

Application Type
Facility Type
Major / Minor

Renewal
Municipal
Minor

Application No. PA0218651
APS ID 1059423
Authorization ID 1389513

**NPDES PERMIT FACT SHEET
INDIVIDUAL SEWAGE**

Applicant and Facility Information

Indiana County Municipal Service Authority		Facility Name	Armagh STP
Applicant Name	602 Kolter Drive	Facility Address	10985 Rt 56 E
Applicant Address	Indiana, PA 15701	Facility Contact	Armagh, PA 15920
Applicant Contact	Tricia Lefko	Facility Phone	(724) 349-6640
Applicant Phone	(724) 349-6640	Site ID	539617
Client ID	38534	Municipality	East Wheatfield Township
Ch 94 Load Status	Not Overloaded	County	Indiana
Connection Status	No Prohibitions	EPA Waived?	Yes
Date Application Received	<u>March 18, 2022</u>	If No, Reason	-
Date Application Accepted	<u>March 25, 2022</u>		
Purpose of Application	Renewal of NPDES permit.		

Summary of Review

The applicant is requesting the renewal of an NPDES permit to discharge up to 0.11 MGD of treated sewage into Mardis Run, a Cold-Water Fish (CWF) receiving stream in State Water Plan Basin 18-D (Conemaugh River – Blacklick Creek). As per the Department's current existing use list, the receiving stream does not have an existing use classification that is more protective than its designated use. This discharge is not expected to affect public water supplies.

All limitations and monitoring requirements from the previously issued permit (effective November 1, 2017) are carried over in this renewal and summarized in Appendix A of this fact sheet.

The discharge was modeled with DEP's WQM 7.0 and Toxics Management Spreadsheet (TMS). For water quality modeling inputs, drainage areas were delineated using USGS's StreamStats interactive map, RMIs were obtained using the historic streams feature of DEP's eMapPA and the "measure" tool, and elevations were obtained using the elevation profile feature of StreamStats. Since there's no nearby representative stream gages with current data, the statewide default low flow yield (LFY) of 0.1 cfs/mi² was used to generate low flow data. Modeling data is summarized in Appendix B of this fact sheet.

WQM 7.0 did not recommend more stringent limitations for Ammonia-N, CBOD₅, or Dissolved Oxygen (DO). The TMS made the recommendations below.

- Total Aluminum: The most recent annual sample result for Total Aluminum in eDMR was 0.17 mg/L and the calculated governing WQBEL is 1.11 mg/L. Since the discharge concentration is greater than 10% of the WQBEL, monitoring/reporting requirements were recommended. Annual monitoring/reporting is continued in this renewal for Total Aluminum.
- Total Copper: The sample result provided for Total Copper in the renewal application was 0.0101 mg/L and the calculated governing WQBEL is 0.021 mg/L. Since the discharge concentration is greater than 10% of the WQBEL,

Approve	Deny	Signatures	Date
X		 Brian Burden, E.I.T. / Project Manager	February 11, 2025
X		Adam Olesnanik Adam Olesnanik, P.E. / Program Manager	February 19, 2025

Summary of Review

monitoring/reporting requirements were recommended. Annual monitoring/reporting is added to the permit for Total Copper.

- Total Lead: The sample result provided for Total Lead in the renewal application was non-detect using an analytical QL of 0.008 mg/L and the calculated governing WQBEL is 0.007 mg/L. Since the QL is greater than DEP's target QL of 0.001 mg/L, the discharge concentration was assumed to be 0.008 mg/L and limitations were recommended. The permittee may resample Total Lead at DEP's target QL during the draft permit public comment period to either modify or remove the weekly monitoring requirements / limitations for Total Lead. Three additional samples of Total Lead taken at least one week apart are required to remodel the discharge. If Total Lead isn't detected in the effluent when using DEP's target QL to analyze the samples, then it's not considered present in the discharge and the water quality limitations may be removed from the final permit. It's unknown if the permittee will be able to meet the new limitations, therefore, a compliance schedule is included in the permit with yearly milestones (see Part C.III). The limitations will come into effect three years after the permit effective date and monitoring requirements are included until then. Additionally, if it is determined that the WQBELs for Total Lead are no longer required based on the sampling during the Draft Permit Comment Period, then Part C.III. may also be removed from the Final Permit.
- Total Zinc: The sample result provided for Total Zinc in the renewal application was 0.0531 mg/L and the calculated governing WQBEL is 0.18 mg/L. Since the discharge concentration is greater than 10% of the WQBEL, monitoring/reporting requirements were recommended. Annual monitoring/reporting is added to the permit for Total Zinc.

Sample results were provided with the renewal application for the public water supply sensitive pollutants (TDS, Bromide, Chloride and Sulfate). Since the nearest downstream public water supply intake is approximately 67 miles downstream on the Allegheny River, there was no need to model the discharge with the water supply intake as the second modeling point due to the distance and large dilution available.

Monitoring frequencies for all parameters with limitations are consistent with the recommended frequencies found in Table 6-3 of DEP's Technical Guidance for the Development and Specification of Effluent Limitations (Document No. 362-0400-001).

The facility utilizes ultraviolet (UV) radiation for disinfection and the requirement to monitor daily UV transmittance is continued in this renewal. The permittee shall monitor TRC in the effluent each day chlorine is utilized for backup disinfection, cleaning, or other purposes (See Part C.I.D.).

Annual monitoring/reporting requirements for Total Nitrogen and Total Phosphorus are carried over from the previous renewal as well as weekly monitoring reporting for influent BOD₅ and TSS. As per current DEP guidance, quarterly monitoring/reporting requirements are included in the renewed permit for E. Coli.

The receiving stream is part of the TMDLs for Streams Impaired by Acid Mine Drainage in the Kiskiminetas-Conemaugh River Watershed, Pennsylvania (approved 1/29/2010). There are no wasteload allocations (WLAs) assigned to this facility. The contribution of metals from this STP as reported in eDMR are less than water quality criteria in the TMDL (see Appendix C of fact sheet). Annual monitoring/reporting is continued in this renewal for Total Aluminum, Total Iron, and Total Manganese.

The most recently submitted Chapter 94 report for the 2023 operating year doesn't show any current or projected hydraulic/organic overloads at the WWTP. There are no open WPC NPDES violations for the client that would warrant withholding issuance of the final permit.

Template Part C special conditions are carried over in this renewal. The following non-template Part C.I.E. special condition is carried over from the previous renewal:

The permittee shall not accept hauled-in wastes at the treatment facility under the following conditions, unless otherwise approved by DEP in writing:

- *When acceptance of hauled-in wastes would cause a hydraulic or organic overload as defined in Chapter 94.1 of the DEP's regulations.*

Summary of Review

- *When the treatment facility is considered to be in an existing hydraulic or organic overload condition, as determined by the permittee or DEP, as defined in Chapter 94.1 of the DEP's regulations.*
- *When the instantaneous flow at the treatment facility exceeds 0.33 MGD (the Chapter 94 hydraulic design capacity of the facility multiplied by a peaking factor of three), and for 24 hours following exceedance of this threshold.*

Sludge use and disposal description and location(s): The most recently submitted Sewage Sludge / Biosolids Production and Disposal supplemental DMR form that documents sludge removed from the facility (October 2024 – 1.051 dry tons) indicates it's hauled to the ICMSA Creekside STP and compost unit.

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Discharge, Receiving Waters and Water Supply Information			
Outfall No.	001	Design Flow (MGD)	0.11
Latitude	40° 27' 47"	Longitude	-79° 2' 10"
Quad Name	New Florence	Quad Code	1513
Wastewater Description:	Sewage Effluent		
Receiving Waters	Mardis Run	Stream Code	44465
NHD Com ID	123721937	RMI	1.1
Drainage Area	2.22 mi ²	Yield (cfs/mi ²)	0.1
Q ₇₋₁₀ Flow (cfs)	0.22	Q ₇₋₁₀ Basis	Statewide default LFY
Elevation (ft)	1457	Slope (ft/ft)	0.028
Watershed No.	18-D	Chapter 93 Class.	CWF
Existing Use	-	Existing Use Qualifier	-
Exceptions to Use	-	Exceptions to Criteria	-
Assessment Status	Attaining Use(s)		
Cause(s) of Impairment	-		
Source(s) of Impairment	-		
TMDL Status	Final	Name	Kiskiminetas-Conemaugh River Watersheds TMDL
Background/Ambient Data		Data Source	
pH (SU)	7	Default assumption	
Temperature (°F)	20	Default assumption	
Hardness (mg/L)	100	Default assumption	
Nearest Downstream Public Water Supply Intake	Buffalo Township Municipal Authority (1,250,000 safe yield)		
PWS Waters	Allegheny River	Flow at Intake (cfs)	-
PWS RMI	311	Distance from Outfall (mi)	~67.5

Treatment Facility Summary				
Treatment Facility Name: Armagh STP				
WQM Permit No.	Issuance Date			
3200405	7/20/2001			
Waste Type	Degree of Treatment	Process Type	Disinfection	Avg Annual Flow (MGD)
Sewage	Secondary	Aeration	UV	0.11
Hydraulic Capacity (MGD)	Organic Capacity (lbs/day)	Load Status	Biosolids Treatment	Biosolids Use/Disposal
0.11	240	Not Overloaded	Aerobic Digestion	Hauled

Development of Effluent Limitations

Outfall No. 001
Latitude 40° 27' 47"
Wastewater Description: Sewage Effluent

Design Flow (MGD) 0.11
Longitude -79° 2' 10"

Technology-Based & BPJ Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Pollutant	Limit (mg/l)	SBC	Federal Regulation	State Regulation
CBOD ₅	25.0 - (22.9 lbs/day)	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
	38.0 - (34.9 lbs/day)	Average Weekly	BPJ	BPJ
	50.0	IMAX	-	-
Total Suspended Solids	30.0 - (27.5 lbs/day)	Average Monthly	133.102(b)(1)	92a.47(a)(1)
	45.0 - (41.3 lbs/day)	Average Weekly	133.102(b)(2)	92a.47(a)(2)
	60.0	IMAX	-	-
pH	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform (5/1 – 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform (10/1 – 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
	10,000 / 100 ml	IMAX	-	92a.47(a)(5)

Water Quality-Based Limitations

The following limitations were determined through water quality modeling:

Parameter	Limit (mg/l)	SBC	Model
Dissolved Oxygen	6.0	Minimum	2000 WQAM6.3
Ammonia-N (5/1 – 10/31)	3.0 - (2.8 lbs/day)	Average Monthly	
	4.5 - (4.1 lbs/day)	Average Weekly	
	6.0	IMAX	
Ammonia-N (11/1 – 4/30)	8.5 - (7.8 lbs/day)	Average Monthly	2000 WQAM6.3
	12.8 - (11.7 lbs/day)	Average Weekly	
	17.0	IMAX	
Total Lead	0.007	Average Monthly	2025 TMS
	0.011	Daily Maximum	

Comments: The Total Lead limitations may be removed from the final permit depending on the resampling results (if the permittee chooses to resample during the draft permit public comment period).

Anti-Backsliding

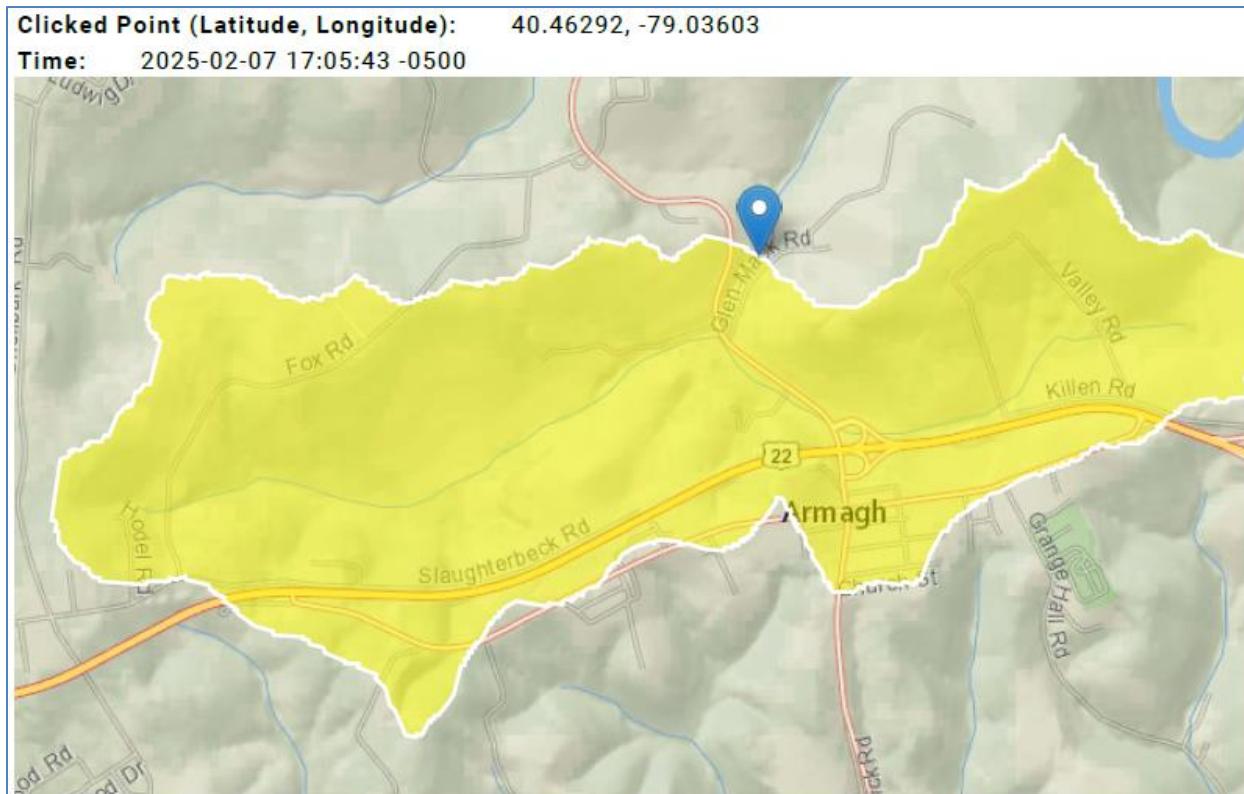
No limitations were removed from the permit or made less stringent.

Appendix A

Requirements from Previous Permit

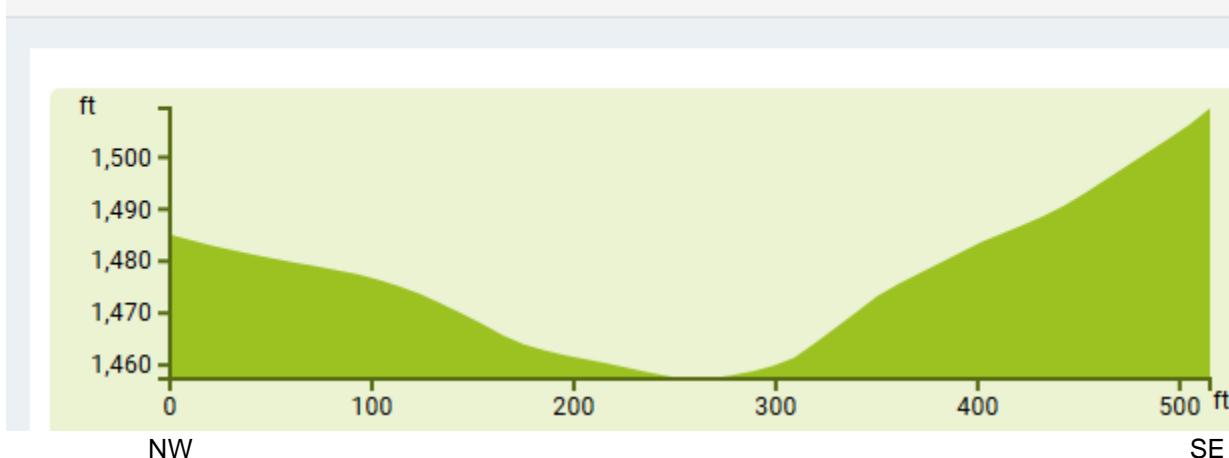
Parameter	Effluent Limitations						Monitoring Requirements	
	Mass Units (lbs/day) ⁽¹⁾		Concentrations (mg/L)				Minimum ⁽²⁾ Measurement Frequency	Required Sample Type
	Average Monthly	Weekly Average	Instant. Minimum	Average Monthly	Weekly Average	Instant. Maximum		
Flow (MGD)	Report	Report	XXX	XXX	XXX	XXX	Continuous	Recorded
pH (S.U.)	XXX	XXX	6.0	XXX	XXX	9.0	1/day	Grab
Dissolved Oxygen	XXX	XXX	6.0	XXX	XXX	XXX	1/day	Grab
Carbonaceous Biochemical Oxygen Demand (CBOD5)	22.9	34.9	XXX	25.0	38.0	50.0	1/week	8-Hr Composite
Biochemical Oxygen Demand (BOD5)								8-Hr Composite
Raw Sewage Influent	Report	Report	XXX	Report	Report	XXX	1/week	8-Hr Composite
Total Suspended Solids	27.5	41.3	XXX	30.0	45.0	60.0	1/week	8-Hr Composite
Total Suspended Solids Raw Sewage Influent	Report	Report	XXX	Report	Report	XXX	1/week	8-Hr Composite
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	2,000 Geo Mean	XXX	10,000	1/week	Grab
Fecal Coliform (No./100 ml) May 1 - Sep 30	XXX	XXX	XXX	200 Geo Mean	XXX	1,000	1/week	Grab
Ultraviolet light transmittance (%)	XXX	XXX	XXX	Report	XXX	XXX	1/day	Measured
Ammonia-Nitrogen Nov 1 - Apr 30	7.8	11.7	XXX	8.5	12.8	17.0	1/week	8-Hr Composite
Ammonia-Nitrogen May 1 - Oct 31	2.8	4.1	XXX	3.0	4.5	6.0	1/week	8-Hr Composite
Total Nitrogen	XXX	XXX	XXX	XXX	Report Daily Max	XXX	1/year	8-Hr Composite
Total Phosphorus	XXX	XXX	XXX	XXX	Report Daily Max	XXX	1/year	8-Hr Composite
Aluminum, Total	XXX	XXX	XXX	XXX	Report Daily Max	XXX	1/year	8-Hr Composite
Iron, Total	XXX	XXX	XXX	XXX	Report Daily Max	XXX	1/year	8-Hr Composite
Manganese, Total	XXX	XXX	XXX	XXX	Report Daily Max	XXX	1/year	8-Hr Composite

New Requirements

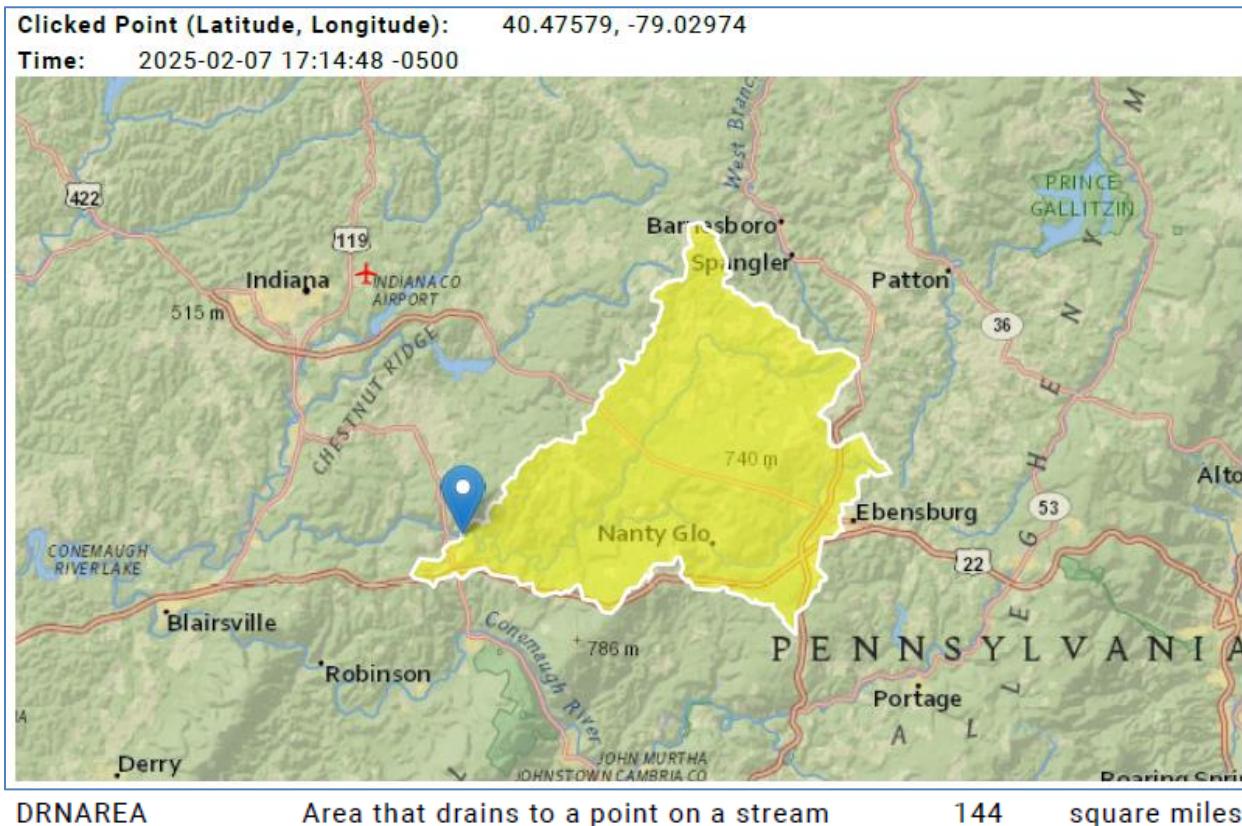

Parameter	Effluent Limitations						Monitoring Requirements	
	Mass Units (lbs/day) ⁽¹⁾		Concentrations (mg/L)				Minimum ⁽²⁾ Measurement Frequency	Required Sample Type
	Average Monthly	Weekly Average	Instant. Minimum	Average Monthly	Weekly Average	Instant. Maximum		
Copper, Total	XXX	XXX	XXX	XXX	Report Daily Max	XXX	1/year	8-Hr Composite
Zinc, Total	XXX	XXX	XXX	XXX	Report Daily Max	XXX	1/year	8-Hr Composite
Lead, Total	0.006	0.010 Daily Max	XXX	0.007	0.011 Daily Max	XXX	1/week	8-Hr Composite
E. Coli (No./100 ml)	XXX	XXX	XXX	XXX	XXX	Report	1/quarter	Grab

Appendix B

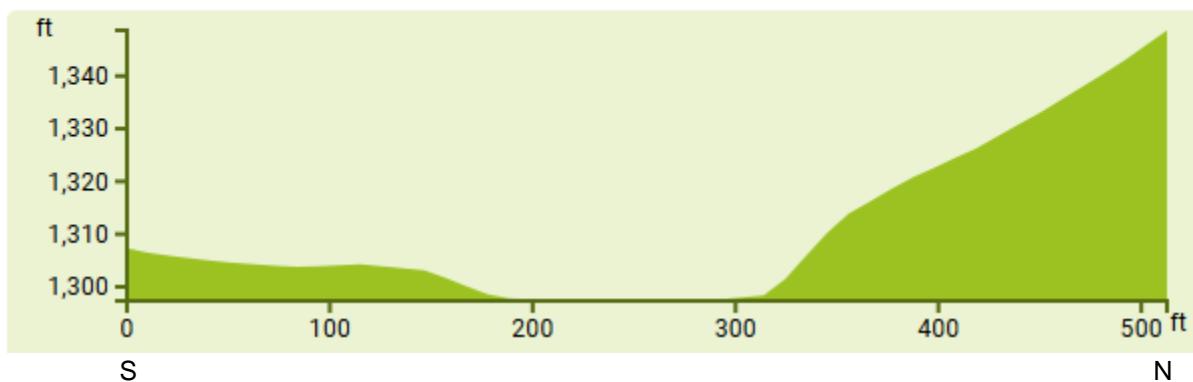
Watershed Information


@ Outfall 001 on Mardis Run (stream code 44465)

RMI = 1.1


Elevation: 1457 ft

Elevation profile



@ confluence with Blacklick Creek

RMI = 0

Elevation profile

WQM 7.0 Modeling

Input Data WQM 7.0

SWP Basin	Stream Code	Stream Name		RMI	Elevation (ft)	Drainage Area (sq mi)	Slope (ft/ft)	PWS Withdrawal (mgd)	Apply FC			
18D	44465 MARDIS RUN			1.100	1457.00	2.22	0.00000	0.00		<input checked="" type="checkbox"/>		
Stream Data												
Design Cond.	LFY (cfsm)	Trib Flow (cfs)	Stream Flow (cfs)	Rch Trav Time (days)	Rch Velocity (fps)	WD Ratio (ft)	Rch Width (ft)	Tributary Temp (°C)	Stream pH (°C)	Temp pH		
Q7-10	0.100	0.00	0.00	0.000	0.000	0.0	0.00	0.00	20.00	7.00		
Q1-10		0.00	0.00	0.000	0.000							
Q30-10		0.00	0.00	0.000	0.000							
Discharge Data												
	Name	Permit Number		Existing Disc Flow (mgd)	Permitted Disc Flow (mgd)	Design Disc Flow (mgd)	Reserve Factor	Disc Temp (°C)	Disc pH			
	Armagh	PA0218651		0.1100	0.1100	0.1100	0.000	25.00	7.00			
Parameter Data												
	Parameter Name			Disc Conc (mg/L)	Trib Conc (mg/L)	Stream Conc (mg/L)	Fate Coef (1/days)					
	CBOD5			25.00	2.00	0.00	1.50					
	Dissolved Oxygen			3.00	8.24	0.00	0.00					
	NH3-N			25.00	0.00	0.00	0.70					

Input Data WQM 7.0

Design Cond.	SWP Basin	Stream Code	Stream Name			RMI	Elevation (ft)	Drainage Area (sq mi)	Slope (ft/ft)	PWS Withdrawal (mgd)	Apply FC	
			18D	44465	MARDIS RUN							
Stream Data												
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time (days)	Rch Velocity (fps)	WD Ratio	Rch Width (ft)	Rch Depth (ft)	Tributary Temp (°C)	pH	Stream Temp (°C)	pH
	(cfs/m)	(cfs)	(cfs)									
Q7-10	0.100	0.00	0.00	0.000	0.000	0.0	0.00	0.00	20.00	7.00	0.00	0.00
Q1-10		0.00	0.00	0.000	0.000							
Q30-10		0.00	0.00	0.000	0.000							
Discharge Data												
	Name	Permit Number	Existing Disc Flow (mgd)	Permitted Disc Flow (mgd)	Design Disc Flow (mgd)	Reserve Factor	Disc Temp (°C)	Disc pH				
			0.0000	0.0000	0.0000	0.000	25.00	7.00				
Parameter Data												
	Parameter Name		Disc Conc (mg/L)	Trib Conc (mg/L)	Stream Conc (mg/L)	Fate Coef (1/days)						
	CBOD5		25.00	2.00	0.00	1.50						
	Dissolved Oxygen		3.00	8.24	0.00	0.00						
	NH3-N		25.00	0.00	0.00	0.70						

WQM 7.0 Hydrodynamic Outputs

<u>SWP Basin</u>		<u>Stream Code</u>		<u>Stream Name</u>									
18D		44465		MARDIS RUN									
RMI	Stream Flow	PWS With	Net Stream Flow (cfs)	Disc Analysis Flow (cfs)	Reach Slope	Depth	Width	W/D Ratio	Velocity (fps)	Reach Trav Time (days)	Analysis Temp (°C)	Analysis pH	
	(cfs)	(cfs)											

Q7-10 Flow

1.100 0.22 0.00 0.22 .1702 0.02780 .447 7.28 16.28 0.12 0.554 22.17 7.00

Q1-10 Flow

1.100 0.14 0.00 0.14 .1702 0.02780 NA NA NA 0.11 0.629 22.72 7.00

Q30-10 Flow

1.100 0.30 0.00 0.30 .1702 0.02780 NA NA NA 0.13 0.499 21.80 7.00

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	<input checked="" type="checkbox"/>
WLA Method	EMPR	Use Inputted W/D Ratio	<input type="checkbox"/>
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	<input type="checkbox"/>
Q30-10/Q7-10 Ratio	1.36	Temperature Adjust Kr	<input checked="" type="checkbox"/>
D.O. Saturation	90.00%	Use Balanced Technology	<input checked="" type="checkbox"/>
D.O. Goal	5		

WQM 7.0 Wasteload Allocations

<u>SWP Basin</u>	<u>Stream Code</u>	<u>Stream Name</u>
18D	44465	MARDIS RUN

NH3-N Acute Allocations

RMI	Discharge Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
1.100 Armagh		7.95	14.58	7.95	14.58	0	0

NH3-N Chronic Allocations

RMI	Discharge Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
1.100 Armagh		1.68	4.67	1.68	4.67	0	0

Dissolved Oxygen Allocations

RMI	Discharge Name	CBOD5		NH3-N		Dissolved Oxygen		Critical Reach	Percent Reduction
		Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)		
1.10 Armagh		25	25	4.67	4.67	3	3	0	0

WQM 7.0 D.O.Simulation

<u>SWP Basin</u>	<u>Stream Code</u>	<u>Stream Name</u>		
18D	44465	MARDIS RUN		
<u>RMI</u>	<u>Total Discharge Flow (mgd)</u>	<u>Analysis Temperature (°C)</u>	<u>Analysis pH</u>	
1.100	0.110	22.170	7.000	
<u>Reach Width (ft)</u>	<u>Reach Depth (ft)</u>	<u>Reach WDRatio</u>	<u>Reach Velocity (fps)</u>	
7.283	0.447	16.277	0.120	
<u>Reach CBOD5 (mg/L)</u>	<u>Reach Kc (1/days)</u>	<u>Reach NH3-N (mg/L)</u>	<u>Reach Kn (1/days)</u>	
11.98	1.283	2.03	0.827	
<u>Reach DO (mg/L)</u>	<u>Reach Kr (1/days)</u>	<u>Kr Equation</u>	<u>Reach DO Goal (mg/L)</u>	
5.968	24.480	Owens	5	
<u>Reach Travel Time (days)</u>	<u>Subreach Results</u>			
0.554	TravTime (days)	CBOD5 (mg/L)	NH3-N (mg/L)	D.O. (mg/L)
	0.055	11.08	1.94	7.11
	0.111	10.24	1.85	7.47
	0.166	9.47	1.77	7.62
	0.221	8.75	1.69	7.72
	0.277	8.09	1.61	7.80
	0.332	7.48	1.54	7.87
	0.387	6.92	1.47	7.92
	0.443	6.40	1.40	7.92
	0.498	5.91	1.34	7.92
	0.554	5.47	1.28	7.92

WQM 7.0 Effluent Limits

<u>SWP Basin</u>	<u>Stream Code</u>	<u>Stream Name</u>		
18D	44465	MARDIS RUN		
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter
1.100	Armagh	PA0218651	0.110	CBOD5
				NH3-N
				Dissolved Oxygen
				25
				4.67
				9.34
				3

TMS Modeling

Toxics Management Spreadsheet
Version 1.4, May 2023

Discharge Information

Instructions **Discharge** Stream

Facility: Armagh STP NPDES Permit No.: PA0218651 Outfall No.: 001

Evaluation Type: Major Sewage / Industrial Waste Wastewater Description: Treated sewage

Design Flow (MGD)*	Hardness (mg/l)*	pH (SU)*	Partial Mix Factors (PMFs)				Complete Mix Times (min)	
			AFC	CFC	THH	CRL	Q ₇₋₉₀	Q _h
0.11	100	7						

	Discharge Pollutant	Units	Max Discharge Concentration	0 if left blank		0.5 if left blank		0 if left blank		1 if left blank	
				Tributary Concentration	Stream Concentration	Daily CV	Hourly CV	Stream CV	Fate Coeff	FO8	Critical Mod
Group 1	Total Dissolved Solids (PWS)	mg/L	408								
	Chloride (PWS)	mg/L	76.5								
	Bromide	mg/L	< 0.4								
	Sulfate (PWS)	mg/L	27.2								
	Fluoride (PWS)	mg/L									
Group 2	Total Aluminum	mg/L	0.17								
	Total Antimony	ug/L									
	Total Arsenic	ug/L									
	Total Barium	ug/L									
	Total Beryllium	ug/L									
	Total Boron	ug/L									
	Total Cadmium	ug/L									
	Total Chromium (III)	ug/L									
	Hexavalent Chromium	ug/L									
	Total Cobalt	ug/L									
	Total Copper	mg/L	0.0101								
	Free Cyanide	ug/L									
	Total Cyanide	ug/L									
	Dissolved Iron	ug/L									
	Total Iron	mg/L	< 0.2								
	Total Lead	mg/L	< 0.008								
	Total Manganese	ug/L	0.0406								
	Total Mercury	ug/L									
	Total Nickel	ug/L									
	Total Phenols (Phenolics) (PWS)	ug/L									
	Total Selenium	ug/L									
	Total Silver	ug/L									
	Total Thallium	ug/L									
	Total Zinc	mg/L	0.0531								
	Total Molybdenum	ug/L									
	Acrolein	ug/L	<								
	Acrylamide	ug/L	<								
	Acrylonitrile	ug/L	<								
	Benzene	ug/L	<								
	Bromoform	ug/L	<								

Group 3	Carbon Tetrachloride	ug/L	<									
	Chlorobenzene	ug/L										
	Chlorodibromomethane	ug/L	<									
	Chloroethane	ug/L	<									
	2-Chloroethyl Vinyl Ether	ug/L	<									
	Chloroform	ug/L	<									
	Dichlorobromomethane	ug/L	<									
	1,1-Dichloroethane	ug/L	<									
	1,2-Dichloroethane	ug/L	<									
	1,1-Dichloroethylene	ug/L	<									
	1,2-Dichloropropane	ug/L	<									
	1,3-Dichloropropylene	ug/L	<									
	1,4-Dioxane	ug/L	<									
	Ethylbenzene	ug/L	<									
	Methyl Bromide	ug/L	<									
	Methyl Chloride	ug/L	<									
	Methylene Chloride	ug/L	<									
	1,1,2,2-Tetrachloroethane	ug/L	<									
	Tetrachloroethylene	ug/L	<									
	Toluene	ug/L	<									
	1,2-trans-Dichloroethylene	ug/L	<									
	1,1,1-Trichloroethane	ug/L	<									
	1,1,2-Trichloroethane	ug/L	<									
	Trichloroethylene	ug/L	<									
	Vinyl Chloride	ug/L	<									
Group 4	2-Chlorophenol	ug/L	<									
	2,4-Dichlorophenol	ug/L	<									
	2,4-Dimethylphenol	ug/L	<									
	4,6-Dinitro-o-Cresol	ug/L	<									
	2,4-Dinitrophenol	ug/L	<									
	2-Nitrophenol	ug/L	<									
	4-Nitrophenol	ug/L	<									
	p-Chloro-m-Cresol	ug/L	<									
	Pentachlorophenol	ug/L	<									
	Phenol	ug/L	<									
	2,4,6-Trichlorophenol	ug/L	<									
	Acenaphthene	ug/L	<									
	Acenaphthylene	ug/L	<									
	Anthracene	ug/L	<									
Group 5	Benzidine	ug/L	<									
	Benzo(a)Anthracene	ug/L	<									
	Benzo(a)Pyrene	ug/L	<									
	3,4-Benzoquinanthrene	ug/L	<									
	Benzo(gh)Perylene	ug/L	<									
	Benzo(k)Fluoranthene	ug/L	<									
	Bis(2-Chloroethoxy)Methane	ug/L	<									
	Bis(2-Chloroethyl)Ether	ug/L	<									
	Bis(2-Chloroisopropyl)Ether	ug/L	<									
	Bis(2-Ethylhexyl)Phthalate	ug/L	<									
	4-Bromophenyl Phenyl Ether	ug/L	<									
	Butyl Benzyl Phthalate	ug/L	<									
	2-Chloronaphthalene	ug/L	<									
	4-Chlorophenyl Phenyl Ether	ug/L	<									
	Chrysene	ug/L	<									
Group 6	Dibenz(a,h)Anthracene	ug/L	<									
	1,2-Dichlorobenzene	ug/L	<									
	1,3-Dichlorobenzene	ug/L	<									
	1,4-Dichlorobenzene	ug/L	<									
	3,3-Dichlorobenzidine	ug/L	<									
	Diethyl Phthalate	ug/L	<									
	Dimethyl Phthalate	ug/L	<									

Stream / Surface Water Information

Armagh STP, NPDES Permit No. PA0218651, Outfall 001

Instructions **Discharge** Stream

Receiving Surface Water Name: **Mardis Run**

No. Reaches to Model: **1**

Statewide Criteria
 Great Lakes Criteria
 ORSANCO Criteria

Location	Stream Code*	RMI*	Elevation (ft)*	DA (mi ²)*	Slope (ft/ft)	PWS Withdrawal (MGD)	Apply Fish Criteria*
Point of Discharge	044465	1.1	1457	2.22			Yes
End of Reach 1	044465	0	1297	144			Yes

Q₇₋₁₀

Location	RMI	LFY (cfs/mi ²)*	Flow (cfs)		W/D Ratio	Width (ft)	Depth (ft)	Velocity (fps)	Travel Time (days)	Tributary		Stream		Analysis	
			Stream	Tributary						Hardness	pH	Hardness*	pH*	Hardness	pH
Point of Discharge	1.1	0.1										100	7		
End of Reach 1	0	0.1													

Q_h

Location	RMI	LFY (cfs/mi ²)*	Flow (cfs)		W/D Ratio	Width (ft)	Depth (ft)	Velocity (fps)	Travel Time (days)	Tributary		Stream		Analysis	
			Stream	Tributary						Hardness	pH	Hardness*	pH*	Hardness	pH
Point of Discharge	1.1														
End of Reach 1	0														

Model Results

Armagh STP, NPDES Permit No. PA0218651, Outfall 001

Instructions		Results		RETURN TO INPUTS		SAVE AS PDF		PRINT		<input checked="" type="radio"/> All	<input type="radio"/> Inputs	<input type="radio"/> Results	<input type="radio"/> Limits																																																																																																																																												
<input type="checkbox"/> Hydrodynamics																																																																																																																																																									
<input checked="" type="checkbox"/> Wasteload Allocations																																																																																																																																																									
<input checked="" type="checkbox"/> AFC		CCT (min): 0.471		PMF: 1		Analysis Hardness (mg/l): 100		Analysis pH: 7.00																																																																																																																																																	
<table border="1"> <thead> <tr> <th>Pollutants</th> <th>Stream Conc (µg/L)</th> <th>Stream CV</th> <th>Trb Conc (µg/L)</th> <th>Fate Coef</th> <th>WQC (µg/L)</th> <th>WQ Obj (µg/L)</th> <th>WLA (µg/L)</th> <th colspan="6">Comments</th> </tr> </thead> <tbody> <tr> <td>Total Dissolved Solids (PWS)</td> <td>0</td> <td>0</td> <td></td> <td>0</td> <td>N/A</td> <td>N/A</td> <td>N/A</td> <td colspan="6"></td> </tr> <tr> <td>Chloride (PWS)</td> <td>0</td> <td>0</td> <td></td> <td>0</td> <td>N/A</td> <td>N/A</td> <td>N/A</td> <td colspan="6"></td> </tr> <tr> <td>Sulfate (PWS)</td> <td>0</td> <td>0</td> <td></td> <td>0</td> <td>N/A</td> <td>N/A</td> <td>N/A</td> <td colspan="6"></td> </tr> <tr> <td>Total Aluminum</td> <td>0</td> <td>0</td> <td></td> <td>0</td> <td>750</td> <td>750</td> <td>1,728</td> <td colspan="6"></td> </tr> <tr> <td>Total Copper</td> <td>0</td> <td>0</td> <td></td> <td>0</td> <td>13,439</td> <td>14.0</td> <td>32.3</td> <td colspan="6">Chem Translator of 0.96 applied</td> </tr> <tr> <td>Total Iron</td> <td>0</td> <td>0</td> <td></td> <td>0</td> <td>N/A</td> <td>N/A</td> <td>N/A</td> <td colspan="6"></td> </tr> <tr> <td>Total Lead</td> <td>0</td> <td>0</td> <td></td> <td>0</td> <td>64.581</td> <td>81.6</td> <td>188</td> <td colspan="6">Chem Translator of 0.791 applied</td> </tr> <tr> <td>Total Manganese</td> <td>0</td> <td>0</td> <td></td> <td>0</td> <td>N/A</td> <td>N/A</td> <td>N/A</td> <td colspan="6"></td> </tr> <tr> <td>Total Zinc</td> <td>0</td> <td>0</td> <td></td> <td>0</td> <td>117.180</td> <td>120</td> <td>276</td> <td colspan="6">Chem Translator of 0.978 applied</td> </tr> </tbody> </table>														Pollutants	Stream Conc (µg/L)	Stream CV	Trb Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments						Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A							Chloride (PWS)	0	0		0	N/A	N/A	N/A							Sulfate (PWS)	0	0		0	N/A	N/A	N/A							Total Aluminum	0	0		0	750	750	1,728							Total Copper	0	0		0	13,439	14.0	32.3	Chem Translator of 0.96 applied						Total Iron	0	0		0	N/A	N/A	N/A							Total Lead	0	0		0	64.581	81.6	188	Chem Translator of 0.791 applied						Total Manganese	0	0		0	N/A	N/A	N/A							Total Zinc	0	0		0	117.180	120	276	Chem Translator of 0.978 applied					
Pollutants	Stream Conc (µg/L)	Stream CV	Trb Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments																																																																																																																																																	
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A																																																																																																																																																		
Chloride (PWS)	0	0		0	N/A	N/A	N/A																																																																																																																																																		
Sulfate (PWS)	0	0		0	N/A	N/A	N/A																																																																																																																																																		
Total Aluminum	0	0		0	750	750	1,728																																																																																																																																																		
Total Copper	0	0		0	13,439	14.0	32.3	Chem Translator of 0.96 applied																																																																																																																																																	
Total Iron	0	0		0	N/A	N/A	N/A																																																																																																																																																		
Total Lead	0	0		0	64.581	81.6	188	Chem Translator of 0.791 applied																																																																																																																																																	
Total Manganese	0	0		0	N/A	N/A	N/A																																																																																																																																																		
Total Zinc	0	0		0	117.180	120	276	Chem Translator of 0.978 applied																																																																																																																																																	
<input checked="" type="checkbox"/> CFC		CCT (min): 0.471		PMF: 1		Analysis Hardness (mg/l): 100		Analysis pH: 7.00																																																																																																																																																	
<table border="1"> <thead> <tr> <th>Pollutants</th> <th>Stream Conc (µg/L)</th> <th>Stream CV</th> <th>Trb Conc (µg/L)</th> <th>Fate Coef</th> <th>WQC (µg/L)</th> <th>WQ Obj (µg/L)</th> <th>WLA (µg/L)</th> <th colspan="6">Comments</th> </tr> </thead> <tbody> <tr> <td>Total Dissolved Solids (PWS)</td> <td>0</td> <td>0</td> <td></td> <td>0</td> <td>N/A</td> <td>N/A</td> <td>N/A</td> <td colspan="6"></td> </tr> <tr> <td>Chloride (PWS)</td> <td>0</td> <td>0</td> <td></td> <td>0</td> <td>N/A</td> <td>N/A</td> <td>N/A</td> <td colspan="6"></td> </tr> <tr> <td>Sulfate (PWS)</td> <td>0</td> <td>0</td> <td></td> <td>0</td> <td>N/A</td> <td>N/A</td> <td>N/A</td> <td colspan="6"></td> </tr> <tr> <td>Total Aluminum</td> <td>0</td> <td>0</td> <td></td> <td>0</td> <td>N/A</td> <td>N/A</td> <td>N/A</td> <td colspan="6"></td> </tr> <tr> <td>Total Copper</td> <td>0</td> <td>0</td> <td></td> <td>0</td> <td>8,956</td> <td>9.33</td> <td>21.5</td> <td colspan="6">Chem Translator of 0.96 applied</td> </tr> <tr> <td>Total Iron</td> <td>0</td> <td>0</td> <td></td> <td>0</td> <td>1,500</td> <td>1,500</td> <td>3,457</td> <td colspan="6">WQC = 30 day average; PMF = 1</td> </tr> <tr> <td>Total Lead</td> <td>0</td> <td>0</td> <td></td> <td>0</td> <td>2,517</td> <td>3.18</td> <td>7.33</td> <td colspan="6">Chem Translator of 0.791 applied</td> </tr> <tr> <td>Total Manganese</td> <td>0</td> <td>0</td> <td></td> <td>0</td> <td>N/A</td> <td>N/A</td> <td>N/A</td> <td colspan="6"></td> </tr> <tr> <td>Total Zinc</td> <td>0</td> <td>0</td> <td></td> <td>0</td> <td>118.139</td> <td>120</td> <td>276</td> <td colspan="6">Chem Translator of 0.986 applied</td> </tr> </tbody> </table>														Pollutants	Stream Conc (µg/L)	Stream CV	Trb Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments						Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A							Chloride (PWS)	0	0		0	N/A	N/A	N/A							Sulfate (PWS)	0	0		0	N/A	N/A	N/A							Total Aluminum	0	0		0	N/A	N/A	N/A							Total Copper	0	0		0	8,956	9.33	21.5	Chem Translator of 0.96 applied						Total Iron	0	0		0	1,500	1,500	3,457	WQC = 30 day average; PMF = 1						Total Lead	0	0		0	2,517	3.18	7.33	Chem Translator of 0.791 applied						Total Manganese	0	0		0	N/A	N/A	N/A							Total Zinc	0	0		0	118.139	120	276	Chem Translator of 0.986 applied					
Pollutants	Stream Conc (µg/L)	Stream CV	Trb Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments																																																																																																																																																	
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A																																																																																																																																																		
Chloride (PWS)	0	0		0	N/A	N/A	N/A																																																																																																																																																		
Sulfate (PWS)	0	0		0	N/A	N/A	N/A																																																																																																																																																		
Total Aluminum	0	0		0	N/A	N/A	N/A																																																																																																																																																		
Total Copper	0	0		0	8,956	9.33	21.5	Chem Translator of 0.96 applied																																																																																																																																																	
Total Iron	0	0		0	1,500	1,500	3,457	WQC = 30 day average; PMF = 1																																																																																																																																																	
Total Lead	0	0		0	2,517	3.18	7.33	Chem Translator of 0.791 applied																																																																																																																																																	
Total Manganese	0	0		0	N/A	N/A	N/A																																																																																																																																																		
Total Zinc	0	0		0	118.139	120	276	Chem Translator of 0.986 applied																																																																																																																																																	
<input checked="" type="checkbox"/> THH		CCT (min): 0.471		PMF: 1		Analysis Hardness (mg/l): N/A		Analysis pH: N/A																																																																																																																																																	

Model Results

2/8/2025

Page 5

Pollutants	Stream Conc (µg/L)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	500,000	500,000	N/A	
Chloride (PWS)	0	0		0	250,000	250,000	N/A	
Sulfate (PWS)	0	0		0	250,000	250,000	N/A	
Total Aluminum	0	0		0	N/A	N/A	N/A	
Total Copper	0	0		0	N/A	N/A	N/A	
Total Iron	0	0		0	N/A	N/A	N/A	
Total Lead	0	0		0	N/A	N/A	N/A	
Total Manganese	0	0		0	1,000	1,000	2,305	
Total Zinc	0	0		0	N/A	N/A	N/A	

CRL

CCT (min): 0.404

PMF: 1

Analysis Hardness (mg/l): N/A

Analysis pH: N/A

Pollutants	Stream Conc (µg/L)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A	
Chloride (PWS)	0	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
Total Aluminum	0	0		0	N/A	N/A	N/A	
Total Copper	0	0		0	N/A	N/A	N/A	
Total Iron	0	0		0	N/A	N/A	N/A	
Total Lead	0	0		0	N/A	N/A	N/A	
Total Manganese	0	0		0	N/A	N/A	N/A	
Total Zinc	0	0		0	N/A	N/A	N/A	

Recommended WQBELs & Monitoring Requirements

No. Samples/Month: 4

Pollutants	Mass Limits		Concentration Limits				Governing WQBEL	WQBEL Basis	Comments
	AML (lbs/day)	MDL (lbs/day)	AML	MDL	IMAX	Units			
Total Aluminum	Report	Report	Report	Report	Report	mg/L	1.11	AFC	Discharge Conc > 10% WQBEL (no RP)
Total Copper	Report	Report	Report	Report	Report	mg/L	0.021	AFC	Discharge Conc > 10% WQBEL (no RP)
Total Lead	0.007	0.01	0.007	0.011	0.018	mg/L	0.007	CFC	Discharge Conc ≥ 50% WQBEL (RP)
Total Zinc	Report	Report	Report	Report	Report	mg/L	0.18	AFC	Discharge Conc > 10% WQBEL (no RP)

Other Pollutants without Limits or Monitoring

The following pollutants do not require effluent limits or monitoring based on water quality because reasonable potential to exceed water quality criteria was not determined and the discharge concentration was less than thresholds for monitoring, or the pollutant was not detected and a sufficiently sensitive analytical method was used (e.g., <= Target QL).

Pollutants	Governing WQBEL	Units	Comments

Model Results

2/8/2025

Page 6

Total Dissolved Solids (PWS)	N/A	N/A	PWS Not Applicable
Chloride (PWS)	N/A	N/A	PWS Not Applicable
Bromide	N/A	N/A	No WQS
Sulfate (PWS)	N/A	N/A	PWS Not Applicable
Total Iron	3.46	mg/L	Discharge Conc ≤ 10% WQBEL
Total Manganese	2,305	µg/L	Discharge Conc ≤ 10% WQBEL

Appendix C

eDMR Discharge Concentrations

	2020	2021	2022	2023	2024
Total Aluminum	0.115	0.112	< 0.1	< 0.1	0.17
Total Iron	< 0.2	0.029	< 0.2	< 0.2	< 0.2
Total Manganese	< 0.02	< 0.02	< 0.02	0.0406	< 0.02

Table 6-1. TMDL Endpoints

Water quality criterion	Designated use	Criterion value (mg/L)	TMDL endpoint (mg/L)
Total iron	CWF, TSF, WWF	1.5	1.425 (30-day average)
Total iron	HQ, EV	0.212	0.2014 (30-day average)
Total aluminum	CWF, TSF, WWF	0.75	0.7125
Total aluminum	HQ, EV	0.231	0.2195 (30-day average)
Total manganese	CWF, TSF, WWF	1.0	0.95
Dissolved iron	CWF, TSF, WWF	0.3	0.285