Northwest Regional Office CLEAN WATER PROGRAM

 Application Type
 Renewal

 Facility Type
 Municipal

 Major / Minor
 Minor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

Applicant and Easility Information

 Application No.
 PA0221619

 APS ID
 1079388

 Authorization ID
 1424191

Applicant Name	Otto Township Sanitary Authority Mckean County	Facility Name	Otto Township STP
Applicant Address	PO Box 213	Facility Address	1005 Main Street
	Duke Center, PA 16729-0213	_	Duke Center, PA 16729-9515
Applicant Contact	Stacey Claycomb	Facility Contact	Stacey Claycomb
Applicant Phone	(814) 558-8920	Facility Phone	(814) 558-8920
Client ID	44814	Site ID	246336
Ch 94 Load Status	Not Overloaded	Municipality	Otto Township
Connection Status	No Limitations	County	McKean
Date Application Rece	ived January 17, 2023	EPA Waived?	Yes
Date Application Acce	pted	If No, Reason	

Summary of Review

This facility discharges to Knapp Creek, which is classified as Cold Water Fishes and has Aquatic Life and Recreational uses.

Act 14 - Notifications were submitted and received.

85.2% of the Flow Contribution comes from Otto Township, the remaining 14.8% of the flow comes from additional sanitary sewers not within the Otto Township limits.

There are currently 4 open violations in WMS for the subject Client ID (44814) as of 3/20/24. The open violations consist of several violations regarding the discharge and operation of the facility.

Sludge use and disposal description and location(s): This facility produced and disposed of 4.8 dry tons of sludge / biosolids which was hauled to Bradford WWTP by JJ Honey Dipper.

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Approve	Deny	Signatures	Date
х		Dustin Hargenrater Dustin Hargenrater / Civil Engineer	April 15, 2024
		Vacant / Environmental Engineer Manager	Okay to Draft JCD 4/15/2024

Discharge, Receiving Waters and Water Supply Infor	rmation	
Outfall No. 001	Design Flow (MGD)	.23
Latitude 41° 56' 4.02"	Longitude	-78º 26' 10.03"
Quad Name Eldred	Quad Code	41078H4
Wastewater Description: Sewage Effluent		
Receiving Waters Knapp Creek (CWF)	Stream Code	57507
NHD Com ID 112365763	RMI	0.1400 (Stream RMI 4.68)
Drainage Area 27	Yield (cfs/mi ²)	0.064
Q ₇₋₁₀ Flow (cfs) <u>1.73</u>	Q7-10 Basis	USGS – StreamStats
Elevation (ft) 1476	Slope (ft/ft)	0.00271
Watershed No. 16-C	Chapter 93 Class.	CWF
Existing Use Statewide	Existing Use Qualifier	None
Exceptions to Use <u>None</u>	Exceptions to Criteria	None
Assessment StatusAttaining Use(s)		
Cause(s) of Impairment		
Source(s) of Impairment		
TMDL Status	Name	
Background/Ambient Data	Data Source	
	Monitoring Point 48146, Warn	
pH (SU) <u>7.23</u>	Averages from samples taken	between 2003 and 2021
Temperature (°F) <u>68</u>	Default	
Hardness (mg/L) <u>100</u>	Default	
Other:		
Nearest Downstream Public Water Supply Intake	State of New York	
PWS Waters Allegheny River	Flow at Intake (cfs)	31
PWS RMI263.4	Distance from Outfall (mi)	9.34

Changes Since Last Permit Issuance: The OTSAB is planning to evaluate the cost of repairing and returning the press to operation versus hauling sludge. A decision is expected by the April board meeting (held on 3rd Tuesday of the month). Once a decision is known, Ms. Claycomb will contact the Department to clarify the course of action, which may include an amendment to the site's WQM Permit.

Other Comments: Kinzua Reservoir is 45.4 miles downstream.

	Tre	atment Facility Summa	ry	
Treatment Facility Na	me: Otto Township STP			
WQM Permit No.	Issuance Date			
4209401	1/16/2009			
	Degree of			Avg Annual
Waste Type	Treatment	Process Type	Disinfection	Flow (MGD)
21	Secondary With	Sequencing Batch		
Sewage	Ammonia Reduction	Reactor	Ultraviolet	0.23
Hydraulic Capacity	Organic Capacity			Biosolids
(MGD)	(lbs/day)	Load Status	Biosolids Treatment	Use/Disposal
0.23	621	Not Overloaded	Aerobic Digestion	Bradford WWTP

Changes Since Last Permit Issuance: The facility has open violations regarding Failure to notify DEP of planned physical changes to a facility. This violation is in regard to the repair of the sewage sludge press being inoperable. A decision will be made whether to repair the unit and continue using the sewage sludge press or to continue hauling waste to Bradford WWTP in late April.

Other Comments: Waste sources include a septage receiving station.

Treatment is primary screening followed by two parallel sequencing batch reactors, effluent equalization and UV radiation disinfection. Included was alkalinity addition, post aeration, belt filter press, and aerobic sludge digestion. No as built certification was required. Sludge may be taken to another STP or a landfill. Alkalinity feed is to the headworks. Belt filter press filtrate is sent to the septage tank for return to the headworks.

Post Construction certification is dated June 9, 2011 for WQM permit 4209401 (low pressure sewers). Related to this permit was General Storm Water Construction permit PAG2004208003.

Compliance History

Parameter JAN-24 DEC-23 NOV-23 SEP-23 AUG-23 JUL-23 JUN-23 **MAY-23** APR-23 FEB-23 **OCT-23** MAR-23 Flow (MGD) Average Monthly 0.19001 0.1498 0.1078 0.1006 0.0899 0.3497 0.1083 0.0891 0.1009 0.1194 0.1444 0.13736 pH (S.U.) Daily Minimum Е 7.1 7.12 7.27 7.28 7.22 6.91 6.73 7.01 6.7 6.92 6.8 pH (S.U.) Daily Maximum 7.67 7.54 7.63 7.65 7.75 7.64 7.61 7.57 7.8 7.71 7.41 Е DO (mg/L) Daily Minimum 6.4 6.06 5.1 5.06 4.73 5.21 5.13 4.39 4.5 7.34 7.87 Е CBOD5 (lbs/day) Average Monthly < 5 < 4.0 < 3.0 3.0 3.0 < 5.0 2 < 3.0 < 3.0 < 2.0 < 4.00 < 3.1 CBOD5 (lbs/day) Weekly Average 2.2 8 5.0 6.0 4.0 3.0 16.0 3 5.0 5.0 3.0 6.00 CBOD5 (mg/L) 3.1 < 2.2 Average Monthly < 3.2 < 3.5 < 2.9 4.3 3.6 < 2.6 < 3.5 < 3.2 < 3.5 < 3.1 CBOD5 (mg/L) 5.5 5.2 Weekly Average 4.1 4.8 4.9 4.53 3.3 3.7 5.0 4.4 2.7 2.2 BOD5 (lbs/day) Raw Sewage Influent
 Average Monthly 81 73 94 191 52 41 103 78 228 197 48 60 BOD5 (lbs/day) Raw Sewage Influent

 Daily Maximum 81 73 94 191 52 41 103 78 228 197 94 60 BOD5 (mg/L) Raw Sewage Influent

 Average Monthly 57 69 127 256 115 60 118 122 160 195 42 60.0 TSS (lbs/day) Average Monthly 3.0 9.0 < 7 < 5.0 < 3.0 < 3.0 7.0 < 3.0 10.00 8.0 < 14.00 11.00 TSS (lbs/day) Raw Sewage Influent

 Average Monthly 188 76 98.0 9 9 67 160 79 219 161 59 12.0 TSS (lbs/day) Raw Sewage Influent

 Daily Maximum 9 188 76 98.0 9 67 160 79 219 161 115 12.0

DMR Data for Outfall 001 (from February 1, 2023 to January 31, 2024)

				1							i
								1 - 0			
11	8.0	3.0	4.0	3.0	24.00	3.0	33.0	15.0	17.0	30.00	21.50
< 5.00	< 4.0	< 3.0	< 4.0	5.0	3.0	< 4.0	10.0	8.00	9.0	< 13.00	11.00
132	72	132.00	12	20	99	184	124	154	160	51	12.0
9.50	7.50	4.50	6.0	5.5	4.0	4.0	30.0	12.50	15.0	26.50	21.50
< 2	< 1.0	< 16.00	< 28.0	48	< 5.0	< 2.0	< 2.0	< 3.0	< 307.00	152.00	< 6.0
57.1	4.0	980.4	2419	78	2419	14.8	17.5	22.8	2239	2419	19.7
13.4	3.17	0.20	0.40	1.0	1.24	2.1	0.80	0.80	0.90	5.3	E
< 0.5	1.68	1.66	1.206	< 0.5000	1.307	8.785	2.90	3.62	16.015	1.325	< 1.0
			0.80	< 0.20	< 0.60	0.10	2.0	< 0.40			
< 0.2631	< 0.10	1.2211	1.0333	< 0.3975	< 0.1588	0.1233	0.832	< 0.398	< 0.199	< 0.315	< 0.103
0.53	< 0.10	4.656	3.191	1.2898	0.2178	0.1517	1.938	0.798	0.338	0.40	0.111
2.24	1.58	3.86	2.51	2.28	2.62	1.31	3.42	1.78	1.79	1.10	1.78
	< 2 57.1 13.4 < 0.5 < 0.2631 0.53	< 5.00 < 4.0 132 72 9.50 7.50 < 2 < 1.0 57.1 4.0 13.4 3.17 < 0.5 1.68 < 0.2631 < 0.10 0.53 < 0.10	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				

Compliance History

Effluent Violations for Outfall 001, from: March 1, 2023 To: January 31, 2024

Parameter	Date	SBC	DMR Value	Units	Limit Value	Units
Fecal Coliform	08/31/23	IMAX	2419	No./100 ml	1000	No./100 ml

Summary of Inspections: There have been a total of 5 inspections within the last 5 years. There have been 3 Chapter 94 inspections within this time frame, all of which no violations were noted. There has also been one Administrative/File Review which took place on 3/1/23 where one violation was noted. This violation prompted a Compliance Evaluation inspection on 3/29/23, this compliance evaluation noted 5 violations by the facility. The violations noted in the inspection report include: CSL – Failure to apply for and/or obtain a WQM permit for the construction of sewage or industrial waste facilities. NPDES – Failure to notify DEP of planned physical changes to a facility. NPDES – Failure to properly operate and maintain all facilities which are installed or used by the permittee to achieve compliance. NPDES - Discharge contained floating materials, scum, sheen, foam, oil, grease, or substances that produced an observable change or resulted in deposits in receiving waters for NPDES permitted activities. CSL – Unauthorized, unpermitted discharge of sewage to waters of the Commonwealth. The CSL violation for failure to apply and/or obtain a WQM permit for the construction of sewage or industrial waste facilities was resolved on 4/20/2023. An amendment/new WQM application has not yet been received.

Other Comments: The open violations are currently in the works to be resolved.

Development of Effluent Limitations

Outfall No.	001		Design Flow (MGD)	.23
Latitude	41º 56' 4.03"		Longitude	-78º 26' 10.03"
Wastewater D	escription:	Sewage Effluent		

Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Pollutant	Limit (mg/l)	SBC	Federal Regulation	State Regulation
	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
Total Suspended	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Solids	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
рН	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform				
(5/1 – 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform				
(5/1 – 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform				
(10/1 – 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform				
(10/1 – 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)

Water Quality-Based Limitations

This discharge was modeled using WQM 7.0 to evaluate CBOD5, Dissolved Oxygen, and Ammonia-Nitrogen parameters. The modeling results from the previous permit term were more stringent than the suggested limits from WQM 7.0 so the previously calculated limits will be used for the permit renewal. From the previous fact sheet, no winter requirements were recommended as the normally applied 3 times winter adjustment factor generated a 30 mg/L limitation that was greater than the assumed 25 mg/L raw waste ammonia concentration.

Best Professional Judgment (BPJ) Limitations

Comments: A Dissolved Oxygen minimum limitation of 4.0 mg/L will be implemented based on the standard in 25 PA Code Chapter 93 and Best Professional Judgement.

Anti-Backsliding

N/A

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (386-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

			Effluent L	imitations.			Monitoring Re	quirements
Parameter	Mass Units	s (Ibs/day) ⁽¹⁾		Concentrat	ions (mg/L)		Minimum ⁽²⁾	Required
Faranieler	Average Monthly	Weekly Average	Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	XXX	XXX	XXX	XXX	XXX	Continuous	Measured
рН (S.U.)	XXX	XXX	6.0 Daily Min	XXX	9.0 Daily Max	XXX	5/week	Grab
DO	ххх	XXX	4.0 Daily Min	xxx	XXX	ххх	5/week	Grab
CBOD5	48	76	XXX	25.0	40.0	50	1/week	8-Hr Composite
BOD5 Raw Sewage Influent	Report	Report Daily Max	ххх	Report	XXX	ххх	1/month	8-Hr Composite
TSS	57	86	XXX	30.0	45.0	60	1/week	8-Hr Composite
TSS Raw Sewage Influent	Report	Report Daily Max	XXX	Report	XXX	xxx	1/month	8-Hr Composite
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	xxx	XXX	ххх	2000 Geo Mean	XXX	10000	1/week	Grab
Fecal Coliform (No./100 ml) May 1 - Sep 30	ххх	XXX	XXX	200 Geo Mean	XXX	1000	1/week	Grab
E. Coli (No./100 ml)	ХХХ	XXX	XXX	Report Avg Qrtrly	XXX	ХХХ	1/quarter	Grab
UV Intensity (µw/cm ²)	xxx	xxx	xxx	Report	XXX	xxx	1/day	Recorded
Total Nitrogen	ХХХ	xxx	xxx	Report	XXX	ххх	1/month	8-Hr Composite
Ammonia Nov 1 - Apr 30	ххх	xxx	xxx	30.0	XXX	60.0	1/week	8-Hr Composite
Ammonia May 1 - Oct 31	19.0	XXX	XXX	10.0	XXX	20.0	1/week	8-Hr Composite
Total Phosphorus	xxx	xxx	xxx	Report	XXX	xxx	1/month	8-Hr Composite

Compliance Sampling Location: Outfall 001, after disinfection.

Other Comments: No new limits added, sampling frequencies will remain the same through the next permit term.

Input Data WQM 7.0

	SWP Basin			Stre	eam Name		RMI	Ele	evation (ft)	Drainage Area (sq mi)	Sloj (ft/f	With	WS ndrawal mgd)	Apply FC
	16C	575	507 KNAP	P CREEK	< Comparison of the second sec		4.6	80	1476.00	27.00	0.00	000	0.00	✓
					St	ream Dat	a							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	n Tem	<u>Tributary</u> np pH		<u>Strea</u> Temp	am pH	
	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C	:)		(°C)		
Q7-10 Q1-10 Q30-10	0.064	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000	0.0	0.00	0.0	00 2	0.00 7	.23	0.00	0.00	
					D	ischarge l	Data							
			Name	Pei	rmit Numbe	Disc	Permiti Disc Flow (mgd	: Dis / Flo	sc Res	serve Te actor	sc mp C)	Disc pH		
		Otto	Twp STP	PA	0221619	0.230	0.23	00 0.:	2300	0.000	25.00	7.20	-	
					P	arameter	Data							
			1	Paramete	r Name			Trib Conc	Stream Conc	Fate Coef				
			8			(m	g/L) (mg/L)	(mg/L)	(1/days)				
			CBOD5				25.00	2.00	0.00	1.50				
			Dissolved	Oxygen			4.00	8.24	0.00	0.00				
			NH3-N				25.00	0.00	0.00	0.70				

Version 1.1

Page 1 of 3

L		הסווו וט, בטבד
	Vacant / Environmental Engineer Manager	Okay to Draft JCD 4/15/2024

Input	Data	WQM	7	.0	

	SWF Basii			Stre	eam Name		RMI	Eleva (ft)		Drainage Area (sq mi)	Slope (ft/ft)	PWS Withdrawal (mgd)	Apply FC
	16C	57	507 KNAP	P CREEK	t		4.17	77 14	65.00	27.40	0.00000	0.00	\checkmark
аў					St	ream Dat	ta						
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	<u>Tributary</u> o pH	Tem	<u>Stream</u> p pH	
	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C))	
Q7-10 Q1-10 Q30-10	0.064	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000 0.000 0.000	0.0	0.00	0.00	20	.00 7.2	3 (0.00 0.00)
					Di	scharge	Data						
			Name	Per	mit Numbe	Disc	Permitte Disc Flow (mgd)	ed Design Disc Flow (mgd)	Rese Fac		p pl		
		-				0.000	0 0.000	0 0.000	0 0	.000 20	0.00	7.23	
					Pa	arameter	Data						
			100	Paramete	r Name	_			ream Conc	Fate Coef			
						(m	ng/L) (n	ng/L) (r	ng/L)	(1/days)			
	-		CBOD5				25.00	2.00	0.00	1.50			
			Dissolved	Oxygen			4.00	8.24	0.00	0.00			

25.00

0.00

0.00

0.70

NH3-N

Version 1.1

Input Data WQM 7.	0	
-------------------	---	--

	SWP Basir			Stre	am Name		RMI	Elev (f		Drainag Area (sq mi		Slope (ft/ft)	PW Withdr (mg	awal	Apply FC
	16C	57:	507 KNAP	P CREEK			1.57	75 1-	429.00	29	0.80 0	.00000		0.00	✓
					St	ream Dat	ta								
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	<u>Tributar</u> Ip	У pH	Tem	<u>Stream</u> Ip	рН	
eona.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C)		
Q7-10 Q1-10 Q30-10	0.064	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000 0.000 0.000	0.0	0.00	0.00	2	0.00	7.23	(0.00	0.00	
					Di	scharge	Data								
			Name	Per	mit Numbe	Disc	Permitte Disc Flow (mgd)	Disc Flow	Res Fa	erve ctor	Disc Temp (°C)	Di: P	sc H		
		-				0.000	0 0.000	0 0.00	00	0.000	20.0	00	7.23		
					Pa	arameter	Data								
			1	Paramete	r Name				tream Conc	Fate Coef					
					0.1770.070	(m	ng/L) (m	ng/L) (mg/L)	(1/days	5)				
	-		CBOD5				25.00	2.00	0.00	1.5	i0				
			Dissolved	Oxygen			4.00	8.24	0.00	0.0	0				
			NH3-N				25.00	0.00	0.00	0.7	'0				

SM		P Basin	<u>Strea</u>	m Code			Stream Name					
	i	16C	5	7507			۲		REEK			
RMI	Stream Flow	PWS With	Net Stream Flow	Disc Analysis Flow	Reach Slope	Depth	Width	W/D Ratio	Velocity	Reach Trav Time	Analysis Temp	Analysis pH
	(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	(°C)	
Q7-10	0 Flow											
4.680	1.73	0.00	1.73	.3558	0.00414	.594	23.23	39.12	0.15	0.204	20.85	7.22
4.177	1.75	0.00	1.75	.3558	0.00262	.6	24.06	40.08	0.15	1.089	20.84	7.22
Q1-10	0 Flow											
4.680	1.11	0.00	1.11	.3558	0.00414	NA	NA	NA	0.12	0.248	21.22	7.22
4.177	1.12	0.00	1.12	.3558	0.00262	NA	NA	NA	0.12	1.329	21.20	7.22
Q30-'	10 Flow	,										
4.680	2.35	0.00	2.35	.3558	0.00414	NA	NA	NA	0.17	0.176	20.66	7.23
4.177	2.38	0.00	2.38	2550	0.00262	NA	NA	NA	0.17	0.940	20.65	7.23

WQM 7.0 Hydrodynamic Outputs

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	✓
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.36	Temperature Adjust Kr	✓
D.O. Saturation	90.00%	Use Balanced Technology	✓
D.O. Goal	5		

Wednesday, April 3, 2024

Version 1.1

Page 1 of 1

_

		e <u>am Code</u> 57507			<u>eam Name</u> APP CREEK			
IH3-N	Acute Allocatio	ns						
RMI	Discharge Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction	
4.68	30 Otto Twp STP	12.09	49.65	12.09	49.65	0	0	
4.17	77	NA	NA	12.1	NA	NA	NA	
IH3-N	Chronic Allocat	ions						
RMI	Discharge Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction	
		1.00	12.36	1.63	12.36	0	0	
4.68	30 Otto Twp STP	1.63						
4.68 4.17	0.565.04 C240404.045645 0704040 07040404090999999	1.63 NA	NA	1.63	NA	NA	NA	
4.17	100000 C210000 C20000 C200000 C20000000000	NA		1.63	NA	NA	NA	
4.17	77	NA cations		1.63 <u>NH3-N</u>	312748004	NA /ed Oxygen	124400 - 36 	

25

NA

25

NA

12.36

NA

12.36

NA NA

4

4

NA

0

NA

0

NA

4.68 Otto Twp STP

4.18

Version 1.1

SWP Basin St	ream Code			Stream Name	
16C	57507			KNAPP CREEK	
RMI	Total Discharge	Flow (mgd) <u>Ana</u>	lysis Temperature (°C)	Analysis pH
4.680	0.23	0		20.854	7.225
Reach Width (ft)	<u>Reach De</u>	<u>pth (ft)</u>		Reach WDRatio	Reach Velocity (fps)
23.229	0.59	4		39.124	0.151
Reach CBOD5 (mg/L)	Reach Kc (R	each NH3-N (mg/L)	Reach Kn (1/days)
5.93	1.03			2.11	0.748
<u>Reach DO (mg/L)</u> 7.519	<u>Reach Kr (</u> 6.06	1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 -		<u>Kr Equation</u> Tsivoglou	<u>Reach DO Goal (mg/L)</u> 5
<u>Reach Travel Time (days)</u>		Subreach			
0.204	TravTime (days)	CBOD5 (mg/L)	NH3-N (mg/L)	D.O. (mg/L)	
	0.020	5.80	2.08	7.37	
	0.041	5.67	2.05	7.25	
	0.061	5.55	2.02	7.15	
	0.081	5.43	1.99	7.07	
	0.102	5.31	1.96	7.00	
	0.122	5.20	1.93	6.95	
	0.143	5.09	1.90	6.90	
	0.163	4.98	1.87	6.87	
	0.183	4.87	1.84	6.85	
	0.204	4.77	1.81	6.83	
RMI	Total Discharge	Flow (mgd) Ana	lysis Temperature (°C)	<u>Analysis pH</u>
4.177	0.23			20.843	7.225
Reach Width (ft)	<u>Reach De</u>	<u>pth (ft)</u>		Reach WDRatio	Reach Velocity (fps)
24.063	0.60	0		40.078	0.146
Reach CBOD5 (mg/L)	<u>Reach Kc (</u>		<u>R</u>	each NH3-N (mg/L)	<u>Reach Kn (1/days)</u>
4.73	0.66 Booch Kr.(1.79 Kr Equation	0.747 Beach DO Cool (mg/l.)
Reach DO (mg/L)	<u>Reach Kr (</u> 3.70			<u>Kr Equation</u> Tsivoglou	<u>Reach DO Goal (mg/L)</u> 5
6.848	5.70	0		1 sivegiou	5
<u>Reach Travel Time (days)</u> 1.089	TravTime (days)	Subreach CBOD5 (mg/L)	NH3-N (mg/L)	D.O. (mg/L)	
	(ddys)	(119/1)	(mg/c)	(119/2)	
	0.109	4.39	1.65	6.62	
	0.218	4.07	1.52	6.54	
	0.327	3.77	1.40	6.55	
	0.436	3.50	1.29	6.62	
	0.544	3.24	1.19	6.73	
	0.653	3.01	1.10	6.85	
	0.762	2.79	1.01	6.98	
	0.871	2.59	0.93	7.11	
	0.980	2.40	0.86	7.24	
	1.089	2.22	0.79	7.36	
Wednesday, April 3, 2024			Version 1.	1	Page 1 of

WQM 7.0 D.O.Simulation

		<u>m Code</u> 507		<u>Stream Nam</u> KNAPP CREE	-		
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
4.680	Otto Twp STP	PA0221619	0.230	CBOD5	25		
				NH3-N	12.36	24.72	
				Dissolved Oxygen			4

WQM 7.0 Effluent Limits

Version 1.1