

Northwest Regional Office CLEAN WATER PROGRAM

Application Type

Facility Type

Major / Minor

Minor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

Application No. **PA0220736**APS ID **1021164**

1322861

Authorization ID

Applicant Name	Flying	y W Ranch, Inc.	Facility Name	Flying W Ranch
Applicant Address	685 FI	ying W Ranch Road	Facility Address	685 Flying W Ranch Road
	Tiones	sta, PA 16353		Tionesta, PA 16353
Applicant Contact	R. Dal	e Weller	Facility Contact	R. Dale Weller
Applicant Phone	(814) 463-7663		Facility Phone	(814) 463-7663
Client ID	24117		Site ID	237046
Ch 94 Load Status	Not O	verloaded	Municipality	Kingsley Township
Connection Status	No Lir	nitations	County	Forest County
Date Application Rece	ived	July 31, 2020	EPA Waived?	Yes
Date Application Acce	te Application Accepted August 11, 2020		If No, Reason	-

Summary of Review

Act 14 - Proof of Notification was submitted and received.

A Part II Water Quality Management permit is not required at this time.

The applicant should be able to meet the limits of this permit, which will protect the uses of the receiving stream.

I. OTHER REQUIREMENTS:

SPECIAL CONDITIONS: II. Solids Management

- A. Stormwater into sewers
- B. Right of way
- C. Solids handling
- D. Public sewerage availability
- E. Effluent Chlorine Optimization and Minimization

There are no open violations in efacts associated with the subject Client ID (24117) as of 7/6/2021.

Approve	Deny	Signatures	Date	
Х		Stephen A. McCauley	7/6/2021	
^		Stephen A. McCauley, E.I.T. / Environmental Engineering Specialist	170/2021	
X		Justin C. Dickey	7/8/2021	
^		Justin C. Dickey, P.E. / Environmental Engineer Manager	170/2021	

Outfall No. 001						
	Design Flow (MGD)	0.01				
Latitude 41° 32' 53.36"	Longitude	79° 16' 42.58"				
Quad Name Kellettville	Quad Code 0611					
Wastewater Description: <u>treated sanitary wastewater</u>						
Unnamed Tributary						
Receiving Waters to the Church Run	Stream Code	N/A				
NHD Com ID 100473691	 RMI	N/A				
Drainage Area 0.09	– Yield (cfs/mi²)	0.07				
Q ₇₋₁₀ Flow (cfs) 0.0063	Q ₇₋₁₀ Basis	calculated				
Elevation (ft) 1440	Slope (ft/ft)	0.10416				
Watershed No. 16-F	Chapter 93 Class.	CWF				
Existing Use -	Existing Use Qualifier	-				
Exceptions to Use -	Exceptions to Criteria	-				
Assessment Status Attaining Use(s)						
Cause(s) of Impairment						
Source(s) of Impairment						
TMDL Status	Name					
3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Data Source					
pH (SU)	-					
Temperature (°F)	-					
Hardness (mg/L)	-					
Other:	-					
Nearest Downstream Public Water Supply Intake	Aqua Pennsylvania, Inc Em	lenton				
PWS Waters Allegheny River	Flow at Intake (cfs) 1,376					
PWS RMI 90.0	Distance from Outfall (mi)	78.5				

Sludge use and disposal description and location(s): Sludge is not used, it is disposed of at an approved landfill.

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Narrative: This Fact Sheet details the determination of draft NPDES permit limits for an existing discharge of 0.01 MGD of treated sewage from an existing horse ranch in Kingsley Township, Forest County.

NPDES Permit Fact Sheet Flying W Ranch

Treatment permitted under WQM Permit 2793401 consists of the following: An 8,000 gallon septic tank and a 1,000 gallon septic tank in series, a 2,000 gallon dosing tank with two 74 gpm alternating submersible pumps, two 5,041 square foot (71' x 71') sand filter beds, and tablet chlorine disinfection with two 345 gallon contact tanks.

1. Streamflow:

The yieldrate was calculated from the drainage area and the Q₇₋₁₀ low flow of the nearest stream with a gage station:

Tionesta Creek at Lynch, PA - USGS gage number 03017500 (1940-1979):

Drainage Area: 233 sq. mi. (USGS StreamStats)

Q₇₋₁₀: 16.4 cfs (USGS StreamStats)

Yieldrate: <u>0.07</u> cfsm (calculated)

Unnamed Tributary to the Church Road at the discharge point:

Yieldrate: <u>0.07</u> cfsm (calculated above)

Drainage Area: <u>0.09</u> sq. mi. (USGS StreamStats)

% of stream allocated: 100% Basis: no nearby discharges

 Q_{7-10} : 0.0063 cfs (calculated)

2. Wasteflow:

Outfall 001:

Maximum discharge: 0.01 MGD = 0.015 cfs

Runoff flow period: 24 hours Basis: Runoff flow for a septic tank-based STP

Flow will be required to be monitored as authorized under Chapter 92a.61, and as recommended in the SOP.

3. Parameters:

The following parameters were evaluated: pH, Total Suspended Solids, Fecal Coliform, Phosphorus, NH₃-N, CBOD₅, Dissolved Oxygen, and Total Residual Chlorine.

a. <u>pH</u>

Between 6.0 and 9.0 at all times

Basis: Application of Chapter 93.7 technology-based limits. The measurement frequency is set

as daily to comply with the suggestion of the SOP to adhere to the frequencies outlined in Table 6-3 of the Technical Guidance for the Development and Specification of Effluent

Limitations (362-0400-001).

b. Total Suspended Solids

Limits are 30 mg/l as a monthly average and 60 as a daily maximum.

Basis: Application of Chapter 92a47 technology-based limits

c. Fecal Coliform

05/01 - 09/30: 200/100ml (monthly average geometric mean)

<u>1,000/100ml</u> (instantaneous maximum) 10/01 - 04/30: 2,000/100ml (monthly average geometric mean) 10,000/100ml (instantaneous maximum) Basis: Application of Chapter 92a47 technology-based limits d. E. Coli Monitoring was added for E. Coli at a frequency of 1/year. Basis: Application of Chapter 92a.61 as recommended by the SOP. **Phosphorus** e. Limit necessary due to: Discharge to lake, pond, or impoundment Discharge to stream Chapter 96.5 does not apply. However, the Total Phosphorus monitoring Basis: requirement will be retained as recommended by the SOP to provide data for review during the next renewal application to ensure the discharge is not high in nutrients. f. Total Nitrogen The previous monitoring for Total Nitrogen will be retained in accordance with the SOP, based on Chapter 92a.61. NO₂-NO₃, Fluoride, Phenolics, Sulfates, and Chlorides g. Nearest Downstream potable water supply Aqua Pennsylvania, Inc. - Emlenton Distance downstream from the point of 78.5 miles (approximate) No limits necessary Limits needed Basis Significant dilution available. h. Ammonia-Nitrogen (NH₃-N) Median discharge pH to be used: 7.1 Standard Units (S.U.) Basis: Average pH value from DMR summary (1 year) Discharge temperature: 25°C (assumptive value used for modeling purposes) Median stream pH to be used: 7.0 Standard Units (S.U.) Basis: (assumptive value used for modeling purposes) Stream Temperature: 20°C (assumptive value used for CWF modeling purposes) Background NH₃-N <u>N/A</u> mg/l

i.

CBOD₅

Basis: No background data available for NH₃-N. NH₃-N Summer limits: 25.0 mg/l (monthly average) 50.0 mg/l (instantaneous maximum) NH₃-N Winter limits: 25.0 mg/l (monthly average) 50.0 mg/l (instantaneous maximum) Result: WQ modeling resulted in the summer limits above (see Attachment 1), which are less restrictive than the previous NPDES Permit limits. Since the existing limits are being met, they will be retained with this renewal. Median discharge pH to be used: 7.1 Standard Units (S.U.) Basis: Average pH value from DMR summary (1 year) Discharge temperature: 25°C (assumptive value used for modeling purposes) Median stream pH to be used: 7.0 Standard Units (S.U.) Basis: (assumptive value used for modeling purposes) Stream Temperature: 20°C (assumptive value used for CWF modeling purposes) Background CBOD₅ concentration: 2.0 mg/l Basis: Default value CBOD₅ summer limits: mg/l (monthly average) 25 mg/l (instantaneous maximum) 50 CBOD₅ winter limits: 25 mg/l (monthly average) mg/l (instantaneous maximum) 50 WQ modeling resulted in the summer limits above (see Attachment 1), which are less restrictive than the previous NPDES Permit limits. Since the existing limits are being met, they will be retained with this renewal. - minimum required due to discharge going to a drainage swale or ditch

j. Dissolved Oxygen (DO)

Result:

ш	0.0	1119/1	miniman required due to discharge going to a drainage swale or diten.
\boxtimes	<u>4.0</u>	mg/l	- minimum desired in effluent to protect all aquatic life.
	<u>5.0</u>	mg/l	- desired in effluent for Warm Water / Trout-Stocked Fisheries.
	6.0	mg/l	- desired in effluent for Cold Water Fisheries.
	<u>7.0</u>	mg/l	- required due to discharge going to a High Quality / Exceptional Value stream
	8.0	mg/l	- required due to discharge going to a naturally reproducing salmonid stream

Discussion: The Dissolved Oxygen minimum of 4.0 mg/l will be retained with this renewal. The technology-based minimum of 4.0 mg/l is recommended by the WQ Model (see Attachment 1) and the SOP based on Chapter 93.7, under the authority of Chapter 92a.61. The measurement frequency is set as daily to comply with the suggestion of the SOP to adhere to the frequencies outlined in Table 6-3 of the Technical Guidance for the

Development and Specification of Effluent Limitations (362-0400-001).

k. Total Residual Chlorine (TRC)

No limit necessary

 \square TRC limits: <u>0.5</u> mg/l (monthly average)

1.6 mg/l (instantaneous maximum)

Basis: The TRC limits are technology-based using the TRC_Calc Spreadsheet (see Attachment 2).

The TRC is calculated at the first point of aquatic life use downstream of the discharge. The resulting limits are the same as in the previous NPDES Permit and will be retained. The measurement frequency is set as daily to comply with the suggestion of the SOP to adhere to the frequencies outlined in Table 6-3 of the Technical Guidance for the Development and

Specification of Effluent Limitations (362-0400-001).

4. Anti-Backsliding

Since all the permit limits in this renewal are the same or more restrictive than the previous NPDES Permit, anti-backsliding is not applicable.

5. Attachment Details:

Attachment 1 - WQ Modeling Printouts

Attachment 2 - TRC_Calc Spreadsheet

(The Attachments above can be found at the end of this document)

Compliance History

DMR Data for Outfall 001 (from June 1, 2020 to May 31, 2021)

Parameter	MAY-21	APR-21	MAR-21	FEB-21	JAN-21	DEC-20	NOV-20	OCT-20	SEP-20	AUG-20	JUL-20	JUN-20
Flow (MGD)												
Average Monthly	0.00044	0.00044					0.00044	0.00044	0.00044	0.00044	0.00044	0.00044
Flow (MGD)												
Daily Maximum	0.00044	0.00044					0.00044	0.00044	0.00044	0.00044	0.00044	0.00044
pH (S.U.)												
Minimum	7.3	7.4					7.2	7.2	7.0	6.8	6.7	6.0
pH (S.U.)												
Maximum	7.6	7.8					7.4	7.7	7.4	7.5	7.2	7.2
DO (mg/L)												
Minimum	6.80	7.42					6.43	6.40	5.50	6.08	5.80	5.08
TRC (mg/L)												
Average Monthly	0.06	0.09					0.13	0.10	0.10	0.12	0.09	0.12
TRC (mg/L)												
Instantaneous Maximum	0.09	0.10					0.16	0.14	0.18	0.19	0.14	0.17
CBOD5 (mg/L)												
Average Monthly	< 3.0	< 3.0					< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
TSS (mg/L)												
Average Monthly	< 3	< 3					4	8.5	3	< 3.5	< 3.0	< 3.0
Fecal Coliform (CFU/100 ml)												
Geometric Mean	< 1	1					8.30	< 1	3.87	3.46	2.45	3.74
Fecal Coliform (CFU/100 ml)												
Instantaneous Maximum	< 1	1					68	< 1	12	12	6	13
Total Nitrogen (mg/L)												
Average Monthly	7.05	5.10					54.5	83.75	75.05	59.1	35.95	11.3
Ammonia (mg/L)												
Average Monthly	< 0.10	< 0.10					< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	0.19
Total Phosphorus (mg/L)												
Average Monthly	0.28	0.31					0.19	0.28	0.24	0.250	0.260	0.320

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

		Monitoring Re	quirements					
Parameter	Mass Units	(lbs/day) ⁽¹⁾		Concentrat	ions (mg/L)		Minimum (2)	Required
Farameter	Average Monthly	Average Weekly	Minimum	Average Monthly	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report Daily Max	XXX	XXX	XXX	XXX	1/week	Measured
pH (S.U.)	XXX	XXX	6.0 Daily Min	XXX	9.0 Daily Max	XXX	1/day	Grab
DO	XXX	XXX	4.0 Daily Min	XXX	XXX	XXX	1/day	Grab
TRC	XXX	XXX	XXX	0.5	XXX	1.6	1/day	Grab
CBOD5	XXX	XXX	XXX	10.0	XXX	20	2/month	8-Hr Composite
TSS	XXX	XXX	XXX	20.0	XXX	40	2/month	8-Hr Composite
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	2000 Geo Mean	XXX	10000	2/month	Grab
Fecal Coliform (No./100 ml) May 1 - Sep 30	XXX	XXX	XXX	200 Geo Mean	XXX	1000	2/month	Grab
E. Coli (No./100 ml)	XXX	XXX	XXX	XXX	XXX	Report	1/year	Grab
Total Nitrogen	XXX	XXX	XXX	Report	XXX	XXX	2/month	8-Hr Composite
Ammonia-Nitrogen Nov 1 - Apr 30	XXX	XXX	XXX	15.0	XXX	30	2/month	8-Hr Composite
Ammonia-Nitrogen May 1 - Oct 31	XXX	XXX	XXX	5.0	XXX	10	2/month	8-Hr Composite
Total Phosphorus	XXX	XXX	XXX	Report	XXX	XXX	2/month	8-Hr Composite

Compliance Sampling Location: at Outfall 001, after disinfection.

Flow is monitor only based on Chapter 92a.61. The limits for pH and Dissolved Oxygen are technology-based on Chapter 93.7. The Total Residual Chlorine (TRC) limits are technology-based on Chapter 92a.48. The limits for CBOD₅, Total Suspended Solids, and Fecal Coliforms are technology-based on Chapter 92a.47. The limits for Ammonia-Nitrogen are water quality-based on Chapter 93.7. Monitoring for E. Coli, Total Nitrogen, and Total Phosphorus is based on Chapter 92a.61.

Attachment 1

WQM 7.0 Effluent Limits (Perennial Model)

		<u>n Code</u> 041		Stream Name	-		
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
0.350	Flying W Ranch	PA0220736p	0.010	CBOD5	8.44		
				NH3-N	11.62	23.24	
				Dissolved Oxygen			6.04

Since the resulting limits are equal to the inputs, which came from the Dry Model, then the Dry Model inputs are protective. The resulting limits are:

CBOD5 = 25 mg/l

NH3-N = 25 mg/l

DO = 4 mg/l

WQM 7.0 D.O.Simulation

SWP Basin St	ream Code			Stream Name	
16F	55041			CHURCH RUN	
<u>RMI</u> 0.350	Total Discharge		<u>) Ana</u>	lysis Temperature (° 20.818	<u>C) Analysis pH</u> 7.015
Reach Width (ft)	Reach De			Reach WDRatio	Reach Velocity (fps)
3.812	0.37	3		10.223	0.067
Reach CBOD5 (mg/L)	Reach Kc (<u>R</u>	each NH3-N (mg/L)	Reach Kn (1/days)
3.05	0.58 Reach Kr (Til		1.90 Kr Equation	0.745 Reach DO Goal (mg/L)
Reach DO (mg/L) 7.883	No.	22.329 Owens			6
Reach Travel Time (days)					
0.321	TravTime	Subreach CBOD5	NH3-N	D.O.	
	(days)	(mg/L)	(mg/L)	(mg/L)	
	0.032	2.99	1.86	8.12	
	0.064	2.94	1.81	8.12	
	0.096	2.88	1.77	8.12	
	0.129	2.82	1.73	8.12	
	0.161	2.77	1.69	8.12	
	0.193	2.71	1.65	8.12	
	0.225	2.66	1.61	8.12	
	0.257	2.61	1.57	8.12	
	0.289	2.56	1.53	8.12	
	0.321	2.51	1.50	8.12	

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	✓
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.36	Temperature Adjust Kr	✓
D.O. Saturation	90.00%	Use Balanced Technology	✓
D.O. Goal	6		

Input Data WQM 7.0

	SWF Basi			Stre	eam Name		RMI		evation (ft)	Drainag Area (sq mi		With	WS ndrawal ngd)	Apply FC
	16F	550	041 CHUR	CH RUN			0.3	50	1220.00	1	.13 0.0	0000	0.00	✓
·					St	ream Dat	a							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	<u>Tributar</u> np	¥ pH	<u>Strea</u> Temp	am pH	
	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C)		
Q7-10 Q1-10 Q30-10	0.070	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000 0.000 0.000	0.0	0.00	0.0	00 2	0.00	7.00	0.00	0.00	
					Di	scharge [Data							
			Name	Per	rmit Number	Existing Disc Flow (mgd)	Permitt Disc Flow (mgd	Dis Flo	c Res	erve ctor	Disc Temp (°C)	Disc pH		
		Flying	g W Ranch	PA	0220736p	0.0100	0.00	0.0	0000	0.000	25.00	7.10	_	
					Pa	rameter I	Data							
			1	Parameter Name		Di Co		Trib Conc	Stream Conc	Fate Coef				
						(m	g/L) (r	mg/L)	(mg/L)	(1/days	i)			
	-		CBOD5				8.44	2.00	0.00	1.5	0			
			Dissolved	Oxygen			6.04	8.24	0.00	0.0	0			
			NH3-N			ŕ	11.62	0.00	0.00	0.7	0			

(From Dry Model)

Input Data WQM 7.0

	SWF Basi			Stre	eam Name		RMI	El	evation (ft)	Drainage Area (sq mi)	Slop (ft/ft	With	VS drawal gd)	Apply FC
	16F	550	041 CHUR	CH RUN			0.00	00	1120.00	1.2	3 0.000	000	0.00	~
8					St	ream Dat	a							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depti		<u>Tributary</u> np p⊦		<u>Streaı</u> Temp	<u>т</u> рН	
oona.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C	:)		(°C)		
Q7-10 Q1-10 Q30-10	0.070	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000	0.0	0.00	0.	00 2	0.00 7	.00	0.00	0.00	to de
					Di	scharge I	Data							
			Name	Per	rmit Number	Disc	Permitt Disc Flow (mgd)	Di Fl	sc Res	erve Te ictor	isc mp C)	Disc pH		
						0.0000	0.000	00 0.	0000	0.000	25.00	7.00		
					Pa	arameter l	Data							
			1	Paramete	r Name			Trib Conc	Stream Conc	Fate Coef				
						(m	ıg/L) (r	ng/L)	(mg/L)	(1/days)				
			CBOD5				25.00	2.00	0.00	1.50				
			Dissolved	Oxygen			3.00	8.24	0.00	0.00				
			NH3-N			:	25.00	0.00	0.00	0.70				

WQM 7.0 Wasteload Allocations

SWP Basin	Stream Code	Stream Name
16F	55041	CHURCH RUN

RMI	Discharge Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction	Î
0.35	0 Flying W Ranch	14.92	23.24	14.92	23.24	0	0	=0
ИНЗ-N (Chronic Allocati	ons						
RMI	Discharge Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction	
0.35	0 Flying W Ranch	1.8	11.62	1.8	11.62	0	0	ā
issolve	d Oxygen Alloc	ations						
		<u>C</u>	BOD5	<u>NH3-N</u>	Disso	lved Oxygen	Critical	Percent
RMI	Discharge Nar	ne Baselir (mg/L	States Single-control (1975) and con-		ultiple Basel ng/L) (mg/	Difference City and Carlotte		Reduction

14

WQM 7.0 Hydrodynamic Outputs

	SW	P Basin	Strea	m Code				Stream	<u>Name</u>				
		16F	5	5041				CHURC	RUN				
RMI	Stream Flow	PWS With	Net Stream Flow	Disc Analysis Flow		Depth	Width	W/D Ratio	Velocity	Trav Time	Analysis Temp	Analysis pH	
	(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	(°C)		
Q7-1	0 Flow												
0.350	0.08	0.00	0.08	.0155	0.05411	.373	3.81	10.22	0.07	0.321	20.82	7.01	
Q1-1	0 Flow												
0.350	0.05	0.00	0.05	.0155	0.05411	NA	NA	NA	0.05	0.393	21.17	7.02	
Q30-	10 Flow	,											
0.350	0.11	0.00	0.11	.0155	0.05411	NA	NA	NA	0.08	0.277	20.63	7.01	

WQM 7.0 D.O.Simulation (Dry Model)

SWP Basin Str	ream Code 55041			Stream Name CHURCH RUN	
<u>RMI</u>	Total Discharge	Flow (mgd	<u>) Ana</u>	lysis Temperature (°C)	Analysis pH
0.400	0.010)		23.553	7.069
Reach Width (ft)	Reach Dep	oth (ft)		Reach WDRatio	Reach Velocity (fps)
1.323	0.31	Ĺ		4.260	0.053
Reach CBOD5 (mg/L)	Reach Kc (<u>1/days)</u>	<u>R</u>	each NH3-N (mg/L)	Reach Kn (1/days)
18.34	1.428	Marine and		17.77	0.920
Reach DO (mg/L)	Reach Kr (Kr Equation	Reach DO Goal (mg/L)
5.228	28.66	9		Owens	2
Reach Travel Time (days)		Subreach	Results		
0.462	TravTime	CBOD5	NH3-N	D.O.	
	(days)	(mg/L)	(mg/L)	(mg/L)	
	0.046	16.97	17.03	4.70	
	0.092	15.71	16.32	4.72	
	0.138	14.53	15.64	4.88	
	0.185	13.45	14.99	5.07	
	0.231	12.44	14.37	5.25	
	0.277	11.51	13.77	5.43	
	0.323	10.65	13.20	5.59	
	0.369	9.86	12.65	5.75	
	0.415	9.12	12.12	5.90	
	0.462	8.44	11.62	6.04	

(Use as inputs in Perennial Model)

Input Data WQM 7.0

		SWP Stream Basin Code Stream Name			RMI	Ele	evation (ft)	Draina Area (sq m	a	Slope (ft/ft)	PW Withd (mg	rawal	Apply FC		
	16F	550	041 CHUR	CH RUN			0.4	00	1400.00		0.09 0	.00000		0.00	~
2					St	ream Dat	a								
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	n Tem	<u>Tributa</u> np	<u>ry</u> pH	Tem	<u>Strean</u> p	n pH	
oona.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C)		
27-10 21-10 230-10	0.070	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000 0.000 0.000	0.0	0.00	0.	00 2	0.00	7.00	9	0.00	0.00	
					Di	scharge l	Data]	
			Name	Per	mit Number	Existing Disc	Permitt Disc Flow (mgd	Di:	sc Res	erve ctor	Disc Temp (°C)	Di: p	sc H		
		Flying	g W Ranch	PA	0220736	0.010	0.000	00 0.	0000	0.000	25.0	00	7.10		
					Pa	arameter l	Data								
			ı	Paramete	r Name			Trib Conc	Stream Conc	Fate Coef					
				ai ai ii oto	113.1119	(m	ıg/L) (r	ng/L)	(mg/L)	(1/day	rs)				
			CBOD5				25.00	2.00	0.00	1.	50				
			Dissolved	Oxygen			4.00	8.24	0.00	0.	00				
			NH3-N				25.00	0.00	0.00	0.	70				

Input Data WQM 7.0

					5.4.5									
	SWP Basin			Stre	eam Name		RMI	Ele	evation (ft)	Drainage Area (sq mi)	Slope (ft/ft)	Witho	VS drawal gd)	Appl FC
	16F	550	041 CHUR	CH RUN			0.0	00	1220.00	0.21	0.000	00	0.00	V
5.					St	ream Dat	a							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	n Ten	<u>Tributary</u> np pH	T	<u>Strear</u> emp	<u>m</u> pH	
Conu.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C	;)	(°C)		
ଇ7-10 ଇ1-10 ଇ30-10	0.070	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000	0.0	0.00	0.	00 2	0.00 7	.00	0.00	0.00	
					Di	scharge I	Data						1	
			Name	Per	rmit Number	Disc	Permitt Disc Flow (mgd	Di:	sc Res	Di serve Te actor		Disc pH		
		-				0.0000	0.000	00 0.	0000	0.000	25.00	7.00		
					Pa	arameter I	Data							
)	Paramete	r Name			Trib Conc	Stream Conc	Fate Coef				
					9 5000.000.00000000000000000000000000000	(m	ıg/L) (r	mg/L)	(mg/L)	(1/days)				
			CBOD5				25.00	2.00	0.00	1.50				
			Dissolved	Oxygen			3.00	8.24	0.00	0.00				
			NH3-N			i	25.00	0.00	0.00	0.70				

WQM 7.0 Modeling Specifications

Parameters	D.O.	Use Inputted Q1-10 and Q30-10 Flows	✓
WLA Method	Simulation	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.36	Temperature Adjust Kr	✓
D.O. Saturation	90.00%	Use Balanced Technology	✓
D.O. Goal	2		

WQM 7.0 Hydrodynamic Outputs

	sw	P Basin	Strea	m Code	Stream Name								
	16F 55041						CHURCH RUN						
RMI	Stream Flow	PWS With	Net Stream Flow	Disc Analysis Flow	Reach Slope	Depth	Width	W/D Ratio	Velocity	Reach Trav Time	Analysis Temp	Analysis pH	
	(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	(°C)		
Q7-1	0 Flow												
0.400	0.01	0.00	0.01	NA	0.08523	.311	1.32	4.26	0.05	0.462	23.55	7.07	
Q1-1	0 Flow												
0.400	0.00	0.00	0.00	NA	0.08523	NA	NA	NA	0.00	0.000	0.00	0.00	
Q30-	10 Flow	1											
0.400	0.01	0.00	0.00	NA	0.08523	NA	NA	NA	0.00	0.000	0.00	0.00	

Attachment 2

	ATION									
Input appropri	ate values in	A3:A9 and D3:D9								
0.079	1 = Q stream (cfs)	0.5	= CV Daily						
0.0	1 = Q discharg	e (MGD)	0.5	= CV Hourly						
3	0 = no. sample	8	= AFC_Partial I	Mix Factor						
0.	3 = Chlorine D	emand of Stream	= CFC_Partial I	Mix Factor						
	O = Chlorine D	emand of Discharge	15 = AFC_Criteria Compliance Time (min							
0.	5 = BAT/BPJ V									
	0 = % Factor o	of Safety (FOS)	0 =Decay Coefficient (K)							
Source	Reference	AFC Calculations		Reference	CFC Calculations					
TRC	1.3.2.iii		WLA afc = 1.650		WLA cfc = 1.601					
PENTOXSD TRO			LTAMULT afc = 0.373		LTAMULT cfc = 0.581					
PENTOXSD TRO	5.1b	LTA_afc=	LTA_afc= 0.615		LTA_cfc = 0.931					
Source		Effluer	nt Limit Calcu	lations						
PENTOXSD TRO	5.1f		AML MULT =	1.231						
PENTOXSD TRO	5.1g		_I M IT (mg/l) =		BAT/BPJ					
		INST MAX I	-IMIT (mg/l) =	1.635						
WLA afc LTAMULT afc	+ Xd + (AFC EXP((0.5*LN	FC_to)) + [(AFC_Yc*Qs*.019/ C_Yc*Qs*Xs/Qd)]*(1-FOS/10/ (cvh^2+1))-2.326*LN(cvh^2-	0)	_tc))						
LTA_afc	wla_afc*LTA	MULT_atc								
WLA_cfc (.011/e(-k*CFC_tc) + [(CFC_Yc*Qs*.011/Qd*e(-k*CFC_tc)) +Xd + (CFC_Yc*Qs*Xs/Qd)]*(1-FOS/100)										
LTAMULT_cfc	MULT_cfc EXP((0.5*LN(cvd^2/no_samples+1))-2.326*LN(cvd^2/no_samples+1)^0.5)									
LTA_cfc	TA_cfc wla_cfc*LTAMULT_cfc									
AML MULT EXP(2.326*LN((cvd^2/no samples+1)^0.5)-0.5*LN(cvd^2/no samples+1))										
AML MULT	A STATE OF THE PROPERTY AND ADDRESS OF THE PROPERTY OF THE PRO									
AML MULT AVG MON LIMIT	un-constr. (Abtronical-const. 2	J,MIN(LTA_afc,LTA_cfc)*AI	MOVE DISSIPACE STOCK-DARKSTONA		• • • • • • • • • • • • • • • • • • • •					