

Application Type	Renewal
	Non-
Facility Type	Municipal
Major / Minor	Minor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

 Application No.
 PA0222216

 APS ID
 1096164

 Authorization ID
 1453647

Applicant and Facility Information

Applicant Name	Edinboro Conference Grounds	Facility Name	Edinboro Conference Grounds
Applicant Address	_12940 Fry Road	Facility Address	12940 Fry Road
	Edinboro, PA 16412-1825		Edinboro, PA 16412-1825
Applicant Contact	Dan Borchert	Facility Contact	
Applicant Phone	(814) 734-3601	Facility Phone	
Applicant Email	_edinborocamp@gmail.com		
Client ID	51674	Site ID	446627
Ch 94 Load Status		Municipality	Washington Township
Connection Status		County	Erie
Date Application Recei	vedAugust 25, 2023	EPA Waived?	Yes
Date Application Accept	ted February 1, 2024	If No, Reason	
Purpose of Application	Renewal of a NPDES Permit for	an Existing Discharge of	0.0041

Summary of Review

This is a renewal Sewage Individual NPDES Permit for an Existing Discharge of 0.0041 MGD from a non-municipal minor sewage facility. Treatment facilities permitted under WQM Permit # 2597405 A-1 consist of: four (4) 1500-gallon dual chamber primary septic tank settlers, Two (2) 1500-gallon septic-dosing tanks and two (2) Myers Pentair dosing pumps Model SRM4PC-2 submersible pumps, 55 GPM at 11' of head. The pumps are to alternate between two 875.2-square foot surface sand filters. Chlorination is pump and contact tank limited to 0.156-MGD while the chlorinator itself is limited to 0.010-MGD.

Act 14 - Proof of Notification was submitted and received.

This facility is currently using eDMR system.

SPECTIAL CONDITIONS: NONE

The EPA waiver is in effect.

There are NO open violations in WMS for the subject Client ID (51674) as of April 5, 2024.

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Approve	Deny	Signatures	Date
х		Aeshah Shameseldin Aeshah Shameseldin / Civil Engineer	April 5, 2024
		Vacant / Environmental Engineer Manager	Okay to Draft JCD 4/152024

Discharge, Receiving	g Waters and Water Supply Inforr	nation	
Outfall No. 001		Design Flow (MGD)	.0041
Latitude 41° 5	1' 25.5"	Longitude	-80º 10' 9.22"
Quad Name Ed	inboro South	Quad Code	41080G2
Wastewater Descrip	ption: Sewage Effluent		
Receiving Waters	Unnamed Tributary to Boles Run (WWF)	Stream Code	The NHD discharge is downstream at tributary 52931
NHD Com ID	127348137	RMI	0.4000
Drainage Area	0.09 sq. mi. (dry), 2 sq. mi. (perennial)	Yield (cfs/mi ²)	0.001 (dry), 0.1 (perennial)
Q ₇₋₁₀ Flow (cfs)	0 (dry), 0.2 (perennial)	Q ₇₋₁₀ Basis	Dry Stream / Default
Elevation (ft)	1460	Slope (ft/ft)	
Watershed No.	<u>16-A</u>	Chapter 93 Class.	WWF
Existing Use		Existing Use Qualifier	
Exceptions to Use		Exceptions to Criteria	
Assessment Status			
Cause(s) of Impairr			
Source(s) of Impair			
TMDL Status	Final	Name Boles Run	
Background/Ambie		Data Source	
pH (SU)	7.6	July 7, 1994	
Temperature (°F)		Default	
Hardness (mg/L)	100	Default	
Other:			
Nearest Downstrea	m Public Water Supply Intake	Aqua Pennsylvania, Inc Eml	enton
PWS Waters	Allegheny River	_ Flow at Intake (cfs)	1376
PWS RMI	90	Distance from Outfall (mi)	

Changes Since Last Permit Issuance: None.

Other Comments: None.

	Tr	eatment Facility Summary	y	
reatment Facility Na	me: Edinboro Conference	Grounds		
WQM Permit No.	Issuance Date			
2597405 A-1	August 30, 1999			
2597405	April 4, 1997			
Waste Type	Degree of Treatment	Process Type	Disinfection	Avg Annual Flow (MGD)
Sewage	Secondary	Septic Tank Sand Filter	Chlorine	0.0041
-	· ·	· · ·	· · · · · ·	
lydraulic Capacity	Organic Capacity			Biosolids
(MGD)	(lbs/day)	Load Status	Biosolids Treatment	Use/Disposa
0.0041	8.36	Not Overloaded	Anaerobic Digestion	Off Site

Changes Since Last Permit Issuance:

Other Comments:

Compliance History

DMR Data for Outfall 001 (from February 1, 2023 to January 31, 2024)

Parameter	JAN-24	DEC-23	NOV-23	OCT-23	SEP-23	AUG-23	JUL-23	JUN-23	MAY-23	APR-23	MAR-23	FEB-23
Flow (MGD)												
Average Monthly	0.0001	0.0003	0.0001	0.0001	0.0003	0.001	0.001	0.001	0.0001	0.001	0.0001	0.0001
pH (S.U.)												
Daily Minimum	6.8	6.6	6.6	6.4	6.6	6.6	6.6	6.6	6.5	6.7	6.6	6.7
pH (S.U.)												
Daily Maximum	7.7	7.7	7.9	8.0	8.0	7.4	7.4	7.7	7.7	7.7	7.2	7.8
DO (mg/L)												
Daily Minimum	13.6	12.5	11.4	5.8	9.7	3.4	3.7	0.3	4.9	7.1	5.0	6.0
TRC (mg/L)												
Average Monthly	0.1	0.1	0.2	0.3	0.4	0.2	0.3	0.2	0.1	0.1	0.1	0.2
TRC (mg/L)												
Instantaneous												
Maximum	0.5	0.54	1.5	1.5	2.2	0.9	1.5	1.2	0.5	0.5	0.2	1.5
CBOD5 (mg/L)												
Average Monthly	< 4.0	< 4.0	< 4.3	< 8.3	8.4	9.4	9.0	9.1	4.3	< 4.0	< 4.0	5.5
CBOD5 (mg/L)												
Instantaneous	4.0			10.0	10.0		10.0	10.0		1.0		
Maximum	< 4.0	< 4.0	4.5	12.6	12.0	9.8	13.9	13.8	4.6	< 4.0	< 4.0	6.9
TSS (mg/L)	5.0		0.5					00 F		5.0	5.0	5.0
Average Monthly	< 5.0	< 5.0	< 6.5	6.0	6.3	< 5.0	5.8	22.5	< 5.0	5.3	< 5.0	< 5.0
TSS (mg/L)												
Instantaneous	. 5.0		8.0	7.0	7.0	< 5.0	6.5	20 F	. 5.0	5 5	. 5.0	. 5.0
Maximum	< 5.0	< 5.0	8.0	7.0	7.0	< 5.0	0.0	38.5	< 5.0	5.5	< 5.0	< 5.0
Fecal Coliform (No./100 ml)												
Geometric Mean	< 1	2	2	< 1	2420	< 1	2	704	2420	< 11	288	997
Fecal Coliform	< 1	2	2	< 1	2420	< 1	Z	704	2420	< 11	200	997
(No./100 ml)												
Instantaneous												
Maximum	< 1	3	3	1	2420	2	4	2420	2420	131	387	2420
Total Nitrogen (mg/L)	~ 1	0	5	I	2720	۲	_	2420	2720	101	307	2420
Daily Maximum		88.13			52.97			4.93			< 3.86	
Ammonia (mg/L)		00.10			02.07			7.00			× 0.00	
Daily Maximum		16.5			21.3			< 0.3			< 0.3	
Total Phosphorus								. 0.0				
(mg/L)												
Daily Maximum		13			17.6			1.04			1.01	

Compliance History

Effluent Violations for Outfall 001, from: March 1, 2023 To: January 31, 2024

Parameter	Date	SBC	DMR Value	Units	Limit Value	Units
DO	07/31/23	Daily Min	3.7	mg/L	4.0	mg/L
DO	06/30/23	Daily Min	0.3	mg/L	4.0	mg/L
DO	08/31/23	Daily Min	3.4	mg/L	4.0	mg/L
TRC	09/30/23	IMAX	2.2	mg/L	1.6	mg/L
Fecal Coliform	05/31/23	Geo Mean	2420	No./100 ml	200	No./100 ml
Fecal Coliform	06/30/23	Geo Mean	704	No./100 ml	200	No./100 ml
Fecal Coliform	09/30/23	Geo Mean	2420	No./100 ml	200	No./100 ml
Fecal Coliform	09/30/23	IMAX	2420	No./100 ml	1000	No./100 ml
Fecal Coliform	05/31/23	IMAX	2420	No./100 ml	1000	No./100 ml
Fecal Coliform	06/30/23	IMAX	2420	No./100 ml	1000	No./100 ml

Summary of Inspections: Site inspection has been conducted on October 15, 2019. The inspection report did not cite any violations.

Other Comments: ---

Development of Effluent Limitations

Outfall No.	001		Design Flow (MGD)	.0041
Latitude	41º 51' 25.5"		Longitude	-80º 10' 9.22"
Wastewater De	escription:	Sewage Effluent		

Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Pollutant	Limit (mg/l)	SBC	Federal Regulation	State Regulation
CBOD ₅	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
CBOD5	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
Total Suspended	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Solids	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
рН	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform				
(5/1 – 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform				
(5/1 – 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform				
(10/1 – 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform				
(10/1 – 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)
E. Coli	Report (No./100 ml)	IMAX	-	§ 92a.61

Comments: Monitoring for E. Coli is placed in the permit in accordance with the Department's SOP entitled "Establishing Effluent Limitations for Individual Sewage Permits."

Water Quality-Based Limitations

CBOD5, Ammonia, and DO are evaluated using WQM 7.0 (See Attachment 1 and 2). TRC is evaluated using the department's TRC evaluation spreadsheet (See Attachment 3).

The following limitations were determined through water quality modeling (output files attached):

Parameter	Limit (mg/l)	SBC	Model
Dissolved Oxygen	4.0	Daily Min.	WQM 7.0
CBOD5	25	Avg. Monthly	WQM 7.0
	50	IMAX	
Ammonia Nitrogen	25	Average Monthly	WQM 7.0
	50	IMAX	
TRC	0.5	Average Monthly	TRC evaluation spreadsheet

Comments: A two-step model was used. The first step was for a dry stream evaluation. The DO simulation end-of-reach data was then used to evaluate the second step perennial stream reach. The second step evaluated perennial stream conditions (See Attachment 1 and Attachment 2).

A review of the Discharge Monitoring Reports for the last three years indicates general compliance for Ammonia Nitrogen effluent results less than 25 mg/l 94% of the time. As a result, current monitoring requirements will be retained.

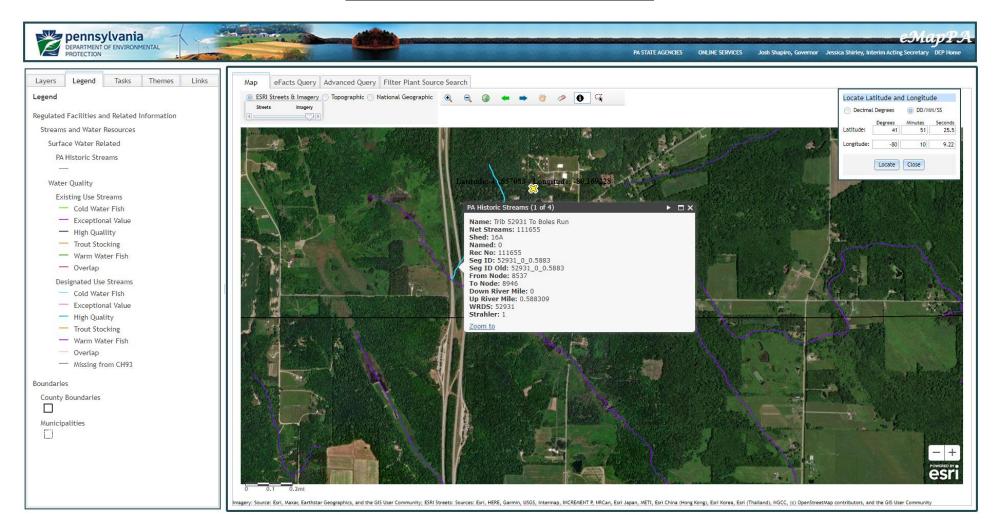
The TRC evaluation spreadsheet didn't calculate more stringent average monthly TRC limit at perennial conditions using the plant design flow, the technology-based limitations established in previous permits are attainable and will be retained.

Anti-Backsliding

No backsliding of limits is being proposed.

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (386-0400-001), SOPs and/or BPJ.


Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

			Effluent L	imitations.			Monitoring Re	quirements
Parameter	Mass Units	(lbs/day) ⁽¹⁾	Concentrations (mg/L)				Minimum ⁽²⁾	Required
Falameter	Average Monthly	Average Weekly	Minimum	Average Monthly	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	XXX	XXX	XXX	XXX	XXX	1/week	Measured
pH (S.U.)	XXX	xxx	6.0 Daily Min	xxx	9.0 Daily Max	xxx	3/week	Grab
DO	XXX	XXX	4.0 Daily Min	xxx	xxx	XXX	3/week	Grab
TRC	ХХХ	XXX	XXX	0.5	XXX	1.6	3/week	Grab
CBOD5	ХХХ	xxx	xxx	25.0	xxx	50.0	2/month	Grab
TSS	ххх	XXX	xxx	30.0	XXX	60.0	2/month	Grab
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	xxx	xxx	2000 Geo Mean	xxx	10000	2/month	Grab
Fecal Coliform (No./100 ml) May 1 - Sep 30	ХХХ	XXX	xxx	200 Geo Mean	xxx	1000	2/month	Grab
E. Coli (No./100 ml)	ХХХ	XXX	XXX	XXX	XXX	Report	1/year	Grab
Total Nitrogen	ХХХ	XXX	xxx	XXX	Report Daily Max	XXX	1/quarter	Grab
Ammonia	XXX	XXX	xxx	xxx	Report Daily Max	XXX	1/quarter	Grab
Total Phosphorus	XXX	xxx	XXX	xxx	Report Daily Max	XXX	1/quarter	Grab

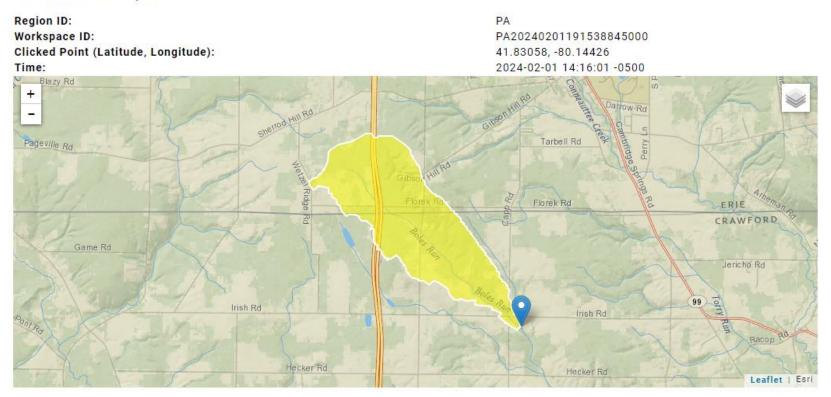
Compliance Sampling Location: Outfall 001, after disinfection.

NPDES Permit Fact Sheet Edinboro Conference Grounds

Outfall Location - eMap with Aerial Imagery

Dry Reach - Drainage Area Location - StreamStats with Aerial Imagery

StreamStats Report



Collapse All

Basin Characteristics	3		
Parameter Code	Parameter Description	Value	Unit
RNAREA	Area that drains to a point on a stream	0.0915	square miles

Perennial Reach - Drainage Area Location - StreamStats with Aerial Imagery

StreamStats Report

Collapse All

Basin Characteristics			
Parameter Code	Parameter Description	Value	Unit
DRNAREA	Area that drains to a point on a stream	2	square miles

Attachment 1

Dry Reach Modeling

WQM 7.0 Effluent Limits

	<u>SWP Basin</u> St 16A	tream Code 52931		e s Run			
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
2.890	Edinboro Confe	r PA0222216	0.004	CBOD5	25		
				NH3-N	25	50	
				Dissolved Oxygen			4
				Bissoned Oxygen			7

Thursday, February 22, 2024

Version 1.1

SWP Basin	<u>Stream Code</u>			Stream Nam	<u>ne</u>	
16A	52931		Trib	52931 to Bol	es Run	
RMI	Total Discharge	e Flow (mgd) <u>Anal</u>	ysis Tempera	ture (°C)	Analysis pH
2.890	0.00	4		20.000		6.900
Reach Width (ft)	Reach De	pth (ft)		Reach WDR	atio	Reach Velocity (fps)
1.148	0.23	3		4.924		0.024
Reach CBOD5 (mg/L)	Reach Kc	(<u>1/days)</u>	R	each NH3-N (<u>mg/L)</u>	Reach Kn (1/days)
24.65	1.50			24.65		0.700
Reach DO (mg/L)	<u>Reach Kr (</u>			<u>Kr Equatio</u>	<u>n</u>	Reach DO Goal (mg/L)
4.060	26.41	19		Owens		2
Reach Travel Time (days 0.991) TravTime	Subreech CBOD5	NH3-N	D.O.		
0.001	(days)	(mg/L)	(mg/L)	(mg/L)		
	0.099	21.24	22.99	4.39		
	0.198	18.31	21.45	4.84		
	0.297	15.78	20.02	5.24		
	0.396	13.60	18.67	5.61		
	0.495	11.72	17.42	5.93		
	0.595	10.10	16.26	6.22		
	0.694	8.71	15.17	6.49		
	0.793	7.50	14.15	6.72		
	0.892	6.47	13.20	6.93		
	0.991	5.57	12.32	7.12		

Version 1.1

WQM 7.0 Modeling Specifications

Parameters	D.O.	Use Inputted Q1-10 and Q30-10 Flows	
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.36	Temperature Adjust Kr	√
D.O. Saturation	90.00%	Use Balanced Technology	1
D.O. Goal	2		

Thursday, February 22, 2024

Version 1.1

	SWP Basir			Stre	am Name		RMI	Eleva (ft		Drainage Area (sq mi)	Slope (ft/ft)	PWS Withdrawal (mgd)	Apply FC
	16A	529	931 Trib 5:	2931 to Bo	oles Run		2.89	90 14	60.00	0.09	0.00000	0.0)
					S	tream Da	ta						
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Temp	<u>Tributary</u> o pH	Tem	<u>Stream</u> p pH	
	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C)	
Q7-10	0.001	0.00	0.00	0.000	0.000	0.0	0.00	0.00	20	0.00 6.9	0 0	0.0 0.0	0
Q1-10		0.00	0.00	0.000	0.000								
Q30-10		0.00	0.00	0.000	0.000								

Input Data WQM 7.0

		Dia	charge D	ata					
Na	me	Permit Number	Existing Disc Flow	Permitted Disc Flow	l Desig Disc Flow	Res	erve ctor	Disc Temp	Disc pH
			(mgd)	(mgd)	(mgd	i)		(°C)	
Edinboro (Confer	PA0222216	0.0041	0.0000	0.00	000	000.0	20.00	6.90
		Par	rameter [ata					
			Dis			Stream	Fate		
	Para	meter Name	Co	nc Co	nc	Conc	Coef		
			(mg	g/L) (mg	I/L) ((mg/L)	(1/days)	
CBC	D5		2	5.00	0.00	0.00	1.5	0	39
Diss	olved Oxy	gen		4.00	8.24	0.00	0.0	0	
NH3	-N		2	5.00	0.00	0.00	0.7	0	

	SWP Basin	Strea Coo		Stre	eam Name		RMI		vation (ft)	Drain Are (sq i	a	Slope (ft/ft)	PV Withc (m	Irawal	Apply FC
	16A	529	931 Trib 5:	2931 to Be	oles Run		2.50	00	1410.00		0.69	0.00000		0.00	✓
C					St	ream Data	a								
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Ter		ary pH	Tem		n pH	
	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C	C)		(°C)		
Q7-10 Q1-10 Q30-10	0.001	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000 0.000 0.000	0.0	0.00	0.0	10 2	20.00	6.90) (0.00	0.00	
					Di	scharge [)ata								
			Name	Per	rmit Number	Disc	Permitte Disc Flow (mgd)	Dis Flo	c Res w Fa	serve actor	Disc Temp (°C)	Di p p	sc H		
		<u>12</u>				0.0000	0.000	0.0	000	0.000	0	.00	7.00		
					P	arameter [Data								
				Paramete	r Name	Dis Co		Frib Conc	Stream Conc	Fate Coe					
			ž	, aramete		(m	g/L) (n	ng/L)	(mg/L)	(1/da	ys)				
			CBOD5			2	25.00	2.00	0.00) 1	.50				
			Dissolved	Oxygen			3.00	8.24	0.00) (0.00				

25.00

0.00

0.00

0.70

Input Data WQM 7.0

NH3-N

S	WP Basin	Stream C	ode			Stream	Name			
	16A	52931	Î.		Trib	52931 to	Boles Ru	n		
01330176	d Oxygen	Allocatio	ons							
DISSOIVE	u Oxygen	Allocatio		<u>DD5</u>	<u>NH</u>	<u>3-N</u>	Dissolved	d Oxygen	Critical	Percent

Thursday, February 22, 2024

Version 1.1

			11 5	1 110	117 41	00,111		000	0010			
	SW	P Basin	Strea	am Code				Stream	Name			
		16A	5	2931			Trib :	52931 to	Boles Ru	ın		
RMI	Stream Flow	PWS With	Net Stream Flow	Disc Analysis Flow	Reach Slope	Depth	Width	W/D Ratio	Velocity	Reach Trav Time	Analysis Temp	Analysis pH
	(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	(°C)	
Q7-1	0 Flow											
2.890	0.00	0.00	0.00	.0063	0.02428	.233	1.15	4.92	0.02	0.991	20.00	6.90
Q1-1	0 Flow											
2.890	0.00	0.00	0.00	.0063	0.02428	NA	NA	NA	0.00	0.000	0.00	0.00
Q30-	10 Flow	/										
2.890	0.00	0.00	0.00	.0063	0.02428	NA	NA	NA	0.00	0.000	0.00	0.00

WQM 7.0 Hydrodynamic Outputs

Version 1.1

Attachment 2

Perennial Reach Modeling

For CBOD5 and DO, the resulting limits are the same as the inputs from the Dry Stream model therefore secondary limits are sufficient.

		WQM T	7.0 Ef	fluent Limits	5		
		<u>n Code</u> 931		<u>Stream Name</u> Trib 52931 to Bole	-		
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
2.500	Edinboro Confer	PA0222216	0.004	CBOD5	5.57		
				NH3-N	12.32	24.64	
				Dissolved Oxygen			7.12

Thursday, February 22, 2024

Version 1.1

<u>SWP Basin</u> 16A	Stream Code 52931		Trib	<u>Stream Name</u> 52931 to Boles Run	
<u>RMI</u>	Total Discharge	e Flow (mgd	<u>) Ana</u>	lysis Temperature (°C	<u>) Analysis pH</u>
2.500	0.00	4		24.588	7.476
Reach Width (ft)	Reach De	epth (ft)		Reach WDRatio	Reach Velocity (fps)
4.016	0.33	5		11.992	0.056
Reach CBOD5 (mg/L)	Reach Kc	(1/days)	R	each NH3-N (mg/L)	Reach Kn (1/days)
2.29	0.04	and the second s		1.11	0.996
Reach DO (mg/L)	<u>Reach Kr (</u>			Kr Equation	Reach DO Goal (mg/L)
7.505	26.50	08		Owens	5
<u>Reach Travel Time (days</u>		Subreact			
2.624	Tra∨Time (days)	CBOD5 (mg/L)	NH3-N (mg/L)	D.O. (mg/L)	
	0.262	2.26	0.85	7.54	
	0.525	2.23	0.66	7.54	
	0.787	2.20	0.50	7.54	
	1.050	2.17	0.39	7.54	
	1.312	2.14	0.30	7.54	
	1.574	2.11	0.23	7.54	
	1.837	2.08	0.18	7.54	
	2.099	2.06	0.14	7.54	
	2.361		0.11	7.54	
	2.624		0.10	7.54	

WQM 7.0 D.O.Simulation

Thursday, February 22, 2024

Version 1.1

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.36	Temperature Adjust Kr	✓
D.O. Saturation	90.00%	Use Balanced Technology	✓
D.O. Goal	5		

Thursday, February 22, 2024

Version 1.1

I contract		-	141	0.0.4	7 0
IND	uτL)ata	VV	UIVI	1.0

	SWP Basin	Strea Coo		Stre	eam Name		RMI		ation ft)	Drainage Area (sq mi)		lope t/ft)	PW: Withdr (mg	awal	Apply FC
	16A	52	931 Trib 52	2931 to B	oles Run		2.50)0 1	410.00	0.	69 0.0	00000		0.00	•
					St	ream Dat	a								
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	<u>Tributary</u> p p	н	Tem	<u>Stream</u> p	рН	
eenar	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C)			
Q7-10 Q1-10	0.100	0.00 0.00		0.000 0.000	0.000 0.000	0.0	0.00	0.00) 2	5.00	7.60	C	0.00	0.00	
Q30-10		0.00	0.00	0.000	0.000										
					Di	scharge	Data								
			Name	Per	mit Numbe	Disc	Permitte Disc Flow (mgd)	Disc Flow	Res / Fa	erve T ctor	Disc ⁻emp (ºC)	Dis pł			
		Edint	ooro Confer	PA	0222216	0.004	0.000	0 0.00	000 (0.000	20.0	0	6.90		
					P	aram eter	Data								
			r	Paramete	r Nomo				Stream Conc	Fate Coef					
			r	aramete	Iname	(m	g/L) (n	ng/L) ((mg/L)	(1/days)					
			CBOD5				5.57	2.00	0.00	1.50)				
			Dissolved	Oxygen			7.12	7.54	0.00	0.00)				
			NH3-N				12.32	0.10	0.00	0.70)				

Version 1.1

La service a service de la	D 4	1410 84	- 0
Input	Data	WOW	7.0

	SWP Basin			Stre	eam Name		RMI	Eleva (ft		Drainage Area (sq mi)		ope V /ft)	PWS Vithdrawa (mgd)		Apply FC
	16A	529	931 Trib 52	2931 to B	oles Run		0.1	00 13	803.00	2.0	0.0 0.0	0000	0.	00	✓
					St	ream Dat	a								
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	<u>Tributary</u> p p	н	<u>SI</u> Temp	<u>tream</u> p⊦	ł	
	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C))		(°C)			
Q7-10 Q1-10	0.100	0.00 0.00	0.00 0.00	0.000 0.000	0.000 0.000	0.0	0.00	0.00	25	5.00	7.60	0.0	0 0	.00	
Q30-10		0.00	0.00	0.000	0.000										
					Di	scharge	Data								
			Name	Per	mit Number	Disc	Permitt Disc Flow (mgd)		Res Fac	erve T ctor	Disc emp (°C)	Disc pH	6.000		
						0.000	0 0.00	00.00	00 0	0.000	25.00) 7.	00		
					P.	ram eter	Data								
			ĩ	Paramete	r Name				tream Conc	Fate Coef					
				aramete	i Marrie	(m	ıg/L) (r	ng/L) (r	mg/L)	(1/days)					
	-		CBOD5	_			25.00	2.00	0.00	1.50					
			Dissolved	Oxygen			3.00	8.24	0.00	0.00					
			NH3-N				25.00	0.00	0.00	0.70					

	<u>SWP Basin</u> 16A	225	a <u>m Code</u> 2931		40	ream Name 031 to Boles I	Run		
NH3-N	Acute Alloca	tion	s						
RMI	Discharge N	ame	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction	6
2.50	00 Edinboro Cont	er	7.15	24.64	7.15	24.64	0	0	-
NH3-N	Chronic Allo	cati	ons						
NH3-N RMI	Chronic Allo Discharge Na		ons Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction	
RMI		ne	Baseline Criterion	WLA	Criterion	WLA			-
RMI 2.50	Discharge Na	ne ër	Baseline Criterion (mg/L) 1.03	WLA (mg/L)	Criterion (mg/L)	WLA (mg/L)	Reach	Reduction	-
RMI 2.50	Discharge Nai 00 Edinboro Cont	me fer Iloc	Baseline Criterion (mg/L) 1.03 ations	WLA (mg/L) 12.32	Criterion (mg/L) 1.03 <u>NH3-N</u>	WLA (mg/L) 12.32	Reach 0 ved Oxyger	0 Critical	- - Percent

5.57

5.57

12.32

12.32

7.12

7.12

0

0

Thursday, February 22, 2024

2.50 Edinboro Confer

Version 1.1

	SN	<u>/P Basin</u>		<u>m Code</u>				<u>Stream</u>				
		16A	5	2931			Trib (2931 to	Boles Ru	IN		
RMI	Stream Flow	PWS With	Net Stream Flow	Disc Analysis Flow	Reach Slope	Depth	Width	W/D Ratio	Velocity	Reach Trav Time	Analysis Temp	Analysis pH
	(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	(°C)	
Q7-1	0 Flow											
2.500	0.07	0.00	0.07	.0062	0.00844	.335	4.02	11.99	0.06	2.624	24.59	7.48
Q1-1	0 Flow											
2.500	0.04	0.00	0.04	.0062	0.00844	NA	NA	NA	0.04	3.284	24.39	7.43
Q30-	10 Flov	v										
2.500	0.09	0.00	0.09	.0062	0.00844	NA	NA	NA	0.07	2.236	24.69	7.50

WQM 7.0 Hydrodynamic Outputs

Version 1.1

Attachment 3

Input appropria	ate values in <i>l</i>	A3:A9 and D3:D9			
0.3	2 = Q stream (cfs)	0.5	= CV Daily	
0.004 [,]	1 = Q discharg	je (MGD)	0.5	= CV Hourly	
30) = no. sample	S	1	= AFC_Partial	Mix Factor
0.3	3 = Chlorine D	emand of Stream	1	= CFC_Partial	Mix Factor
(0 = Chlorine D	emand of Discharge			Compliance Time (min)
0.9	5 = BAT/BPJ V	alue	720	= CFC_Criteria	Compliance Time (min)
(0 = % Factor o	of Safety (FOS)	0	=Decay Coeffic	cient (K)
Source	Reference	AFC Calculations		Reference	CFC Calculations
TRC	1.3.2.iii	WLA afc =		1.3.2.iii	WLA cfc = 9.818
PENTOXSD TRG		LTAMULT afc =		5.1c	LTAMULT cfc = 0.581
PENTOXSD TRG	5.1b	LTA_afc=	3.755	5.1d	LTA_cfc = 5.707
Source		Efflue	nt Limit Calcu	lations	
PENTOXSD TRG	5.1f		AML MULT =	4 004	
			ANIL NOLI -	1.201	
PENTOXSD TRG			LIMIT (mg/l) =	0.500	BAT/BPJ
PENTOXSD TRG				0.500	BAT/BPJ
WLA afc LTAMULT afc	5.1g (.019/e(-k*Al + Xd + (AF	INST MAX FC_tc)) + [(AFC_Yc*Qs*.019 C_Yc*Qs*Xs/Qd)]*(1-FOS/10 (cvh^2+1))-2.326*LN(cvh^2+	LIMIT (mg/l) = LIMIT (mg/l) = //Qd*e(-k*AFC 0)	0.500 1.635	BAT/BPJ
WLA afc LTAMULT afc LTA_afc	5.1g (.019/e(-k*Al + Xd + (AF EXP((0.5*LN wla_afc*LTA (.011/e(-k*C	INST MAX FC_tc)) + [(AFC_Yc*Qs*.019 C_Yc*Qs*Xs/Qd)]*(1-FOS/10 (cvh^2+1))-2.326*LN(cvh^2+	LIMIT (mg/l) = LIMIT (mg/l) = //Qd*e(-k*AFC)0) +1)^0.5) /Qd*e(-k*CFC	0.500 1.635 5_tc))	BAT/BPJ
WLA afc LTAMULT afc LTA_afc WLA_cfc LTAMULT_cfc	5.1g (.019/e(-k*Al + Xd + (AFI EXP((0.5*LN wla_afc*LTA (.011/e(-k*Cl + Xd + (CFI EXP((0.5*LN	INST MAX FC_tc)) + [(AFC_Yc*Qs*.019 C_Yc*Qs*Xs/Qd)]*(1-FOS/10 (cvh^2+1))-2.326*LN(cvh^2+ MULT_afc FC_tc) + [(CFC_Yc*Qs*.011/ C_Yc*Qs*Xs/Qd)]*(1-FOS/10 (cvd^2/no_samples+1))-2.32	LIMIT (mg/l) = LIMIT (mg/l) = //Qd*e(-k*AFC i0) +1)^0.5) /Qd*e(-k*CFC i0)	0.500 1.635 (_tc))	
WLA afc LTAMULT afc LTA_afc WLA_cfc LTAMULT_cfc	5.1g (.019/e(-k*Al + Xd + (AF(EXP((0.5*LN wla_afc*LTA (.011/e(-k*C) + Xd + (CF	INST MAX FC_tc)) + [(AFC_Yc*Qs*.019 C_Yc*Qs*Xs/Qd)]*(1-FOS/10 (cvh^2+1))-2.326*LN(cvh^2+ MULT_afc FC_tc) + [(CFC_Yc*Qs*.011/ C_Yc*Qs*Xs/Qd)]*(1-FOS/10 (cvd^2/no_samples+1))-2.32	LIMIT (mg/l) = LIMIT (mg/l) = //Qd*e(-k*AFC i0) +1)^0.5) /Qd*e(-k*CFC i0)	0.500 1.635 (_tc))	
PENTOXSD TRG WLA afc LTAMULT afc LTA_afc WLA_cfc LTAMULT_cfc LTAMULT_cfc AML MULT	5.1g (.019/e(-k*Al + Xd + (AF4 EXP((0.5*LN wla_afc*LTA (.011/e(-k*C + Xd + (CF4 EXP((0.5*LN wla_cfc*LTA EXP(2.326*L	INST MAX FC_tc)) + [(AFC_Yc*Qs*.019 C_Yc*Qs*Xs/Qd)]*(1-FOS/10 (cvh^2+1))-2.326*LN(cvh^2+ MULT_afc FC_tc) + [(CFC_Yc*Qs*.011/ C_Yc*Qs*Xs/Qd)]*(1-FOS/10 (cvd^2/no_samples+1))-2.32 MULT_cfc N((cvd^2/no_samples+1)^0.	LIMIT (mg/l) = LIMIT (mg/l) = //Qd*e(-k*AFC 0) +1)^0.5) /Qd*e(-k*CFC 0) 16*LN(cvd^2/n 5)-0.5*LN(cvd	0.500 1.635 (_tc)) o_samples+1)^	0.5)
WLA afc LTAMULT afc LTA_afc WLA_cfc LTAMULT_cfc LTA_cfc	5.1g (.019/e(-k*Al + Xd + (AF4 EXP((0.5*LN wla_afc*LTA (.011/e(-k*C + Xd + (CF4 EXP((0.5*LN wla_cfc*LTA EXP(2.326*L	INST MAX FC_tc)) + [(AFC_Yc*Qs*.019 C_Yc*Qs*Xs/Qd)]*(1-FOS/10 (cvh^2+1))-2.326*LN(cvh^2+ MULT_afc FC_tc) + [(CFC_Yc*Qs*.011/ C_Yc*Qs*Xs/Qd)]*(1-FOS/10 (cvd^2/no_samples+1))-2.32 MULT_cfc	LIMIT (mg/l) = LIMIT (mg/l) = //Qd*e(-k*AFC 0) +1)^0.5) /Qd*e(-k*CFC 0) 16*LN(cvd^2/n 5)-0.5*LN(cvd	0.500 1.635 (_tc)) o_samples+1)^	0.5)