD. IMP 201 discharges stormwater and low-volume wastewater after treatment

Approve	Deny	Signatures	Date
X		 Curtis Holes, P.E. / Environmental Engineer	January 8, 2026
X		 Michael E. Fifth, P.E. / Environmental Engineer Manager	January 8, 2026

Summary of Review

through an oil/ water separator at an Average Flow of 0.0007 MGD, maximum flow of 0.0023 MGD, and Design Flow of 0.1034 MGD.

A stream assessment to determine the point of first use (POFU) of the UNT to Grassy Run was conducted on January 14, 2020 by the Department. Results from the study suggest that the stream has an aquatic life use at the point where it exhibits define bed and bank ((Latitude:39.74678, Longitude: -79.84247), and this use should be protected. However, the Department also flagged the stream as not attaining its protective use under Section 303d of the Clean Water Act. The causes of the impairment are iron, sulfate, strontium, total dissolved solids, and specific conductivity and the source of the impairment is acid mine drainage. Because of the receiving stream's impairment, the water quality for Outfall 001 is modeled 1.5 miles downstream of the outfall, where the UNT to Grassy Run confluences with Grassy Run.

The last inspection conducted by the Department was on May 03, 2021 by Howard Dunn as a compliance evaluation. No violations were noted.

The client has no open violations

Part C language in the draft permit provides controls on Residual Solids, Chemical Additives, TRC Effluent Limitations below Quantitation Limits, and Stormwater Discharges.

It is recommended that a draft permit be published for public comment in response to this application.

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Discharge, Receiving Waters and Water Supply Information

Outfall No.	001	Design Flow (MGD)	0.0127
Latitude	39° 44' 51"	Longitude	-79° 50' 33"
Quad Name	Lake Lynn	Quad Code	2107
Wastewater Description:	Non-contact cooling tower blowdown from IMP 101 and oil/ water separation for stormwater from IMP 102.		
Receiving Waters	Grassy Run (WWF)	Stream Code	41891
NHD Com ID	64191454	RMI	1.6527
Drainage Area	4.49 mi ²	Yield (cfs/mi ²)	0.001116
Q ₇₋₁₀ Flow (cfs)	0.0501	Q ₇₋₁₀ Basis	USGS StreamStats
Elevation (ft)	894	Slope (ft/ft)	0.0174
Watershed No.	19-G	Chapter 93 Class.	WWF
Existing Use		Existing Use Qualifier	
Exceptions to Use		Exceptions to Criteria	
Assessment Status	Impaired		
Cause(s) of Impairment	Metals, pH		
Source(s) of Impairment	Acid Mine Drainage		
TMDL Status	Name		
Nearest Downstream Public Water Supply Intake	Point Marion Borough (0.504 MGD)		
PWS Waters	Cheat River	Flow at Intake (cfs)	0.78
PWS RMI	1.07	Distance from Outfall (mi)	5.37

Other Comments: The USGS Stream Stats Data for the drainage area is displayed in Attachment A. The water quality for Outfall 001 is modeled 1.5 miles downstream of the outfall, where the Unnamed Tributary (UNT) to Grassy Run (Stream Code 41892) confluences with Grassy Run (Stream Code 41891). The Unnamed Tributary to Grassy Run has no aquatic use to support due to severe impairment caused by abandoned main drainage.

No changes have been made to Outfall 001 since last permit issuance.

Compliance History

Effluent Violations for Outfall 101, from: December 1, 2024 To: October 31, 2025

Parameter	Date	SBC	DMR Value	Units	Limit Value	Units
Total Zinc	01/31/25	Avg Mo	0.560	mg/L	0.283	mg/L
Total Zinc	12/31/24	Avg Mo	0.550	mg/L	0.283	mg/L
Total Zinc	01/31/25	Daily Max	1.070	mg/L	0.441	mg/L
Total Zinc	12/31/24	Daily Max	0.960	mg/L	0.441	mg/L

Other Comments: None

Compliance History

DMR Data for Outfall 101 (from December 1, 2024 To: October 31, 2025)

Parameter	Limit	OCT-25	SEP-25	AUG-25	JUL-25	JUN-25	MAY-25	APR-25	MAR-25	FEB-25	JAN-25	DEC-24
Flow (MGD) Average Monthly	Report	0.0002	0.001	0.001	0.001	0.001		0.001			0.001	0.001
Flow (MGD) Daily Maximum	Report	0.0025	0.006	0.006	0.004	0.002		0.001			0.001	0.001
pH (S.U.) Daily Minimum	6.0	8.1	7.8	7.5	8.3	7.8		7.2			8.3	7.8
pH (S.U.) IMAX	9.0	8.3	7.8	8.5	8.5	7.8		8.3			8.4	7.9
TRC (mg/L) Average Monthly	0.159	0.055	< 0.001	< 0.001	0.055	0.020		0.020			0.065	0.060
TRC (mg/L) IMAX	0.373	0.070	< 0.001	< 0.001	0.080	0.020		0.040			0.080	0.060
Free Available Chlorine (mg/L) Average Monthly	0.2	< 0.01	< 0.1	< 0.01	0.03	0.01		0.02			0.04	0.03
Free Available Chlorine (mg/L) IMAX	0.5	< 0.02	< 0.1	< 0.01	0.05	0.01		0.03			0.04	0.03
Temperature (Oct 1 thru 15) (°F)	110.0	62.6										
Temperature (Oct 16 thru End of Month) (°F) IMAX	108.4	65.8										
Temperature (Mar 1 – Sep 30) (°F) IMAX	110.0		69.8	76.3	72.3	79.5		87.1			58.5	54.5
Total Arsenic (mg/L) Average Monthly	0.017	< 0.005	< 0.005	< 0.005	0.0035	< 0.005		< 0.005			< 0.005	< 0.0050
Total Arsenic (mg/L) Daily Maximum	0.027	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005		< 0.005			< 0.005	< 0.0050
Total Chromium (mg/L) Average Monthly	0.2	< 0.02	< 0.02	< 0.02	< 0.01	< 0.02		< 0.02			< 0.020	< 0.02
Total Chromium (mg/L) Daily Maximum	.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02		< 0.02			< 0.020	< 0.02
Total Zinc (mg/L) Average Monthly	0.283	0.085	0.070	0.105	0.080	0.110		0.080			0.560	0.550
Total Zinc (mg/L) Daily Maximum	0.441	0.090	0.070	0.110	0.087	0.120		0.110			1.070	0.960

DMR Data for Outfall 201 (from December 1, 2024 To: October 31, 2025)

Parameter	Limit	OCT-25	SEP-25	AUG-25	JUL-25	JUN-25	MAY-25	APR-25	MAR-25	FEB-25	JAN-25	DEC-24
Flow (MGD) Average Monthly	Report	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0008	0.00003		0.0002	0.0004
Flow (MGD) Daily Maximum	Report	0.0005	0.0005	0.0007	0.0005	0.0004	0.0004	0.0032	0.0004		0.0006	0.0006
pH (S.U.) Daily Minimum	6.0	7.3	7.1	7.1	7.1	6.5	7.8	7.5	7.4		7.7	7.2
pH (S.U.) Instantaneous Maximum	9.0	7.5	7.4	7.8	7.4	7.8	7.9	7.7	8.0		8.1	7.3
TSS (mg/L) Average Monthly	30.0	< 3	< 3	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3		< 3	< 3
TSS (mg/L) Daily Maximum	100.0	< 3	< 3	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3		< 3	< 3
Oil and Grease (mg/L) Average Monthly	15.0	< 5	< 5	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0		< 5	< 5
Oil and Grease (mg/L) Daily Maximum	20.0	< 5	< 5	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0		< 5	< 5

Development of Effluent Limitations			
Outfall No.	001	Design Flow (MGD)	0.0127
Latitude	39° 44' 51"	Longitude	-79° 50' 33"
Wastewater Description:	Non-contact cooling tower blowdown from IMP 101 and oil/ water separation for stormwater from IMP 102.		

Outfall 001 discharges wastewater from internal monitoring points (IMP) 101 and 201. The water quality-based effluent limitations will be evaluated at IMPs 101 and 201 for effluent limitations.

Per- and Polyfluoroalkyl Substances (PFAS)

In February 2024, DEP implemented a new monitoring initiative for PFAS consistent with an EPA memorandum that provides guidance to states for addressing PFAS discharges. PFAS are a family of thousands of synthetic organic chemicals that contain a chain of strong carbon-fluorine bonds. Many PFAS are highly stable, water- and oil-resistant, and exhibit other properties that make them useful in a variety of consumer products and industrial processes. PFAS are resistant to biodegradation, photooxidation, direct photolysis, and hydrolysis and do not readily degrade naturally; thus, many PFAS accumulate over time. According to the United States Department of Health and Human Services, Agency for Toxic Substances and Disease Registry (ATSDR), the environmental persistence and mobility of some PFAS, combined with decades of widespread use, have resulted in their presence in surface water, groundwater, drinking water, rainwater, soil, sediment, ice caps, outdoor and indoor air, plants, animal tissue, and human blood serum across the globe. ATSDR also reported that exposure to certain PFAS can lead to adverse human health impacts. Due to their durability, toxicity, persistence, and pervasiveness, PFAS have emerged as potentially significant pollutants of concern.

In accordance with Section II.I of DEP's "Standard Operating Procedure (SOP) for Clean Water Program – Establishing Effluent Limitations for Individual Industrial Permits" [SOP No. BCW-PMT-032] and under the authority of 25 Pa. Code § 92a.61(b), DEP has determined that monitoring for a subset of common/well-studied PFAS including Perfluorooctanoic acid (PFOA), Perfluorooctanesulfonic acid (PFOS), Perfluorobutanesulfonic acid (PFBS), and Hexafluoropropylene oxide dimer acid (HFPO-DA) is necessary to help understand the extent of environmental contamination by PFAS in the Commonwealth and the extent to which point source dischargers are contributors. SOP BCW-PMT-032 directs permit writers to consider special monitoring requirements for PFOA, PFOS, PFBS, and HFPO-DA in the following instances:

- a. If sampling that is completed as part of the permit renewal application reveals a detection of PFOA, PFOS, HFPO-DA or PFBS (any of these compounds), the application manager will establish a quarterly monitoring requirement for PFOA, PFOS, HFPO-DA and PFBS (all of these compounds) in the permit.
- b. If sampling that is completed as part of the permit renewal application demonstrates non-detect values at or below the Target QLs for PFOA, PFOS, HFPO-DA and PFBS (all of these compounds in a minimum of 3 samples), the application manager will establish an annual monitoring requirement for PFOA, PFOS, HFPO-DA and PFBS in the permit.
- c. In all cases the application manager will include a condition in the permit that the permittee may cease monitoring for PFOA, PFOS, HFPO-DA and PFBS when the permittee reports non-detect values at or below the Target QL for four consecutive monitoring periods for each PFAS parameter that is analyzed. Use the following language: The permittee may discontinue monitoring for PFOA, PFOS, HFPO-DA, and PFBS if the results in 4 consecutive monitoring periods indicate non-detects at or below Quantitation Limits of 4.0 ng/L for PFOA, 3.7 ng/L for PFOS, 3.5 ng/L for PFBS and 6.4 ng/L for HFPO-DA. When monitoring is discontinued, permittees should enter a No Discharge Indicator (NODI) Code of "GG" on DMRs.

The industrial activities conducted at the facility are not identified as sources of PFAS, therefore, the annual monitoring for PFAS will be imposed and if after four (4) consecutive non-detect events, at the QLs, then the monitoring can be discontinued.

Final Effluent Limitations and Monitoring Requirements for Outfall 001

Final Effluent limits applicable at Outfall 101 are the more stringent of TBELs, regulatory effluent standards, previously permitted effluent limits and the monitoring requirements are summarized in Table 1.

Table 1: Proposed Effluent limits and Monitoring Requirements for Outfall 001

Parameter	Mass Loading (lbs./day)		Concentration (mg/L)			Basis
	Average Monthly	Daily Maximum	Average Monthly	Daily Maximum	Instant Maximum	
PFOA (ng/L)	-	-	-	Report	-	25 Pa. Code § 92.a.61(b)
PFOS (ng/L)	-	-	-	Report	-	25 Pa. Code § 92.a.61(b)
PFBS (ng/L)	-	-	-	Report	-	25 Pa. Code § 92.a.61(b)
HFPO-DA (ng/L)	-	-	-	Report	-	25 Pa. Code § 92.a.61(b)

Monitoring requirements are based on the previous permits monitoring requirements for the facility are displayed in Table 2 below.

Table 2: Monitoring Requirements for Outfall 001

Parameter	Sample Type	Minimum Sample Frequency
PFOA (ng/L)	Grab	1/year
PFOS (ng/L)	Grab	1/year
PFBS (ng/L)	Grab	1/year
HFPO-DA (ng/L)	Grab	1/year

Development of Effluent Limitations			
Outfall No.	101	Design Flow (MGD)	0.033
Latitude	39° 44' 50"	Longitude	-79° 50' 20.6"
Wastewater Description: Non-contact cooling tower blowdown			

IMP 101 discharges non-contact cooling tower blowdown from cooling towers 1 & 2 when the plant is in operation.

Technology-Based Limitations

Gans Generating Facility is a simple-cycle combustion turbine generation plant and not a steam electric generating facility. While fees do not reflect Federal Effluent Guidelines (ELGs), anti-backsliding and BPJ support the continued use of technology-based effluent limitation established in 40 CFR § 423 – Steam Electric Power Generating Point Source Category (NSPS).

Regulatory Effluent Standards and Monitoring Requirements

Flow monitoring is required pursuant to 25 Pa. Code § 92a.61(d)(1) as indicated in Table 1.

Effluent standards for pH pursuant to 25 Pa. Code §§ 95.2(1), as indicated in Table 1, are also imposed on all industrial wastes.

Pennsylvania regulations at 25 Pa. Code § 92a.48(b) require the imposition of technology-based TRC limits for facilities that use chlorination and that are not already subject to TRC limits based on applicable federal ELGs or a facility-specific BPJ evaluation as indicated in Table 3.

Table 3: Regulatory Effluent Standards			
Parameter	Monthly Average	Daily Maximum	IMAX
Flow (MGD)	Monitor	Monitor	----
pH (S.U.)	Not less than 6.0 nor greater than 9.0 at all times		----
TRC (mg/L)	0.5	1.0	1.6

Best Practicable Control Technology Currently Achievable (BPT)

BPT for discharges from non-contact cooling tower blowdown are subject to effluent limits in accordance with the regulations in 40 CFR § 423 – Steam Electric Power Generating Point Source Category (NSPS). The technology-based effluent limits from 40 CFR § 423.15 (a)(10) proposed at IMP 101 are listed in Table 4.

Table 4: Technology Effluent Limitations for Cooling Tower Blowdown		
Parameters	Average Monthly (mg/L)	Maximum Daily (mg/L)
Chromium, total*	0.2	0.2
Zinc, total*	1.0	1.0
Free Available Chlorine*	0.2	0.5
pH (S.U.) *	Between 6.0 – 9.0	

*From 40 CFR § 423.15 (a)(10)

Water Quality-Based Effluent Limitations (WQBELs)

Toxics Management Analysis

WQBELs are designed to protect water quality by ensuring that water quality standards are met in the receiving water. The Department's Toxics Management Spreadsheet (TMS) was utilized to facilitate calculations necessary for completing a reasonable potential analysis and determine Water Quality-Based Effluent Limitations (WQBELs) for discharges containing toxic pollutant concentrations. TMS combines the functionality of two (2) of the Department's analysis tools, Toxics Screening Analysis Spreadsheet and PENTOXSD water quality model.

DEP's procedures for evaluating reasonable potential are as follows:

1. For IW discharges, the design flow to use in modeling is the average flow during production or operation and may be taken from the permit application.
2. Perform a Toxics Screening Analysis to identify toxic pollutants of concern. All toxic pollutants, as reported in the permit application or on DMRs, are modeled by the TMS to determine the parameters of concern. [This includes pollutants reported as "Not Detectable" or as "<MDL" where the method detection limit for the analytical method used by the applicant is greater than the most stringent water quality criterion].
 - Establish limits in the draft permit where the maximum reported concentration equals or exceeds 50% of the WQBEL. Use the average monthly and maximum daily limits for the permit as recommended by TMS. Establish an IMAX limit at 2.5 times the average monthly limit.
 - For non-conservative pollutants, establish monitoring requirements where the maximum reported concentration is between 25% - 50% of the WQBEL.
 - For conservative pollutants, establish monitoring requirements where the maximum reported concentration is between 10% - 50% of the WQBEL.

The Discharge from Outfall 101 is evaluated based on concentrations reported on the application data are used as inputs into the TMS. A summary of TMS Inputs is contained in Table 5 below.

Table 5: TMS Inputs

Parameter	Value
Discharge Inputs	
Facility	Gans Power Station
Evaluation Type	Industrial
NPDES Permit No.	PA0218464
Wastewater Description	NCCW
Outfall ID	101
Design Flow (MGD)	0.033
Hardness (mg/L)	710
pH (S.U.)	8.5
Partial Mix Factors	Unknown – Calculated by TMS
Complete Mix Times	
Q ₇₋₁₀ (min)	
Q _h (min)	
Stream Inputs	
Receiving Surface Water	Grassy Run
Number of Reaches to Model	1
Stream Code	041891
RMI	1.65
Elevation (ft)	894/893*
Drainage Area (mi ²)	4.49
Slope (ft/ft)	
PWS Withdrawal (MGD)	0.504
Apply Fish Criteria	Yes
Low Flow Yield (cfs/mi ²)	
Flows	
Stream (cfs)	0.0501
Tributary (cfs)	N/A
Width (ft)	
Stream Hardness (mg/L)	
Stream pH (S.U.)	

* Denotes discharge location/downstream location values.

Table 6 below, is a summary of the recommendations of the TMS at Outfall 101. Analysis Report from the TMS run is included in Attachment B.

Table 6: TMS Model WQBELs

Parameter	Mass Load (lbs/day)		Concentration Limit (ug/L)	
	Average Monthly	Maximum Daily	Average Monthly	Maximum Daily
Total Zinc	0.18	0.28	0.48	0.74
Dissolved Iron	Report	Report	Report	Report
Total Copper	0.004	0.006	148	231
Total Cadmium	0.0001	0.0002	4.08	6.36
Total Antimony	Report	Report	Report	Report

Total Dissolved Solids (TDS)

The Total Dissolved Solids (TDS) concentration at Outfall 101 is 110 mg/L . Per *Policy and Procedure for NPDES Permitting of Discharges of Total Dissolved Solids (TDS)* – 25 Pa. Code §95.10 (DEP-ID: 385-2100-002), a monitoring requirement for TDS for any discharge that exceeds 1,000 mg/L TDS should be applied at minimum. Since the TDS discharge concentration is below 1,000 mg/L , no monitoring/limit requirements will be applied for TDS or its constituent parameters.

Total Residual Chlorine (TRC)

To determine if WQBELs are required for discharges containing Total Residual Chlorine, a discharge evaluation is performed using a DEP program called TRC_CALC created with Microsoft Excel for Windows. TRC_CALC calculates TRC Waste Load Allocations (WLAs) through the application of a mass balance model which considers TRC losses due to stream and discharge chlorine demands and first-order chlorine decay. Input values for the program include flow rates and chlorine demands for the receiving stream and the discharge, the number of samples taken per month, coefficients of TRC variability, partial mix factors, and an optional factor of safety. The mass balance model calculates WLAs for acute and chronic criteria that are then converted to long term averages using calculated multipliers. The multipliers are functions of the number of samples taken per month and the TRC variability coefficients (normally kept at default values unless site specific information is available). The most stringent limitation between the acute and chronic long-term averages is converted to an average monthly limit for comparison to the BAT average monthly limit of 0.5 mg/L from 25 Pa. Code § 92a.48(b)(2). The more stringent of these average monthly TRC limitations is imposed in the permit. The results of the modeling, included in Attachment C, indicate that WQBELs are not required for TRC. The recommended effluent limits for TRC are shown below in Table 7.

Table 7: TRC WQBELs

Parameter	Monthly Average (mg/L)	IMAX (mg/L)
Total Residual Chlorine	0.5	1.17

The previously imposed Total Residual Chlorine Effluent Limitations will be maintained (average monthly of 0.159 mg/L and IMAX of 0.373 mg/L).

Temperature Evaluation

IMP 101 discharges heated non-contact cooling wastewaters. The cooling water intake is a treated public water supply. The current permit contains a temperature limitation of 110 °F at IMP 101 for the protection of human health in accordance with the Department's temperature guidance.

The Department used the Thermal Limits Spreadsheet to evaluate the thermal impact of this discharge to Grassy Run. The spreadsheet is designed to calculate the appropriate thermal discharge limits for a facility discharging effluent above ambient temperature, assuming complete mix between the discharge flow and the receiving stream flow. The design stream flow for temperature analysis is based on the Q₇₋₁₀ flow of the receiving stream, adjusted for each monthly or semimonthly time period. The total projected discharge volume from IMP 101 (as provided in the NPDES permit application) is 0.011 MGD.

Bimonthly temperature monitoring was imposed in the current permit. The DEP Technical Guidance for the Development and Specification of Effluent Limitations (October 1997) recommends 1/month monitoring of flow, pH and temperature for non-contact discharges with flows under 20,000 GPD. Since some of the proposed temperature limits vary within the same month, the outfall will be subject to the 2/month monitoring requirements shown below in Table 8. The results of the thermal analysis are included in Attachment D of this report.

Table 8: Outfall 101 WQBELs for Temperature

Date	WWF Daily WLA (°F)
Jan 1-31	87.1
Feb 1-29	97.5
Mar 1-31	110.0
Apr 1-15	110.0
Apr 16-30	110.0
May 1-15	110.0
May 16-30	110.0
Jun 1-15	110.0
Jun 16-30	110.0
Jul 1-31	110.0
Aug 1-15	110.0
Aug 16-31	110.0
Sep 1-15	110.0
Sep 16-30	110.0
Oct 1-15	110.0
Oct 16-31	108.4
Nov 1-15	105.1
Nov 16-30	87.7
Dec 1-31	77.3

Anti-Backsliding

Section 402(o) of the Clean Water Act (CWA), enacted in the Water Quality Act of 1987, establishes anti-backsliding rules governing two situations. The first situation occurs when a permittee seeks to revise a Technology-Based effluent limitation based on BPJ to reflect a subsequently promulgated effluent guideline which is less stringent. The second situation addressed by Section 402(o) arises when a permittee seeks relaxation of an effluent limitation which is based upon a State treatment standard of water quality standard.

Previous limits can be used pursuant to EPA's anti-backsliding regulation 40 CFR 122.44 (l) Reissued permits. (1) Except as provided in paragraph (l)(2) of this section when a permit is renewed or reissued. Interim effluent limitations, standards or conditions must be at least as stringent as the final effluent limitations, standards, or conditions in the previous permit (unless the circumstances on which the previous permit was based have materially and substantially changed since the time the permit was issued and would constitute cause for permit modification or revocation and reissuance under §122.62). (2) In the case of effluent limitations established on the basis of Section 402(a)(1)(B) of the CWA, a permit may not be renewed, reissued, or modified on the basis of effluent guidelines promulgated under section 304(b) subsequent to the original issuance of such permit, to contain effluent limitations which are less stringent than the comparable effluent limitations in the previous permit.

The facility is not seeking to revise the previously permitted effluent limits of IMP101.

The current effluent limitations at Outfall 101 are summarized in Table 9.

Table 9: Current Permit Effluent Limits – IMP 101

Parameter	Mass Limits (lbs./day)		Concentration Limits (mg/L)			Monitoring Frequency
	Average Monthly	Maximum Daily	Average Monthly	Maximum Daily	Instantaneous Maximum	
Flow (MGD)	Monitor & Report		-	-	-	2/month
Free Available Chlorine	-	-	0.2	-	0.5	2/month
Temperature (°F)	-	-	-	-	-	2/month
Jan 1 - 31	-	-	-	-	87.1	
Feb 1 - 29	-	-	-	-	91.5	
Mar 1 – Sep 30	-	-	-	-	110.0	
Oct 1 - 15	-	-	-	-	110.0	
Oct 16- 31	-	-	-	-	108.4	
Nov 1 - 15	-	-	-	-	105.1	
Nov 16 – 30	-	-	-	-	87.7	
Dec 1 - 31	-	-	-	-	77.3	
Arsenic, total	-	-	0.017	0.027	-	2/month
Chromium, total	-	-	0.2	0.2	-	2/month
Zinc, total	-	-	0.283	0.441	-	2/month
Total Residual Chlorine	-	-	0.159	-	0.373	2/month
pH (S.U.)	-	-	Between 6.0 and 9.0		-	2/month

Interim Effluent Limitations and Monitoring Requirements for Outfall 101

Interim Effluent limits applicable at Outfall 101 are the more stringent of TBELs, regulatory effluent standards, previously permitted effluent limits and the monitoring requirements are summarized in Table 10.

Table 10: Proposed Effluent limits and Monitoring Requirements for IMP 101

Parameter	Mass Loading (lbs./day)		Concentration (mg/L)			Basis
	Average Monthly	Daily Maximum	Average Monthly	Daily Maximum	Instant Maximum	
Flow (MGD)	Report	Report	-	-	-	25 Pa. Code § 92a.61(d)(1)
Free Available Chlorine	-	-	0.2	-	0.5	40 CFR § 423
Temperature (°F)	-	-	-	-	-	25 Pa. Code § 93.7
Jan 1 - 31	-	-	-	-	87.1	25 Pa. Code § 93.7
Feb 1 - 29	-	-	-	-	91.5	25 Pa. Code § 93.7
Mar 1 – Sep 30	-	-	-	-	110.0	25 Pa. Code § 93.7
Oct 1 - 15	-	-	-	-	110.0	25 Pa. Code § 93.7
Oct 16- 31	-	-	-	-	108.4	25 Pa. Code § 93.7
Nov 1 - 15	-	-	-	-	105.1	25 Pa. Code § 93.7
Nov 16 – 30	-	-	-	-	87.7	25 Pa. Code § 93.7
Dec 1 - 31	-	-	-	-	77.3	25 Pa. Code § 93.7
Arsenic, total	-	-	0.017	0.027	-	25 Pa. Code § 92a.44
Chromium, total	-	-	0.2	0.2	-	40 CFR § 423
Zinc, total	-	-	0.283	0.441	-	40 CFR § 423
Total Residual Chlorine	-	-	0.159	-	0.373	25 Pa. Code § 92a.48(b)
Total Antimony	-	-	Report	Report	-	25 Pa. Code § 93.7
Total Cadmium	-	-	Report	Report	-	25 Pa. Code § 93.7
Total Copper	-	-	Report	Report	-	25 Pa. Code § 93.7
Dissolved Iron	-	-	Report	Report	-	25 Pa. Code § 93.7
pH (S.U.)	-	-	6.0 (Instant Minimum)	-	9.0	25 Pa. Code § 95.2

Final Effluent Limitations and Monitoring Requirements for Outfall 101

Final Effluent limits applicable at Outfall 101 are the more stringent of TBELs, regulatory effluent standards, previously permitted effluent limits and the monitoring requirements are summarized in Table 11.

Table 11: Proposed Effluent limits and Monitoring Requirements for IMP 101

Parameter	Mass Loading (lbs./day)		Concentration (mg/L)			Basis
	Average Monthly	Daily Maximum	Average Monthly	Daily Maximum	Instant Maximum	
Flow (MGD)	Report	Report	-	-	-	25 Pa. Code § 92a.61(d)(1)
Free Available Chlorine	-	-	0.2	-	0.5	40 CFR § 423
Temperature (°F)	-	-	-	-	-	25 Pa. Code § 93.7
Jan 1 - 31	-	-	-	-	87.1	25 Pa. Code § 93.7
Feb 1 - 29	-	-	-	-	91.5	25 Pa. Code § 93.7
Mar 1 - Sep 30	-	-	-	-	110.0	25 Pa. Code § 93.7
Oct 1 - 15	-	-	-	-	110.0	25 Pa. Code § 93.7
Oct 16- 31	-	-	-	-	108.4	25 Pa. Code § 93.7
Nov 1 - 15	-	-	-	-	105.1	25 Pa. Code § 93.7
Nov 16 - 30	-	-	-	-	87.7	25 Pa. Code § 93.7
Dec 1 - 31	-	-	-	-	77.3	25 Pa. Code § 93.7
Arsenic, total	-	-	0.017	0.027	-	25 Pa. Code § 92a.44
Chromium, total	-	-	0.2	0.2	-	40 CFR § 423
Zinc, total	-	-	0.283	0.441	-	40 CFR § 423
Total Residual Chlorine	-	-	0.159	-	0.373	25 Pa. Code § 92a.48(b)
Total Antimony(µg/L)	-	-	Report	Report	-	25 Pa. Code § 93.7
Total Cadmium(µg/L)	-	-	4.08	6.36	-	25 Pa. Code § 93.7
Total Copper(µg/L)	-	-	148	231	-	25 Pa. Code § 93.7
Dissolved Iron	-	-	Report	Report	-	25 Pa. Code § 93.7
pH (S.U.)	-	-	6.0 (Instant Minimum)	-	9.0	25 Pa. Code § 95.2

Monitoring requirements are based on the previous permits monitoring requirements for the facility are displayed in Table 12 below.

Table 12: Monitoring Requirements for IMP 101

Parameter	Sample Type	Minimum Sample Frequency
Flow (MGD)	Measured	2/month
Free Available Chlorine	Grab	2/month
Temperature (°F)	I-S	2/month
Arsenic, total	Grab	2/month
Chromium, total	Grab	2/month
Zinc, total	Grab	2/month
Total Residual Chlorine	Grab	2/month
Total Antimony	Grab	2/month
Total Cadmium	Grab	2/month
Total Copper	Grab	2/month
Dissolved Iron	Grab	2/month
pH (S.U.)	Grab	2/month

Development of Effluent Limitations

Outfall No.	201	Design Flow (MGD)	0.0007
Latitude		Longitude	
Wastewater Description:	Stormwater associated with industrial activity and low volume wastewater after treatment through an oil/ water separator.		

IMP 201 discharges stormwater runoff from diked areas around the equipment skids and oil storage tank and low volume process wastewater after treatment through an oil/ water separator.

Technology-Based Limitations

Gans Generating Facility is a simple-cycle combustion turbine generation plant and not a steam electric generating facility. While industrial activities are not reflect Federal Effluent Guidelines (ELGs), anti-backsliding and BPJ support the continued use of technology-based effluent limitation established in 40 CFR § 423 – Steam Electric Power Generating Point Source Category (NSPS).

Regulatory Effluent Standards and Monitoring Requirements

Flow monitoring is required pursuant to 25 Pa. Code § 92a.61(d)(1) as indicated in Table 10.

Effluent standards for pH pursuant to 25 Pa. Code §§ 95.2(1), as indicated in Table 13, are also imposed on all industrial wastes.

Table 13: Regulatory Effluent Standards

Parameter	Monthly Average	Daily Maximum	IMAX
Flow (MGD)	Monitor	Monitor	----
pH (S.U.)	Not less than 6.0 nor greater than 9.0 at all times		----

Best Practicable Control Technology Currently Achievable (BPT)

BPT for discharges from low volume process wastewater are subject to effluent limits in accordance with the regulations in 40 CFR § 423 – Steam Electric Power Generating Point Source Category (NSPS). The technology-based effluent limits from 40 CFR § 423.15 (a)(3) proposed at IMP 201 are listed in Table 14.

Table 14: Technology Effluent Limitations for Low Volume Waste Sources

Parameters	Average Monthly (mg/L)	Maximum Daily (mg/L)
Total Suspended Solids*	30.0	100.0
Oil and Grease	15.0	20.0
pH (S.U.)*	Between 6.0 – 9.0	

*From 40 CFR § 423.15 (a)(3)

Total Dissolved Solids (TDS)

The total dissolved solids (TDS) concentration at Outfall 201 is 85 mg/L. Per *Policy and Procedure for NPDES Permitting of Discharges of Total Dissolved Solids (TDS)* – 25 Pa. Code §95.10 (DEP-ID: 385-2100-002), a monitoring requirement for TDS for any discharge that exceeds 1,000 mg/L TDS should be applied at minimum. Since the TDS discharge concentration is below 1,000 mg/L, no monitoring/limit requirements will be applied for TDS or its constituent parameters.

Water Quality-Based Effluent Limitations (WQBELs)

Toxics Management Analysis

WQBELs are designed to protect water quality by ensuring that water quality standards are met in the receiving water. The Department's Toxics Management Spreadsheet (TMS) was utilized to facilitate calculations necessary for completing a reasonable potential analysis and determine Water Quality-Based Effluent Limitations (WQBELs) for discharges containing toxic pollutant concentrations. TMS combines the functionality of two (2) of the Department's analysis tools, Toxics Screening Analysis Spreadsheet and PENTOXSD water quality model.

DEP's procedures for evaluating reasonable potential are as follows:

3. For IW discharges, the design flow to use in modeling is the average flow during production or operation and may be taken from the permit application.
4. Perform a Toxics Screening Analysis to identify toxic pollutants of concern. All toxic pollutants, as reported in the permit application or on DMRs, are modeled by the TMS to determine the parameters of concern. [This includes pollutants reported as "Not Detectable" or as "<MDL" where the method detection limit for the analytical method used by the applicant is greater than the most stringent water quality criterion].
 - Establish limits in the draft permit where the maximum reported concentration equals or exceeds 50% of the WQBEL. Use the average monthly and maximum daily limits for the permit as recommended by TMS. Establish an IMAX limit at 2.5 times the average monthly limit.
 - For non-conservative pollutants, establish monitoring requirements where the maximum reported concentration is between 25% - 50% of the WQBEL.
 - For conservative pollutants, establish monitoring requirements where the maximum reported concentration is between 10% - 50% of the WQBEL.

The Discharge from Outfall 201 is evaluated based on concentrations reported on the application data are used as inputs into the TMS. A summary of TMS Inputs is contained in Table 15 below.

Table 15. TMS Inputs

Parameter	Value
Discharge Inputs	
Facility	Gans Power Station
Evaluation Type	Industrial
NPDES Permit No.	PA0218464
Wastewater Description	Low Volume Wastewater
Outfall ID	201
Design Flow (MGD)	0.0007
Hardness (mg/L)	610
pH (S.U.)	8.5
Partial Mix Factors	Unknown – Calculated by TMS
Complete Mix Times	
Q ₇₋₁₀ (min)	
Q _h (min)	
Stream Inputs	
Receiving Surface Water	Grassy Run
Number of Reaches to Model	1
Stream Code	041891
RMI	1.65
Elevation (ft)	894/893*
Drainage Area (mi ²)	4.49
Slope (ft/ft)	
PWS Withdrawal (MGD)	0.504
Apply Fish Criteria	Yes
Low Flow Yield (cfs/mi ²)	
Flows	
Stream (cfs)	0.0501
Tributary (cfs)	N/A
Width (ft)	
Stream Hardness (mg/L)	
Stream pH (S.U.)	

* Denotes discharge location/downstream location values.

Table 16 below, is a summary of the recommendations of the TMS at Outfall 101. Analysis Report from the TMS run is included in Attachment B.

Table 16: TMS Model WQBELs

Parameter	Mass Load (lbs/day)		Concentration Limit (ug/L)	
	Average Monthly	Maximum Daily	Average Monthly	Maximum Daily
Total Zinc	Report	Report	Report	Report
Total Cadmium	Report	Report	Report	Report
Total Copper	-	-	467	729

Anti-Backsliding

Section 402(o) of the Clean Water Act (CWA), enacted in the Water Quality Act of 1987, establishes anti-backsliding rules governing two situations. The first situation occurs when a permittee seeks to revise a Technology-Based effluent limitation based on BPJ to reflect a subsequently promulgated effluent guideline which is less stringent. The second situation addressed by Section 402(o) arises when a permittee seeks relaxation of an effluent limitation which is based upon a State treatment standard of water quality standard.

Previous limits can be used pursuant to EPA's anti-backsliding regulation 40 CFR 122.44 (l) Reissued permits. (1) Except as provided in paragraph (l)(2) of this section when a permit is renewed or reissued. Interim effluent limitations, standards or conditions must be at least as stringent as the final effluent limitations, standards, or conditions in the previous permit (unless the circumstances on which the previous permit was based have materially and substantially changed since the time the permit was issued and would constitute cause for permit modification or revocation and reissuance under §122.62). (2) In the case of effluent limitations established on the basis of Section 402(a)(1)(B) of the CWA, a permit may not be renewed, reissued, or modified on the basis of effluent guidelines promulgated under section 304(b) subsequent to the original issuance of such permit, to contain effluent limitations which are less stringent than the comparable effluent limitations in the previous permit.

The facility is not seeking to revise the previously permitted effluent limits of IMP201.

The current effluent limitations at Outfall 201 are summarized in Table 17.

Table 17: Current Permit Effluent Limits – IMP 201

Parameter	Mass Limits (lbs./day)		Concentration Limits (mg/L)			Monitoring Frequency
	Average Monthly	Maximum Daily	Average Monthly	Maximum Daily	Instantaneous Maximum	
Flow (MGD)	Report	Report	-	-	-	2/month
Total Suspended Solids	-	-	30.0	100.0	-	2/month
Oil and Grease	-	-	15.0	20.0	-	2/month
pH (S.U.)	-	-	Between 6.0 and 9.0			-

Effluent Limitations and Monitoring Requirements for Outfall 101

Interim Effluent limits applicable at Outfall 201 are the more stringent of TBELs, regulatory effluent standards, previously permitted effluent limits and the monitoring requirements are summarized in Table 18.

Table 18: Proposed Interim Effluent limits and Monitoring Requirements for IMP 101

Parameter	Mass Loading (lbs./day)		Concentration (mg/L)			Basis
	Average Monthly	Daily Maximum	Average Monthly	Daily Maximum	Instant Maximum	
Flow (MGD)	Report	Report	-	-	-	25 Pa. Code § 92a.61(d)(1)
Total Cadmium	-	-	Report	Report	-	25 Pa. Code § 93.7
Total Copper	-	-	Report	Report	-	25 Pa. Code § 93.7
Total Zinc	-	-	Report	Report	-	25 Pa. Code § 93.7
TSS	-	-	30.0	100.0	-	40 CFR § 423
Oil and Grease	-	-	15.0	20.0	-	40 CFR § 423
pH (S.U.)	-	-	6.0 (Instant Minimum)	-	9.0	40 CFR § 423

Final Effluent limits applicable at Outfall 201 are the more stringent of TBELs, regulatory effluent standards, previously permitted effluent limits and the monitoring requirements are summarized in Table 19.

Table 19: Proposed Final Effluent limits and Monitoring Requirements for IMP 101

Parameter	Mass Loading (lbs./day)		Concentration (mg/L)			Basis
	Average Monthly	Daily Maximum	Average Monthly	Daily Maximum	Instant Maximum	
Flow (MGD)	Report	Report	-	-	-	25 Pa. Code § 92a.61(d)(1)
Total Cadmium	-	-	Report	Report	-	25 Pa. Code § 93.7
Total Copper(µg/L)	-	-	467.0	729.0	-	25 Pa. Code § 93.7
Total Zinc	-	-	Report	Report	-	25 Pa. Code § 93.7
TSS	-	-	30.0	100.0	-	40 CFR § 423
Oil and Grease	-	-	15.0	20.0	-	40 CFR § 423
pH (S.U.)	-	-	6.0 (Instant Minimum)	-	9.0	40 CFR § 423

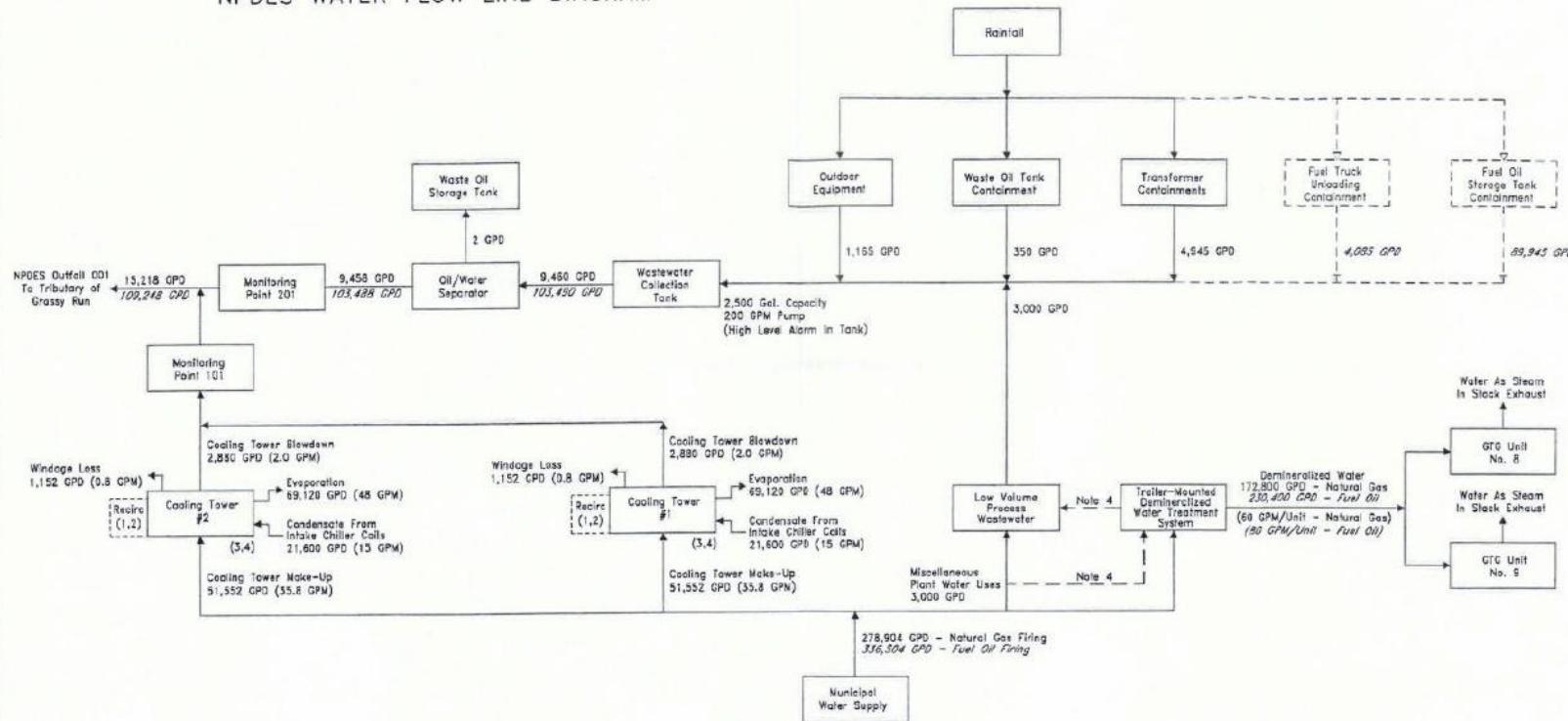
Monitoring requirements are based on the previous permits monitoring requirements for the facility are displayed in Table 20 below.

Table 20: Monitoring Requirements for IMP 101

Parameter	Sample Type	Minimum Sample Frequency
Flow (MGD)	Measured	2/month
Total Cadmium	Grab	2/month
Total Copper	Grab	2/month
Total Zinc	Grab	2/month
TSS	Grab	2/month
Oil and Grease	Grab	2/month
pH (S.U.)	Grab	2/month

Tools and References Used to Develop Permit	
<input type="checkbox"/>	WQM for Windows Model (see Attachment)
<input checked="" type="checkbox"/>	Toxics Management Spreadsheet (see Attachment B)
<input checked="" type="checkbox"/>	TRC Model Spreadsheet (see Attachment C)
<input checked="" type="checkbox"/>	Temperature Model Spreadsheet (see Attachment D)
<input type="checkbox"/>	Water Quality Toxics Management Strategy, 361-0100-003, 4/06.
<input type="checkbox"/>	Technical Guidance for the Development and Specification of Effluent Limitations, 386-0400-001, 10/97.
<input type="checkbox"/>	Policy for Permitting Surface Water Diversions, 386-2000-019, 3/98.
<input type="checkbox"/>	Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 386-2000-018, 11/96.
<input type="checkbox"/>	Technology-Based Control Requirements for Water Treatment Plant Wastes, 386-2183-001, 10/97.
<input type="checkbox"/>	Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 386-2183-002, 12/97.
<input type="checkbox"/>	Pennsylvania CSO Policy, 386-2000-002, 9/08.
<input type="checkbox"/>	Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.
<input checked="" type="checkbox"/>	Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 386-2000-008, 4/97.
<input checked="" type="checkbox"/>	Determining Water Quality-Based Effluent Limits, 386-2000-004, 12/97.
<input type="checkbox"/>	Implementation Guidance Design Conditions, 386-2000-007, 9/97.
<input type="checkbox"/>	Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 386-2000-016, 6/2004.
<input type="checkbox"/>	Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 386-2000-012, 10/1997.
<input type="checkbox"/>	Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 386-2000-009, 3/99.
<input type="checkbox"/>	Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 386-2000-015, 5/2004.
<input type="checkbox"/>	Implementation Guidance for Section 93.7 Ammonia Criteria, 386-2000-022, 11/97.
<input type="checkbox"/>	Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 386-2000-013, 4/2008.
<input checked="" type="checkbox"/>	Implementation Guidance Total Residual Chlorine (TRC) Regulation, 386-2000-011, 11/1994.
<input type="checkbox"/>	Implementation Guidance for Temperature Criteria, 386-2000-001, 4/09.
<input type="checkbox"/>	Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 386-2000-021, 10/97.
<input type="checkbox"/>	Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 386-2000-020, 10/97.
<input type="checkbox"/>	Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 386-2000-005, 3/99.
<input type="checkbox"/>	Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 386-2000-010, 3/1999.
<input type="checkbox"/>	Design Stream Flows, 386-2000-003, 9/98.
<input type="checkbox"/>	Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 386-2000-006, 10/98.
<input type="checkbox"/>	Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 386-3200-001, 6/97.
<input type="checkbox"/>	Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.
<input type="checkbox"/>	SOP:
<input type="checkbox"/>	Other:

Attachment A –Water Flow Diagram and Site Plan


Attachment B -TMS Model Output

Attachment C - TRC Model

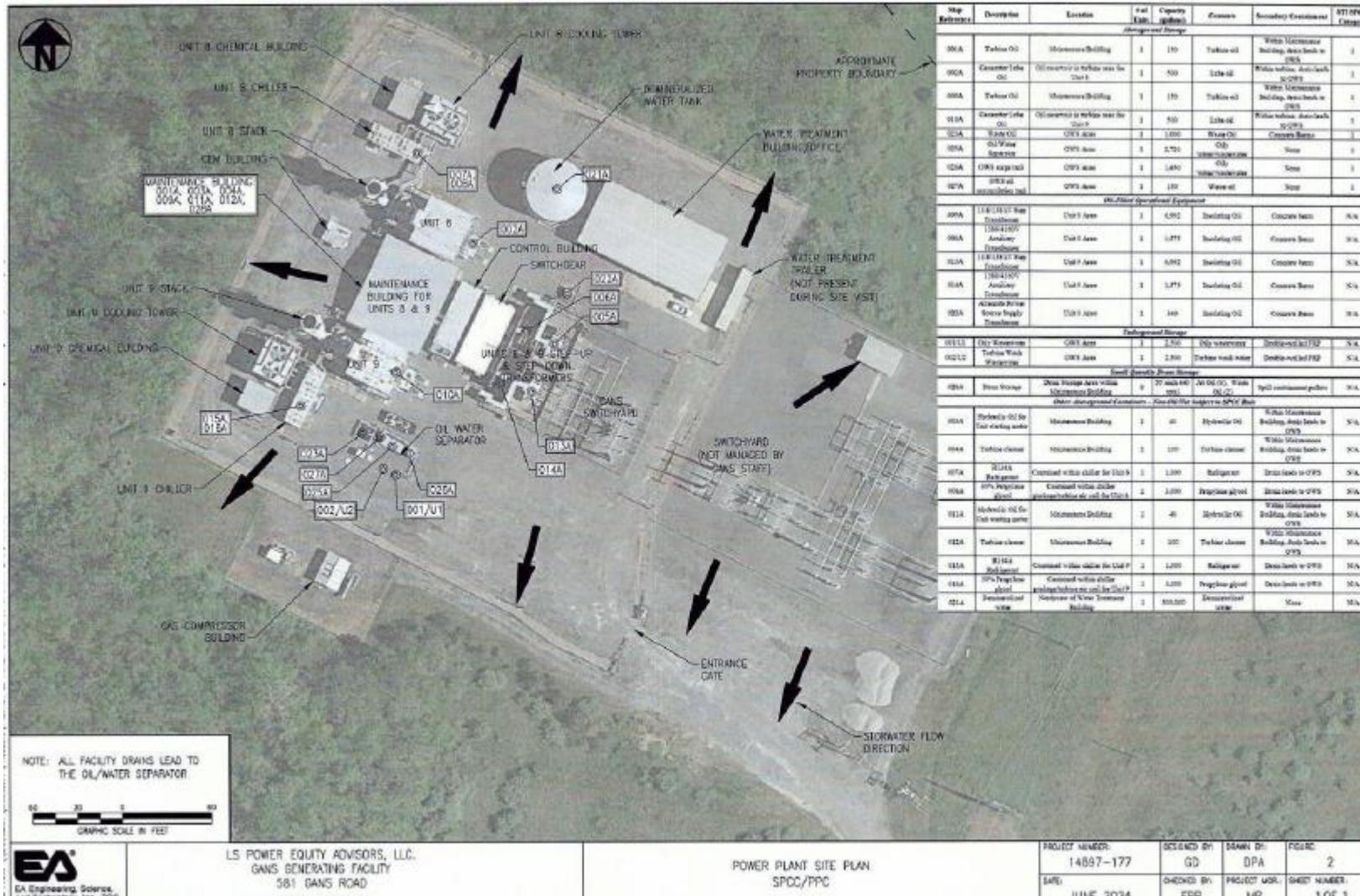
Attachment D – Thermal Model

Attachment A –Water Flow Diagram and Site Plan

NPDES WATER FLOW LINE DIAGRAM

WATER FLOW LINE DIAGRAM CHART		
CHEMICAL ADDITIVE(S)	POINT OF ADDITION	AFFECTED OUTFALL
(1) Anti-scale Additives	Cooling Tower Recirculation	101
(2) Sulfuric Acid	Cooling Tower Recirculation	101
(3) Microbiocide	Cooling Tower Basins	101
(4) Deionizer	Cooling Tower Basins	101

NOTES:


- Estimates are based on 10-year, 24-hr. rainfall of 3.9 inches.
- Flows shown in Oil/Water Separator System are maximum design flows. Normal flows may be less.
- Fuel Oil Tank, Unloading area and associated containment structures have not been constructed.
- Approximately 1,000 gallons only when trailers are unloading.

DATE	PERIOD	TIME	SPREAD SHEET
07/20/2005	07/20/2005	07:00 AM	NPDES Water Flow Line Diagram
Gans Units 8 & 9			
July 2005			
SPREAD SHEET	PERIOD	TIME	SPREAD SHEET
07/20/2005	07/20/2005	07:00 AM	C62203625 A

NPDES Permit Fact Sheet Gans Power Station

NPDES Permit No. PA0218464

Attachment B -TMS Model Output
IMP 101
IMP201

IMP 101

Discharge Information

Instructions **Discharge** Stream

Facility: **Gans Power Station** NPDES Permit No.: **PA0218464** Outfall No.: **101**

Evaluation Type: **Major Sewage / Industrial Waste** Wastewater Description: **NCCW**

Discharge Characteristics									
Design Flow (MGD)*	Hardness (mg/l)*	pH (SU)*	Partial Mix Factors (PMFs)				Complete Mix Times (min)		
			AFC	CFC	THH	CRL	Q ₇₋₁₀	Q _h	
0.0033	710	8.5							

			0 if left blank		0.5 if left blank		0 if left blank		1 if left blank		Group 1
Discharge Pollutant		Units	Max Discharge Conc	Trib Conc	Stream Conc	Daily CV	Hourly CV	Stream CV	Fate Coeff	FOS	Criteria Mod
Total Dissolved Solids (PWS)	mg/L		110								
Chloride (PWS)	mg/L		188								
Bromide	mg/L	<	1								
Sulfate (PWS)	mg/L		704								
Fluoride (PWS)	mg/L		3.55								
Total Aluminum	µg/L		79								Group 2
Total Antimony	µg/L		9.9								
Total Arsenic	µg/L	<	5								
Total Barium	µg/L		400								
Total Beryllium	µg/L	<	1								
Total Boron	µg/L		500								
Total Cadmium	µg/L	<	2.4								
Total Chromium (III)	µg/L	<	5								
Hexavalent Chromium	µg/L	<									
Total Cobalt	µg/L	<	0.86								
Total Copper	µg/L		800								
Free Cyanide	µg/L										
Total Cyanide	µg/L	<									
Dissolved Iron	µg/L		790								
Total Iron	µg/L		1400								
Total Lead	µg/L	<	1								
Total Manganese	µg/L		93								
Total Mercury	µg/L	<	0.2								
Total Nickel	µg/L		5.9								
Total Phenols (Phenolics) (PWS)	µg/L	<	9.3								
Total Selenium	µg/L	<	5								
Total Silver	µg/L	<	1								
Total Thallium	µg/L	<	1								
Total Zinc	mg/L		1600								
Total Molybdenum	µg/L		340								
Acrolein	µg/L	<									
Acrylamide	µg/L	<									
Acrylonitrile	µg/L	<									
Benzene	µg/L	<									
Bromoform	µg/L										

Carbon Tetrachloride	µg/L	<									
Chlorobenzene	µg/L	<									
Chlorodibromomethane	µg/L	<									
Chloroethane	µg/L	<									
2-Chloroethyl Vinyl Ether	µg/L	<									
Chloroform	µg/L										
Dichlorobromomethane	µg/L	<									
1,1-Dichloroethane	µg/L	<									
1,2-Dichloroethane	µg/L	<									
1,1-Dichloroethylene	µg/L	<									
1,2-Dichloropropane	µg/L	<									
1,3-Dichloropropylene	µg/L	<									
1,4-Dioxane	µg/L	<									
Ethylbenzene	µg/L	<									
Methyl Bromide	µg/L	<									
Methyl Chloride	µg/L	<									
Methylene Chloride	µg/L	<									
1,1,2,2-Tetrachloroethane	µg/L	<									
Tetrachloroethylene	µg/L	<									
Toluene	µg/L	<									
1,2-trans-Dichloroethylene	µg/L	<									
1,1,1-Trichloroethane	µg/L	<									
1,1,2-Trichloroethane	µg/L	<									
Trichloroethylene	µg/L	<									
Vinyl Chloride	µg/L	<									
2-Chlorophenol	µg/L	<									
2,4-Dichlorophenol	µg/L	<									
2,4-Dimethylphenol	µg/L	<									
4,6-Dinitro-o-Cresol	µg/L	<									
2,4-Dinitrophenol	µg/L	<									
2-Nitrophenol	µg/L	<									
4-Nitrophenol	µg/L	<									
p-Chloro-m-Cresol	µg/L	<									
Pentachlorophenol	µg/L	<									
Phenol	µg/L	<									
2,4,6-Trichlorophenol	µg/L	<									
Acenaphthene	µg/L	<									
Acenaphthylene	µg/L	<									
Anthracene	µg/L	<									
Benzidine	µg/L	<									
Benzo(a)Anthracene	µg/L	<									
Benzo(a)Pyrene	µg/L	<									
3,4-Benzofluoranthene	µg/L	<									
Benzo(ghi)Perylene	µg/L	<									
Benzo(k)Fluoranthene	µg/L	<									
Bis(2-Chloroethoxy)Methane	µg/L	<									
Bis(2-Chloroethyl)Ether	µg/L	<									
Bis(2-Chloroisopropyl)Ether	µg/L	<									
Bis(2-Ethylhexyl)Phthalate	µg/L	<									
4-Bromophenyl Phenyl Ether	µg/L	<									
Butyl Benzyl Phthalate	µg/L	<									
2-Chloronaphthalene	µg/L	<									
4-Chlorophenyl Phenyl Ether	µg/L	<									
Chrysene	µg/L	<									
Dibenzo(a,h)Anthracene	µg/L	<									
1,2-Dichlorobenzene	µg/L	<									
1,3-Dichlorobenzene	µg/L	<									
1,4-Dichlorobenzene	µg/L	<									
3,3-Dichlorobenzidine	µg/L	<									
Diethyl Phthalate	µg/L	<									
Dimethyl Phthalate	µg/L	<									
Di-n-Butyl Phthalate	µg/L	<									
2,4-Dinitrotoluene	µg/L	<									

Stream / Surface Water Information

Gans Power Station, NPDES Permit No. PA0218464, Outfall 101

Instructions **Discharge** Stream

Receiving Surface Water Name: Gassy Run

No. Reaches to Model: 1

Statewide Criteria
 Great Lakes Criteria
 ORSANCO Criteria

Location	Stream Code*	RMI*	Elevation (ft)*	DA (mi ²)*	Slope (ft/ft)	PWS Withdrawal (MGD)	Apply Fish Criteria*
Point of Discharge	041891	1.65	894	4.49			Yes
End of Reach 1	041891	1	893	4.5			Yes

*Q*₇₋₁₀

Location	RMI	LFY (cfs/mi ²)*	Flow (cfs)		W/D Ratio	Width (ft)	Depth (ft)	Velocity (fps)	Travel Time (days)	Tributary		Stream		Analysis	
			Stream	Tributary						Hardness	pH	Hardness*	pH*	Hardness	pH
Point of Discharge	1.65	0.1	0.0501		10							100	7		
End of Reach 1	1	0.1	0.0501		10										

*Q*_h

Location	RMI	LFY (cfs/mi ²)*	Flow (cfs)		W/D Ratio	Width (ft)	Depth (ft)	Velocity (fps)	Travel Time (days)	Tributary		Stream		Analysis	
			Stream	Tributary						Hardness	pH	Hardness*	pH*	Hardness	pH
Point of Discharge	1.65														
End of Reach 1	1														

Model Results

Gans Power Station, NPDES Permit No. PA0218464, Outfall 101

Instructions	Results	RETURN TO INPUTS	SAVE AS PDF	PRINT	<input checked="" type="radio"/> All	<input type="radio"/> Inputs	<input type="radio"/> Results	<input type="radio"/> Limits
------------------------------	-------------------------	----------------------------------	-----------------------------	-----------------------	--------------------------------------	------------------------------	-------------------------------	------------------------------

Hydrodynamics

Q₇₋₁₀

RMI	Stream Flow (cfs)	PWS Withdrawal (cfs)	Net Stream Flow (cfs)	Discharge Analysis Flow (cfs)	Slope (ft/ft)	Depth (ft)	Width (ft)	W/D Ratio	Velocity (fps)	Travel Time (days)	Complete Mix Time (min)
1.65	0.05		0.05	0.005	0.00029	0.364	3.645	10.	0.024	1.687	3.993
1	0.05		0.05						10.000		

Q_h

RMI	Stream Flow (cfs)	PWS Withdrawal (cfs)	Net Stream Flow (cfs)	Discharge Analysis Flow (cfs)	Slope (ft/ft)	Depth (ft)	Width (ft)	W/D Ratio	Velocity (fps)	Travel Time (days)	Complete Mix Time (min)
1.65	0.54		0.54	0.005	0.00029	1.001	3.645	3.643	0.085	0.467	1.046
1	0.543		0.54								

Wasteload Allocations

AFC CCT (min): PMF: Analysis Hardness (mg/l): Analysis pH:

Pollutants	Stream Conc (µg/L)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A	
Chloride (PWS)	0	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
Fluoride (PWS)	0	0		0	N/A	N/A	N/A	
Total Aluminum	0	0		0	750	750	8,110	
Total Antimony	0	0		0	1,100	1,100	11,895	
Total Arsenic	0	0		0	340	340	3,677	Chem Translator of 1 applied
Total Barium	0	0		0	21,000	21,000	227,088	
Total Boron	0	0		0	8,100	8,100	87,591	
Total Cadmium	0	0		0	3,110	3.36	36.3	Chem Translator of 0.925 applied
Total Chromium (III)	0	0		0	821.858	2,601	28,124	Chem Translator of 0.316 applied
Total Cobalt	0	0		0	95	95.0	1,027	
Total Copper	0	0		0	20,484	21.3	231	Chem Translator of 0.96 applied
Dissolved Iron	0	0		0	N/A	N/A	N/A	

 GFG

CCT (min): 3.993

PMF:

Analysis Hardness (mg/l): **156.41**

Analysis pH:

Pollutants	Stream Conc (µg/L)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A	

 THH

CCT (min):

PMF:

Analysis Hardness (mg/l):

N/A

Analysis pH:

✓ CRL

CCT (min):

PMF:

Analysis Hardness (mg/l):

N/A

Analysis pH:

Pollutants	Stream Conc (µg/L)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A	
Chloride (PWS)	0	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
Fluoride (PWS)	0	0		0	N/A	N/A	N/A	
Total Aluminum	0	0		0	N/A	N/A	N/A	
Total Antimony	0	0		0	N/A	N/A	N/A	
Total Arsenic	0	0		0	N/A	N/A	N/A	
Total Barium	0	0		0	N/A	N/A	N/A	

Recommended WQBELs & Monitoring Requirements

No. Samples/Month: 4

Other Pollutants without Limits or Monitoring

The following pollutants do not require effluent limits or monitoring based on water quality because reasonable potential to exceed water quality criteria was not determined and the discharge concentration was less than thresholds for monitoring, or the pollutant was not detected and a sufficiently sensitive analytical method was used (e.g., \leq Target QL).

Pollutants	Governing WQBEL	Units	Comments
Total Dissolved Solids (PWS)	N/A	N/A	PWS Not Applicable
Chloride (PWS)	N/A	N/A	PWS Not Applicable
Bromide	N/A	N/A	No WQS
Sulfate (PWS)	N/A	N/A	PWS Not Applicable
Fluoride (PWS)	N/A	N/A	PWS Not Applicable
Total Aluminum	5,198	µg/L	Discharge Conc ≤ 10% WQBEL
Total Arsenic	108	µg/L	Discharge Conc ≤ 10% WQBEL
Total Barium	25,953	µg/L	Discharge Conc ≤ 10% WQBEL
Total Beryllium	N/A	N/A	No WQS
Total Boron	17,302	µg/L	Discharge Conc ≤ 10% WQBEL

IMP 201

Discharge Information

Instructions **Discharge** Stream

Facility: Gans Power Station NPDES Permit No.: PA0218464 Outfall No.: 201

Evaluation Type: Major Sewage / Industrial Waste Wastewater Description: Low Volume Wastewater

Discharge Characteristics									
Design Flow (MGD)*	Hardness (mg/l)*	pH (SU)*	Partial Mix Factors (PMFs)				Complete Mix Times (min)		
			AFC	CFC	THH	CRL	Q ₇₋₁₀	Q _h	
0.0007	610	8.5							

			0 if left blank		0.5 if left blank		0 if left blank		1 if left blank			
Discharge Pollutant		Units	Max Discharge Conc	Trib Conc	Stream Conc	Daily CV	Hourly CV	Stream CV	Fate Coeff	FOS	Criteria Mod	Chem Transl
Group 1	Total Dissolved Solids (PWS)	mg/L	940									
	Chloride (PWS)	mg/L	138									
	Bromide	mg/L	< 0.1									
	Sulfate (PWS)	mg/L	379									
	Fluoride (PWS)	mg/L	3.17									
Group 2	Total Aluminum	µg/L	55									
	Total Antimony	µg/L	0.3									
	Total Arsenic	µg/L	< 1.9									
	Total Barium	µg/L	310									
	Total Beryllium	µg/L	< 1									
	Total Boron	µg/L	200									
	Total Cadmium	µg/L	< 1.7									
	Total Chromium (III)	µg/L										
	Hexavalent Chromium	µg/L	<									
	Total Cobalt	µg/L	< 0.22									
	Total Copper	µg/L	570									
	Free Cyanide	µg/L										
	Total Cyanide	µg/L	< 0.01									
	Dissolved Iron	µg/L	790									
	Total Iron	µg/L	1100									
	Total Lead	µg/L	< 1									
	Total Manganese	µg/L	73									
	Total Mercury	µg/L	< 0.2									
	Total Nickel	µg/L	3.8									
	Total Phenols (Phenolics) (PWS)	µg/L	< 0.01									
	Total Selenium	µg/L	< 3.2									
	Total Silver	µg/L	< 1									
	Total Thallium	µg/L	< 1									
	Total Zinc	µg/L	1400									
	Total Molybdenum	µg/L	340									
	Acrolein	µg/L	<									
	Acrylamide	µg/L	<									
	Acrylonitrile	µg/L	<									
	Benzene	µg/L	<									
	Bromoform	µg/L										

Group 3	Carbon Tetrachloride	µg/L	<										
	Chlorobenzene	µg/L	<										
	Chlorodibromomethane	µg/L	<										
	Chloroethane	µg/L	<										
	2-Chloroethyl Vinyl Ether	µg/L	<										
	Chloroform	µg/L											
	Dichlorobromomethane	µg/L	<										
	1,1-Dichloroethane	µg/L	<										
	1,2-Dichloroethane	µg/L	<										
	1,1-Dichloroethylene	µg/L	<										
	1,2-Dichloropropane	µg/L	<										
	1,3-Dichloropropylene	µg/L	<										
	1,4-Dioxane	µg/L	<										
	Ethylbenzene	µg/L	<										
	Methyl Bromide	µg/L	<										
	Methyl Chloride	µg/L	<										
	Methylene Chloride	µg/L	<										
	1,1,2,2-Tetrachloroethane	µg/L	<										
	Tetrachloroethylene	µg/L	<										
	Toluene	µg/L	<										
	1,2-trans-Dichloroethylene	µg/L	<										
	1,1,1-Trichloroethane	µg/L	<										
	1,1,2-Trichloroethane	µg/L	<										
	Trichloroethylene	µg/L	<										
	Vinyl Chloride	µg/L	<										
Group 4	2-Chlorophenol	µg/L	<										
	2,4-Dichlorophenol	µg/L	<										
	2,4-Dimethylphenol	µg/L	<										
	4,6-Dinitro-o-Cresol	µg/L	<										
	2,4-Dinitrophenol	µg/L	<										
	2-Nitrophenol	µg/L	<										
	4-Nitrophenol	µg/L	<										
	p-Chloro-m-Cresol	µg/L	<										
	Pentachlorophenol	µg/L	<										
	Phenol	µg/L	<										
Group 5	2,4,6-Trichlorophenol	µg/L	<										
	Acenaphthene	µg/L	<										
	Acenaphthylene	µg/L	<										
	Anthracene	µg/L	<										
	Benzidine	µg/L	<										
	Benzo(a)Anthracene	µg/L	<										
	Benzo(a)Pyrene	µg/L	<										
	3,4-Benzoifluoranthene	µg/L	<										
	Benzo(ghi)Perylene	µg/L	<										
	Benzo(k)Fluoranthene	µg/L	<										
	Bis(2-Chloroethoxy)Methane	µg/L	<										
	Bis(2-Chloroethyl)Ether	µg/L	<										
	Bis(2-Chloroisopropyl)Ether	µg/L	<										
	Bis(2-Ethylhexyl)Phthalate	µg/L	<										
	4-Bromophenyl Phenyl Ether	µg/L	<										
	Butyl Benzyl Phthalate	µg/L	<										
	2-Chloronaphthalene	µg/L	<										
	4-Chlorophenyl Phenyl Ether	µg/L	<										
	Chrysene	µg/L	<										
	Dibenzo(a,h)Anthracene	µg/L	<										
	1,2-Dichlorobenzene	µg/L	<										
	1,3-Dichlorobenzene	µg/L	<										
	1,4-Dichlorobenzene	µg/L	<										
	3,3-Dichlorobenzidine	µg/L	<										
	Diethyl Phthalate	µg/L	<										
	Dimethyl Phthalate	µg/L	<										
	Di-n-Butyl Phthalate	µg/L	<										
	2,4-Dinitrotoluene	µg/L	<										

Stream / Surface Water Information

Gans Power Station, NPDES Permit No. PA0218464, Outfall 201

Instructions **Discharge** Stream

Receiving Surface Water Name: **Gassy Run**

No. Reaches to Model: **1**

- Statewide Criteria
- Great Lakes Criteria
- ORSANCO Criteria

Location	Stream Code*	RMI*	Elevation (ft)*	DA (mi ²)*	Slope (ft/ft)	PWS Withdrawal (MGD)	Apply Fish Criteria*
Point of Discharge	041891	1.65	894	4.49			Yes
End of Reach 1	041891	1	893	4.5			Yes

Q₇₋₁₀

Location	RMI	LFY (cfs/mi ²)*	Flow (cfs)		W/D Ratio	Width (ft)	Depth (ft)	Velocity (fps)	Travel Time (days)	Tributary		Stream		Analysis	
			Stream	Tributary						Hardness	pH	Hardness*	pH*	Hardness	pH
Point of Discharge	1.65	0.1	0.0501		10							100	7		
End of Reach 1	1	0.1	0.0501		10										

Q_h

Location	RMI	LFY (cfs/mi ²)*	Flow (cfs)		W/D Ratio	Width (ft)	Depth (ft)	Velocity (fps)	Travel Time (days)	Tributary		Stream		Analysis	
			Stream	Tributary						Hardness	pH	Hardness*	pH*	Hardness	pH
Point of Discharge	1.65														
End of Reach 1	1														

Model Results

Gans Power Station, NPDES Permit No. PA0218464, Outfall 201

<input checked="" type="checkbox"/> Instructions	<input checked="" type="checkbox"/> Results	RETURN TO INPUTS	SAVE AS PDF	PRINT	<input checked="" type="radio"/> All	<input type="radio"/> Inputs	<input type="radio"/> Results	<input type="radio"/> Limits
--	---	----------------------------------	-----------------------------	-----------------------	--------------------------------------	------------------------------	-------------------------------	------------------------------

Hydrodynamics

Q₇₋₁₀

RMI	Stream Flow (cfs)	PWS Withdrawal (cfs)	Net Stream Flow (cfs)	Discharge Analysis Flow (cfs)	Slope (ft/ft)	Depth (ft)	Width (ft)	W/D Ratio	Velocity (fps)	Travel Time (days)	Complete Mix Time (min)
1.65	0.05		0.05	0.001	0.00029	0.36	3.604	10.	0.023	1.76	4.619
1	0.05		0.05					10.000			

Q_h

RMI	Stream Flow (cfs)	PWS Withdrawal (cfs)	Net Stream Flow (cfs)	Discharge Analysis Flow (cfs)	Slope (ft/ft)	Depth (ft)	Width (ft)	W/D Ratio	Velocity (fps)	Travel Time (days)	Complete Mix Time (min)
1.65	0.54		0.54	0.001	0.00029	1.02	3.604	3.535	0.085	0.468	1.009
1	0.543		0.54								

Wasteload Allocations

AFC

CCT (min): **4.619**

PMF: **1**

Analysis Hardness (mg/l): **110.79**

Analysis pH: **7.01**

Pollutants	Stream Conc (mg/L)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A	
Chloride (PWS)	0	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
Fluoride (PWS)	0	0		0	N/A	N/A	N/A	
Total Aluminum	0	0		0	750	750	35,448	
Total Antimony	0	0		0	1,100	1,100	51,991	
Total Arsenic	0	0		0	340	340	16,070	Chem Translator of 1 applied
Total Barium	0	0		0	21,000	21,000	992,558	
Total Boron	0	0		0	8,100	8,100	382,844	
Total Cadmium	0	0		0	2.225	2.37	112	Chem Translator of 0.94 applied
Total Cobalt	0	0		0	95	95.0	4,490	
Total Copper	0	0		0	14.801	15.4	729	Chem Translator of 0.96 applied
Dissolved Iron	0	0		0	N/A	N/A	N/A	
Total Iron	0	0		0	N/A	N/A	N/A	

 CFG

CCT (min):

PMF:

Analysis Hardness (mg/l):

Analysis pH:

Pollutants	Stream Conc (µg/L)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A	

THH

CCT (min): **4.619**

PMF:

Analysis Hardness (mg/l):

N/A

Analysis pH:

N/A

✓ CRL

CCT (min):

PMF:

Analysis Hardness (mg/l):

N/A

Analysis pH:

Pollutants	Stream Conc (µg/L)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A	
Chloride (PWS)	0	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
Fluoride (PWS)	0	0		0	N/A	N/A	N/A	
Total Aluminum	0	0		0	N/A	N/A	N/A	
Total Antimony	0	0		0	N/A	N/A	N/A	
Total Arsenic	0	0		0	N/A	N/A	N/A	
Total Barium	0	0		0	N/A	N/A	N/A	

Recommended WQBELs & Monitoring Requirements

No. Samples/Month:

Other Pollutants without Limits or Monitoring

The following pollutants do not require effluent limits or monitoring based on water quality because reasonable potential to exceed water quality criteria was not determined and the discharge concentration was less than thresholds for monitoring, or the pollutant was not detected and a sufficiently sensitive analytical method was used (e.g., <= Target QL).

Pollutants	Governing WQBEL	Units	Comments
Total Dissolved Solids (PWS)	N/A	N/A	PWS Not Applicable
Chloride (PWS)	N/A	N/A	PWS Not Applicable
Bromide	N/A	N/A	No WQS
Sulfate (PWS)	N/A	N/A	PWS Not Applicable
Fluoride (PWS)	N/A	N/A	PWS Not Applicable
Total Aluminum	22,721	µg/L	Discharge Conc ≤ 10% WQBEL
Total Antimony	265	µg/L	Discharge Conc ≤ 10% WQBEL
Total Arsenic	N/A	N/A	Discharge Conc < TQL
Total Barium	113,435	µg/L	Discharge Conc ≤ 10% WQBEL
Total Beryllium	N/A	N/A	No WQS

Attachment C - TRC Model

TRC EVALUATION - IMP101

0.0501	= Q stream (cfs)	0.5	= CV Daily
0.0033	= Q discharge (MGD)	0.5	= CV Hourly
4	= no. samples	1	= AFC_Partial Mix Factor
0.3	= Chlorine Demand of Stream	1	= CFC_Partial Mix Factor
0	= Chlorine Demand of Discharge	0	= AFC_Criteria Compliance Time (min)
0.5	= BAT/BPJ Value	0	= CFC_Criteria Compliance Time (min)
	= % Factor of Safety (FOS)		=Decay Coefficient (K)
Source	Reference	AFC Calculations	Reference
TRC	1.3.2.iii	WLA_afc = 3.150	1.3.2.iii
PENTOXSD TRG	5.1a	LTAMULT_afc = 0.373	5.1c
PENTOXSD TRG	5.1b	LTA_afc= 1.174	5.1d
Source	Effluent Limit Calculations		
PENTOXSD TRG	5.1f	AML MULT = 1.720	
PENTOXSD TRG	5.1g	AVG MON LIMIT (mg/l) = 0.500	BAT/BPJ
		INST MAX LIMIT (mg/l) = 1.170	
WLA_afc		$(.019/e(-k*AFC_tc)) + [(AFC_Yc*Qs*.019/Qd*e(-k*AFC_tc))...$ $... + Xd + (AFC_Yc*Qs*Xs/Qd)]*(1-FOS/100)$	
LTAMULT_afc		$EXP((0.5*LN(cvh^2+1))-2.326*LN(cvh^2+1)^0.5)$	
LTA_afc		wla_afc*LTAMULT_afc	
WLA_cfc		$(.011/e(-k*CFC_tc)) + [(CFC_Yc*Qs*.011/Qd*e(-k*CFC_tc))...$ $... + Xd + (CFC_Yc*Qs*Xs/Qd)]*(1-FOS/100)$	
LTAMULT_cfc		$EXP((0.5*LN(cvd^2/no_samples+1))-2.326*LN(cvd^2/no_samples+1)^0.5)$	
LTA_cfc		wla_cfc*LTAMULT_cfc	
AML MULT		$EXP(2.326*LN((cvd^2/no_samples+1)^0.5)-0.5*LN(cvd^2/no_samples+1))$	
AVG MON LIMIT		$MIN(BAT_BPJ,MIN(LTA_afc,LTA_cfc)*AML_MULT)$	
INST MAX LIMIT		$1.5*((av_mon_limit/AML_MULT)/LTAMULT_afc)$	

Attachment D – Thermal Model

Instructions

Inputs

Facility: Gans Power Station

Permit No.: PA0218464

Stream Name: Grassy Run

Analyst/Engineer: Curt Holes

Stream Q7-10 (cfs)*: 0.1

Outfall No.: 001

Analysis Type*: WWF

Facility Flows

Semi-Monthly Increment	Intake (Stream) (MGD)*	Intake (External) (MGD)*	Consumptive Loss (MGD)*	Discharge Flow (MGD)
Jan 1-31		0.011		0.011
Feb 1-29		0.011		0.011
Mar 1-31		0.011		0.011
Apr 1-15		0.011		0.011
Apr 16-30		0.011		0.011
May 1-15		0.011		0.011
May 16-31		0.011		0.011
Jun 1-15		0.011		0.011
Jun 16-30		0.011		0.011
Jul 1-31		0.011		0.011
Aug 1-15		0.011		0.011
Aug 16-31		0.011		0.011
Sep 1-15		0.011		0.011
Sep 16-30		0.011		0.011
Oct 1-15		0.011		0.011
Oct 16-31		0.011		0.011
Nov 1-15		0.011		0.011
Nov 16-30		0.011		0.011
Dec 1-31		0.011		0.011

Stream Flows

Q7-10 Multipliers (Default Shown)	PMF	Seasonal Stream Flow (cfs)	Downstream Stream Flow (cfs)
3.2	1.00	0.16	0.18
3.5	1.00	0.18	0.19
7	1.00	0.35	0.37
9.3	1.00	0.47	0.48
9.3	1.00	0.47	0.48
5.1	1.00	0.26	0.27
5.1	1.00	0.26	0.27
3	1.00	0.15	0.17
3	1.00	0.15	0.17
1.7	1.00	0.09	0.10
1.4	1.00	0.07	0.09
1.4	1.00	0.07	0.09
1.1	1.00	0.06	0.07
1.1	1.00	0.06	0.07
1.2	1.00	0.06	0.08
1.2	1.00	0.06	0.08
1.6	1.00	0.08	0.10
1.6	1.00	0.08	0.10
2.4	1.00	0.12	0.14

Instructions **WWF Results**

Recommended Limits for Case 1 or Case 2

Semi-Monthly Increment	WWF Target Maximum Stream Temp. (°F)	Case 1 Daily WLA (Million BTUs/day)	Case 2 Daily WLA (°F)
Jan 1-31	40	N/A -- Case 2	87.1
Feb 1-29	40	N/A -- Case 2	91.5
Mar 1-31	46	N/A -- Case 2	110.0
Apr 1-15	52	N/A -- Case 2	110.0
Apr 16-30	58	N/A -- Case 2	110.0
May 1-15	64	N/A -- Case 2	110.0
May 16-31	72	N/A -- Case 2	110.0
Jun 1-15	80	N/A -- Case 2	110.0
Jun 16-30	84	N/A -- Case 2	110.0
Jul 1-31	87	N/A -- Case 2	110.0
Aug 1-15	87	N/A -- Case 2	110.0
Aug 16-31	87	N/A -- Case 2	110.0
Sep 1-15	84	N/A -- Case 2	110.0
Sep 16-30	78	N/A -- Case 2	110.0
Oct 1-15	72	N/A -- Case 2	110.0
Oct 16-31	66	N/A -- Case 2	108.4
Nov 1-15	58	N/A -- Case 2	105.1
Nov 16-30	50	N/A -- Case 2	87.7
Dec 1-31	42	N/A -- Case 2	77.3