

Northwest Regional Office CLEAN WATER PROGRAM

Application Type

Facility Type

Major / Minor

Minor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

 Application No.
 PA0223018

 APS ID
 1000502

 Authorization ID
 1285735

Applicant Name	Farmi	ngton Township	Facility Name	Farmington Township STP
Applicant Address	596 Fa	airbanks Road	Facility Address	595 Fairbanks Road
	Russe	II, PA 16345		Russell, PA 16345
Applicant Contact	Edwar	d Beardsley	Facility Contact	Edward Beardsley
Applicant Phone	(724) 8	867-6981	Facility Phone	(724) 867-6981
Client ID	11207	0	Site ID	536121
Ch 94 Load Status	Not O	verloaded	Municipality	Farmington Township
Connection Status	No Lin	nitations	County	Warren County
Date Application Rece	eived	August 12, 2019	EPA Waived?	Yes
Date Application Acce	epted	August 29, 2019	If No, Reason	<u>_</u> -

Summary of Review

Act 14 - Proof of Notification was submitted and received.

A Part II Water Quality Management permit is not required at this time.

The applicant should be able to meet the limits of this permit, which will protect the uses of the receiving stream.

I. OTHER REQUIREMENTS:

SPECIAL CONDITIONS:

- A. Stormwater into Sewers
- B. Right of Way
- C. Solids Handling
- D. Effluent Chlorine Optimization and Minimization

Solids Management

There are no open violations in efacts associated with the subject Client ID (112070) as of 11/3/2021.

Approve	Deny	Signatures	Date
Y		Stephen A. McCauley	11/3/2021
		Stephen A. McCauley, E.I.T. / Environmental Engineering Specialist	11/0/2021
X		Justin C. Dickey	11/4/2021
		Justin C. Dickey, P.E. / Environmental Engineer Manager	11/7/2021

Discharge, Receiving Wa	aters and Water Supply Informa	ation
Outfall No. 001	Design Flow (MGD)	0.025
Latitude 41° 58' 14.30"	Longitude	-79º 14' 12.90"
Quad Name	Quad Code	
Wastewater Description: Sewage Effluent		
Receiving Waters Rollin Run (CWF)	Stream Code	56404
NHD Com ID 129446832	RMI	1.2
Drainage Area 1.23	Yield (cfs/mi²)	0.07
Q ₇₋₁₀ Flow (cfs) 0.086	Q ₇₋₁₀ Basis	calculated
Elevation (ft) 1518	Slope (ft/ft)	0.01149
Watershed No. 16-B	Chapter 93 Class.	CWF
Existing Use	Existing Use Qualifier	_
Exceptions to Use	Exceptions to Criteria	
Assessment Status Attaining Use(s)		
Cause(s) of Impairment		
Source(s) of Impairment		
TMDL Status -	Name	
Background/Ambient Data	Data Source	
pH (SU)		
Temperature (°F)		
Hardness (mg/L)		
Other:	-	
Nearest Downstream Public Water Supply Intake	PA - NY state border	
PWS Waters Kiantone Creek	Flow at Intake (cfs)	
PWS RMI -	Distance from Outfall (mi)	4.5

Sludge use and disposal description and location(s): Sludge is not used, it is hauled to the Sugar Grove Area Sewer Authority where it is applied to the reed beds.

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the Pennsylvania Bulletin in accordance with 25 Pa. Code § 92a.82. Upon publication in the Pennsylvania Bulletin, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the Pennsylvania Bulletin at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Narrative: This Fact Sheet details the determination of draft NPDES permit limits for an existing discharge of 0.025 MGD of treated sewage from an existing Publicly Owned Treatment Works (POTW) in Farmington Township, Warren County.

NPDES Permit Fact Sheet Farmington Township STP Warren

Permitted treatment (WQM Permit no. 6200408) consists of: Comminution, an 8,543 gallon aerated equalization tank, 3 aeration tanks totaling 26,000 gallons, a 5,847 gallon settling tank, a 10,625 gallon aerobic digestion tank, chlorination with a 2,800 gallon contact tank, dechlorination with a 690 gallon tank, a polishing clarifier, and post aeration.

1. Streamflow:

Jackson Run near North Warren, PA - USGS gage 03015280 (1964-1978):

Q₇₋₁₀: <u>0.9</u> cfs (USGS StreamStats)
Drainage Area: 12.8 sq. mi. (USGS StreamStats)

Yieldrate: 0.07 cfsm calculated

Unnamed Tributary to the Kiantone Creek at Outfall 001:

Yieldrate: <u>0.07</u> cfsm calculated above
Drainage Area: 1.23 sq. mi. (USGS StreamStats)

 Q_{7-10} : 0.086 cfs calculated

% of stream allocated: <u>100%</u> Basis: No nearby discharges

2. Wasteflow:

Maximum discharge: 0.025 MGD = 0.038 cfs

Runoff flow period: 24 hours Basis: Runoff flow for an STP with equalization

In accordance with the SOP, since there is greater than 3 parts stream flow (Q7-10) to 1 part effluent (design flow), the treatment requirements in document number 391-2000-014, titled, "Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers", dated April 12, 2008, were not evaluated.

Flow will be required to be monitored as authorized under Chapter 92a.61, and as recommended in the SOP.

3. Parameters:

The following parameters were evaluated: pH, Total Suspended Solids, Fecal Coliform, E. Coli, Total Phosphorus, Total Nitrogen, NH₃-N, CBOD₅, Dissolved Oxygen, and Total Residual Chlorine.

a. <u>pH</u>

Between 6.0 and 9.0 at all times

Basis: Application of Chapter 93.7 technology-based limits.

The measurement frequency will be set to 1/day as recommended in the SOP, based on Table 6-3 in the "Technical Guidance for the Development and Specification of Effluent Limitations" (362-0400-001).

b. Total Suspended Solids

Limits are 30 mg/l as a monthly average and 60 as an instantaneous maximum.

Basis: Application of Chapter 92a47 technology-based limits.

c. Fecal Coliform

05/01 - 09/30: 200/100ml (monthly average geometric mean)

1,000/100ml (instantaneous maximum)

NPDES Permit Fact Sheet Farmington Township STP Warren

10/01 - 04/30: 2,<u>000/100ml</u> (monthly average geometric mean) 10,000/100ml (instantaneous maximum) Basis: Application of Chapter 92a47 technology-based limits d. E. Coli Monitoring was added for E. Coli at a frequency of 1/year. Basis: Application of Chapter 92a.61 as recommended by the SOP for flows less than 0.05 MGD. Phosphorus e. Chapter 96.5 does not apply. However, the previous monitoring for Total Phosphorus will be retained in accordance with the SOP, based on Chapter 92a.61. Limit necessary due to: Discharge to lake, pond, or impoundment Discharge to stream Discharge to a dry stream Basis: N/A f. Total Nitrogen The previous monitoring for Total Nitrogen will be retained in accordance with the SOP, based on Chapter 92a.61. Limit necessary due to: Discharge to a lake, pond, or impoundment Discharge to a stream Discharge to a dry stream Basis: N/A g. Ammonia-Nitrogen (NH₃-N) Median discharge pH to be used: 7.6 Standard Units (S.U.) Basis: eDMR data from previous 12 months (default value used in the absence of data) Discharge temperature: 25°C Median stream pH to be used: 7.0 Standard Units (S.U.) default value used in the absence of data Stream Temperature: <u>20°C</u> (default value used for CWF modeling) Background NH₃-N concentration: 0.1 mg/l

Basis: Default value

Calculated NH₃-N Summer limits: <u>6.7</u> mg/l (monthly average)

13.4 mg/l (instantaneous maximum)

Calculated NH₃-N Winter limits: 20.1 mg/l (monthly average)

40.2 mg/l (instantaneous maximum)

Result: WQ modeling resulted in the summer limits above (see Attachment 1). The winter limits are

calculated as three times the summer limits. However, the previous limits are more restrictive and

are attainable, so they will be retained.

h. CBOD₅

Median discharge pH to be used: 7.6 Standard Units (S.U.)

Basis: eDMR data from previous 12 months

Discharge temperature: <u>25°C</u> (default value used in the absence of data)

Median stream pH to be used: 7.0 Standard Units (S.U.)

Basis: <u>default value used in the absence of data</u>

Stream Temperature: 20°C (default value used for CWF modeling)

Background CBOD₅ concentration: 2.0 mg/l

Basis: Default value

CBOD₅ Summer limits: 25.0 mg/l (monthly average)

<u>50.0</u> mg/l (instantaneous maximum)

CBOD₅ Winter limits: <u>25.0</u> mg/l (monthly average)

50.0 mg/l (instantaneous maximum)

Result: WQ modeling resulted in the summer limits above (see Attachment 1), which are the same as in the previous permit. The winter limits are calculated as three times the summer limits, but since the technology-based limits would govern, they will be used. Since the summer and winter limits are technology-based, per the SOP, the year-round limit of 25.0 mg/l monthly average and 50.0 mg/l instantaneous maximum will be retained with this renewal.

i. Influent Total Suspended Solids and BOD₅

Monitoring for these two parameters will be retained as recommended in the SOP for POTWs, as authorized under Chapter 92a.61.

j. <u>Dissolved Oxygen (DO)</u>

\boxtimes	<u>4.0</u>	mg/l	- minim	um desire	ed in eff	luent to	protect al	I aquatic life
								_

<u>5.0</u> mg/l - desired in effluent for CWF, WWF, or TSF

6.0 mg/l - minimum required due to discharge falling under guidance document 391-2000-014

8.0 mg/l - required due to discharge going to a naturally reproducing salmonid stream

Discussion: A Dissolved Oxygen minimum of 4.0 mg/l was calculated by the WQ Model (see Attachment 1).

The new limit will be added with this renewal per the SOP, based on Chapter 93.7, and under the

authority of Chapter 92a.61.

The measurement frequency will be set to 1/day as recommended in the SOP, based on Table 6-3 in the "Technical Guidance for the Development and Specification of Effluent Limitations" (362-0400-001).

k. Total Residual Chlorine (TRC)

■ No limit necessary

Basis: N/A

TRC limits: 0.3 mg/l (monthly average)

1.0 mg/l (instantaneous maximum)

Basis: The water quality-based limits for TRC above were calculated by the TRC_Calc

Spreadsheet (see Attachment 2). The calculated limits are more restrictive than the previous permit. Since the new more restrictive limits are attainable, a compliance

schedule will not be added with this renewal.

The measurement frequency will be set to 1/day as recommended in the SOP, based on Table 6-3 in the "Technical Guidance for the Development and Specification of Effluent

Limitations" (362-0400-001).

4. Reasonable Potential Analysis for Receiving Stream:

A Reasonable Potential Analysis was not performed in accordance with State practices for Outfall 001 by the Department's Toxics Management Spreadsheet since no parameters other than sewage are required to be sampled for flows less than 0.1 MGD.

Result: No reasonable potential was calculated, so no WQBELs are necessary for this renewal.

5. Reasonable Potential for Downstream Public Water Supply (PWS):

The Reasonable Potential Analysis does not calculate limits for parameters that are based on PWS criteria (TDS, Chloride, Bromide, and Sulfate). However, since sample data was provided, mass-balance calculations were performed (see below).

Nearest Downstream potable water supply (PWS): PA - NY state border

Distance downstream from the point of discharge: 4.5 miles (approximate)

PWS Evaluation:

Stream flow (sf) at the potable water supply intake (PA-NY state border) = 1.16 cfs

Waste flow (wf) from the STP = 0.025 MGD = 0.038 cfs

Total flow = 1.198 cfs

Background Concentrations: No data available (assumed zero)

Mass balance for TDS at the potable water supply intake:

(sf @ PWS)(bkrd. conc.) + (wf)(x) = (tot. flow)(criteria) (1.16 cfs)(0 mg/l) + (0.038 cfs)(x) = (1.198 cfs)(500 mg/l)

x = 15,763 mg/l (renewal application maximum was 476 mg/l - ok)

Mass balance for Chloride at the potable water supply intake:

(sf @ PWS)(bkrd. conc.) + (wf)(x) = (tot. flow)(criteria)

(1.16 cfs)(0 mg/l) + (0.038 cfs)(x) = (1.198 cfs)(250 mg/l)

x = 7,881 mg/l (renewal application maximum was 131 mg/l - ok)

Mass balance for Bromide at the potable water supply intake:

```
(sf @ PWS)(bkrd. conc.) + (wf)(x) = (tot. flow)(criteria)
(1.16 cfs)(0 mg/l) + (0.038 cfs)(x) = (1.198 cfs)(1 mg/l)
```

x = 31.5 mg/l (renewal application maximum was <0.4 mg/l - ok)

Bromide has been linked to the formation of disinfection byproducts at increased levels in public water systems. Where the concentration of Bromide in a discharge exceeds 1 mg/L, and the discharge flow exceeds 0.1 MGD, Part A of the permit should include monitor and report for bromide. Since the permitted discharge is less than 0.1 MGD, and the maximum reported sample data for Bromide was <2.0 mg/l, monitoring is not necessary with this renewal permit.

Mass balance for Sulfate at the potable water supply intake:

```
(sf @ PWS)(bkrd. conc.) + (wf)(x) = (tot. flow)(criteria)
(1.16 cfs)(0 mg/l) + (0.038 cfs)(x) = (1.198 cfs)(250 mg/l)
x = 7.881 mg/l (renewal application maximum was 26.5 mg/l - ok)
```

No limits necessary

☐ Limits needed

Basis: Significant dilution available.

6. Additional Information:

The Farmington Township STP receives 100% of its flow from the Farmington Township, which is a 100% separate sewer system.

7. Anti-Backsliding

Since all the permit limits in this renewal are the same or more restrictive than the previous NPDES Permit, anti-backsliding is not applicable.

8. Attachment List:

Attachment 1 - WQ Modeling Printouts

Attachment 2 - TRC Calc Spreadsheet

(The Attachments above can be found at the end of this document)

Compliance History

DMR Data for Outfall 001 (from October 1, 2020 to September 30, 2021)

Parameter	SEP-21	AUG-21	JUL-21	JUN-21	MAY-21	APR-21	MAR-21	FEB-21	JAN-21	DEC-20	NOV-20	OCT-20
Flow (MGD)												
Average Monthly	0.005	0.006	0.006	0.006	0.005	0.006	0.006	0.005	0.006	0.007	0.005	0.005
pH (S.U.)												
Minimum	7.6	7.1	7.2	7.4	7.5	6.5	7.3	7.3	7.6	7.6	7.9	7.8
pH (S.U.)												
Maximum	8.1	7.4	7.8	7.7	8.1	7.8	7.8	7.8	7.8	7.9	8.1	8.1
TRC (mg/L)												
Average Monthly	0.16	0.11	0.12	0.17	0.12	0.14	0.09	0.08	0.16	0.16	0.1	0.19
TRC (mg/L)												
Instantaneous Maximum	0.22	0.14	0.13	0.26	0.14	0.22	0.18	0.09	0.24	0.31	0.14	0.38
CBOD5 (lbs/day)												
Average Monthly	< 0.08	0.2	0.5	0.3	< 0.2	0.3	< 0.3	0.2	< 0.2	< 0.3	< 0.3	0.2
CBOD5 (lbs/day)												
Weekly Average	< 0.1	0.3	0.9	0.4	0.3	0.3	0.5	0.2	< 0.2	0.3	0.4	0.3
CBOD5 (mg/L)												
Average Monthly	< 2.2	3.85	5.39	6.31	< 5.49	6.71	< 4.26	3.73	< 3	4.41	< 4.73	4.81
CBOD5 (mg/L)												
Weekly Average	< 2.4	5.15	6.96	7.03	7.97	6.98	5.52	4.25	< 3	5.81	4.76	5.41
BOD5 (lbs/day)												
Raw Sewage Influent												
Average Monthly	8	18	5.0	8	12	10	14	11	12	19	12	8
BOD5 (mg/L)												
Raw Sewage Influent												
Average Monthly	245	263	115.6	156	334	240	213.5	213	198.9	272	9	171
TSS (lbs/day)												
Average Monthly	< 0.1	0.3	0.7	0.3	0.4	0.4	0.2	0.2	0.2	1	0.7	0.3
TSS (lbs/day)												
Raw Sewage Influent				_			_	_	_	_	_	_
Average Monthly	10	15	8.0	9	10	12	8	9	5	7	9	8
TSS (lbs/day)										_		
Weekly Average	0.1	0.4	1.0	1.0	0.4	0.6	0.3	0.3	0.3	2	1.0	0.3
TSS (mg/L)								_				
Average Monthly	< 3.5	4.7	9.6	6.4	11.6	9.1	3.2	5	3.2	15.6	9.2	6.5
TSS (mg/L)												
Raw Sewage Influent			400		0.50			40-			100	4-0
Average Monthly	326	227	168	184	259	292	126	187	87	106	128	173
TSS (mg/L)			400								1	
Weekly Average	< 4.5	6.4	10.0	22.8	13.2	14.5	4	6	4.8	28	15.2	6.8

NPDES Permit Fact Sheet Farmington Township STP Warren

Fecal Coliform (CFU/100 ml)	0.7	000	500	4.40	0							
Average Monthly	67	289	508	149	8							
Fecal Coliform (CFU/100 ml)												
Geometric Mean						101	6	75	15	311	647	52
Fecal Coliform (CFU/100 ml)												
Instantaneous Maximum	866.4	2419.6	1379.2	149.2	8	353.6	8	2842	17.3	1498	960.6	126.2
Total Nitrogen (mg/L)												
Average Monthly	37.22	39.03	22.66	31.12	44.16	48.02	52.65	52.23	53.33	36.39	36.69	63.42
Ammonia (lbs/day)												
Average Monthly	< 0.003	0.007	< 0.008	< 0.005	0.004	< 0.01	0.007	< 0.005	< 0.006	< 0.007	< 0.007	< 0.005
Ammonia (mg/L)												
Average Monthly	< 0.1	< 0.1	< 0.1	< 0.1	0.1	< 0.319	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Total Phosphorus (mg/L)												
Average Monthly	8.99	7.64	4.89	5.48	5.4	7.27	7.27	6.86	5.8	4.68	0.3	6.98

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

			Effluent L	imitations			Monitoring Re	quirements
Paramotor	Mass Units	(lbs/day) (1)		Concentrati	ions (mg/L)		Minimum (2)	Required
DH (S.U.) DO TRC CBOD5 BOD5 Raw Sewage Influent TSS TSS Raw Sewage Influent Fecal Coliform (No./100 ml) Oct 1 - Apr 30 Fecal Coliform (No./100 ml) May 1 - Sep 30 E. Coli (No./100 ml)	Average Monthly	Weekly Average	Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	XXX	XXX	XXX	XXX	XXX	1/week	Measured
pH (S.U.)	XXX	XXX	6.0 Inst Min	XXX	XXX	9.0	1/day	Grab
DO	XXX	xxx	4.0 Inst Min	XXX	XXX	XXX	1/day	Grab
TRC	XXX	XXX	XXX	0.33	XXX	1.0	1/day	Grab
CBOD5	5.0	8.0	XXX	25.0	40.0	50	2/month	8-Hr Composite
BOD5 Raw Sewage Influent	Report	XXX	XXX	Report	XXX	XXX	2/month	8-Hr Composite
TSS	6.0	9.0	XXX	30.0	45.0	60	2/month	8-Hr Composite
TSS Raw Sewage Influent	Report	XXX	XXX	Report	XXX	XXX	2/month	8-Hr Composite
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	2000 Geo Mean	XXX	10000	2/month	Grab
Fecal Coliform (No./100 ml) May 1 - Sep 30	XXX	XXX	XXX	200	XXX	1000	2/month	Grab
E. Coli (No./100 ml)	XXX	XXX	XXX	XXX	XXX	Report	1/year	Grab
Total Nitrogen	XXX	XXX	XXX	Report	XXX	XXX	1/month	8-Hr Composite
Ammonia-Nitrogen Nov 1 - Apr 30	2.5	XXX	XXX	13.5	XXX	27	2/month	8-Hr Composite
Ammonia-Nitrogen May 1 - Oct 31	0.9	XXX	XXX	4.5	XXX	9	2/month	8-Hr Composite
Total Phosphorus	XXX	XXX	XXX	Report	XXX	XXX	1/month	8-Hr Composite

Compliance Sampling Location: <u>Outfall 001, after disinfection.</u>

Flow is monitor only based on Chapter 92a.61. The limits for pH and Dissolved Oxygen are technology-based on Chapter 93.7. The limits for CBOD5, Total Suspended Solids, and Fecal Coliforms are technology based on Chapter 92a.61. The limits for Ammonia-Nitrogen are water quality-based on Chapter 93.7. Monitoring for E. Coli, Total Nitrogen, and Total Phosphorus is based on Chapter 92a.61.

Attachment 1

WQM 7.0 Effluent Limits

	<u>SWP Basin</u> <u>Stream</u> 16B 56 ²	n Code In4	ì	<u>Stream Name</u> Trib 56404 to Kiantoi			
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
1.200	Farmington STP	PA0223018a	0.025	CBOD5	25		
				NH3-N	6.76	13.52	
				Dissolved Oxygen			4

WQM 7.0 D.O.Simulation

SWP Basin St	ream Code			Stream Name	
16B	56404		Trib 56	404 to Kiantone Creek	ζ.
<u>RMI</u>	Total Discharge	Flow (mgd	l) <u>Ana</u>	lysis Temperature (°C)	Analysis pH
1.200	0.025	5		21.550	7.115
Reach Width (ft)	Reach Dep	oth (ft)		Reach WDRatio	Reach Velocity (fps)
5.089	0.36	į.		14.098	0.068
Reach CBOD5 (mg/L)	Reach Kc (<u>1/days)</u>	<u>R</u>	each NH3-N (mg/L)	Reach Kn (1/days)
9.13	1.038			2.10	0.789
Reach DO (mg/L)	Reach Kr (Kr Equation	Reach DO Goal (mg/L)
6.928	24.46	7		Owens	6
Reach Travel Time (days)		Subreach	Reculte		
1.080	Tra∨Time	CBOD5	NH3-N	D.O.	
	(days)	(mg/L)	(mg/L)	(mg/L)	
	0.108	8.09	1.92	7.96	
	0.216	7.18	1.77	8.01	
	0.324	6.36	1.62	8.01	
	0.432	5.64	1.49	8.01	
	0.540	5.00	1.37	8.01	
	0.648	4.44	1.26	8.01	
	0.756	3.93	1.15	8.01	
	0.864	3.49	1.06	8.01	
	0.972	3.09	0.97	8.01	
	1.080	2.74	0.89	8.01	

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	✓
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.36	Temperature Adjust Kr	✓
D.O. Saturation	90.00%	Use Balanced Technology	✓
D.O. Goal	6		

Input Data WQM 7.0

					555	.		and a bear						
	SWP Basin			Stre	eam Name		RMI		evation (ft)	Drainage Area (sq mi)	Slop (ft/ft	With	WS drawal ngd)	Appl FC
	16B	564	104 Trib 50	6404 to K	iantone Cre	ek	1.20	00	1518.00	1.2	3 0.000	000	0.00	~
					St	ream Dat	a							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	n Ten	<u>Tributary</u> np ph	н ;	<u>Strea</u> Temp	m pH	
Coriu.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C	:)		(°C)		
Q7-10 Q1-10 Q30-10	0.070	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000	0.0	0.00	0.0	00 2	0.00 7	7.00	0.00	0.00	
					Di	scharge I	Data						7	
			Name	Per	rmit Number	Disc	Permitte Disc Flow (mgd)	Dis Flo	sc Res	erve Te	visc emp PC)	Disc pH		
		Farm	ington STF	PA:	0223018a	0.0250	0.000	0.0	0000	0.000	25.00	7.60	-	
					Pa	arameter I	Data							
			31000	Paramete	r Name			Trib Conc	Stream Conc	Fate Coef				
			8		es destrouvos de la portición	(m	ıg/L) (n	ng/L)	(mg/L)	(1/days)				
			CBOD5				25.00	2.00	0.00	1.50				
			Dissolved	Oxygen			4.00	8.24	0.00	0.00				
			NH3-N				25.00	0.00	0.00	0.70				
													-	

Input Data WQM 7.0

					iii,p	ut Dutt	4							
	SWP Basin			Stre	eam Name		RM	I El	evation (ft)	Drainage Area (sq mi)	Slope (ft/ft)	Witho	VS drawal gd)	Appl FC
	16B	564	104 Trib 56	3404 to Ki	antone Cree	ek	0.0	000	1433.00	1.8	0.000	00	0.00	~
					St	ream Dat	a							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth		<u>Tributary</u> np pH	Ţ	<u>Strear</u> emp	<u>m</u> pH	
Conu.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C	:)	Î	(°C)		
Q7-10 Q1-10 Q30-10	0.070	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000 0.000 0.000	0.0	0.00	0.	00 2	0.00 7	.00	0.00	0.00	
					Di	scharge l	Data						1	
			Name	Per	mit Number	Existing Disc Flow (mgd)	Permit Disc Flow (mgc	c Di v Fl	sc Res	erve Te ctor	sc mp C)	Disc pH		
		-				0.000	0.00	000 0.	0000	0.000	25.00	7.00		
					Pa	arameter l	Data							
				Paramete	r Name		sc onc	Trib Conc	Stream Conc	Fate Coef				
			*		g epergeroondekerdus	(m	ıg/L) ((mg/L)	(mg/L)	(1/days)				
			CBOD5				25.00	2.00	0.00	1.50				
			Dissolved	Oxygen			3.00	8.24	0.00	0.00				
			NH3-N				25.00	0.00	0.00	0.70				

WQM 7.0 Wasteload Allocations

SWP Basin	Stream Code	Stream Name			
16B	56404	Trib 56404 to Kiantone Creek			

RMI Discharge Name		Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
1.20	0 Farmington STP	12.08	29.29	12.08	29.29	0	0
1H3-N	Chronic Allocati	ons					
		Baseline	Baseline	Multiple Criterion	Multiple W/LA	Critical Reach	Percent Reduction
RMI	Discharge Name	Criterion (mg/L)	WLA (mg/L)	(mg/L)	(mg/L)	110001	

Dissolved Oxygen Allocations

		CBOD5		<u>NH3-N</u>		Dissolved Oxygen		Critical	Percent
RMI	Discharge Name	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Reach	Reduction
1.20	1.20 Farmington STP		25	6.76	6.76	4	4	0	0

WQM 7.0 Hydrodynamic Outputs

	SW	P Basin	Strea	m Code				Stream	<u>Name</u>			
16B 56404			6404	Trib 56404 to Kiantone Creek								
RMI	Stream Flow	PWS With	Net Stream Flow	Disc Analysis Flow	1.00	Depth	Width	W/D Ratio	Velocity	Trav Time	Analysis Temp	Analysis pH
	(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	(°C)	
Q7-1	0 Flow											
1.200	0.09	0.00	0.09	.0387	0.01342	.361	5.09	14.1	0.07	1.080	21.55	7.11
Q1-1	0 Flow											
1.200	0.06	0.00	0.06	.0387	0.01342	NA	NA	NA	0.06	1.267	22.06	7.16
Q30-	10 Flow	1										
1.200	0.12	0.00	0.12	.0387	0.01342	NA	NA	NA	0.08	0.953	21.24	7.09

Attachment 2

TRC EVALUA	NOITA								
Input appropria	te values in <i>i</i>	A3:A9 and D3:D9							
0.086	= Q stream (cfs)	= CV Daily						
0.025	= Q discharg	je (MGD)	= CV Hourly						
30	= no. sample	8	= AFC_Partial Mix Factor						
0.3	= Chlorine D	emand of Stream	= CFC_Partial Mix Factor						
0	= Chlorine D	emand of Discharge	= AFC_Criteria Compliance Time (min)						
0.5	= BAT/BPJ V	alue	= CFC_Criteria Compliance Time (min)						
0	= % Factor o	of Safety (FOS)	=Decay Coefficient (K)						
Source	Reference	AFC Calculations		Reference	CFC Calculations				
TRC	1.3.2.iii	WLA afc =	0.728	1.3.2.iii	WLA cfc = 0.703				
PENTOXSD TRG	5.1a	LTAMULT afc =	0.373	5.1c	LTAMULT cfc = 0.581				
PENTOXSD TRG	5.1b	LTA_afc=	0.271	5.1d	$LTA_cfc = 0.408$				
Source	Į.	Effluei	nt Limit Calcu	lations					
PENTOXSD TRG	5.1f		AML MULT =	1.231					
PENTOXSD TRG	5.1g AVG MON LIMIT (mg/l) = 0.334 AFC								
		INST MAX	LIMIT (mg/l) =	1.093					
WLA afc	A afc (.019/e(-k*AFC_tc)) + [(AFC_Yc*Qs*.019/Qd*e(-k*AFC_tc)) +Xd + (AFC_Yc*Qs*Xs/Qd)]*(1-FOS/100)								
LTAMULT afc	EXP((0.5*LN)	(cvh^2+1))-2.326*LN(cvh^2+	-1)^0.5)						
LTA_afc	wla_afc*LTAMULT_afc								
WLA_cfc	_cfc (.011/e(-k*CFC_tc) + [(CFC_Yc*Qs*.011/Qd*e(-k*CFC_tc)) + Xd + (CFC_Yc*Qs*Xs/Qd)]*(1-FOS/100)								
LTAMULT_cfc	EXP((0.5*LN(cvd^2/no_samples+1))-2.326*LN(cvd^2/no_samples+1)^0.5)								
LTA_cfc	wla_cfc*LTA	MULT_cfc							
AML MULT	22.63	N((cvd^2/no_samples+1)^0.	1973	l^2/no_samples+	-1))				
AVG MON LIMIT		J,MIN(LTA_afc,LTA_cfc)*AN							
INST MAX LIMIT	INST MAX LIMIT 1.5*((av_mon_limit/AML_MULT)/LTAMULT_afc)								