

Application Type
Facility Type
Major / Minor

Renewal
Industrial
Minor

**NPDES PERMIT FACT SHEET
INDIVIDUAL INDUSTRIAL WASTE (IW)
AND IW STORMWATER**

Application No. **PA0239046**
APS ID **1107403**
Authorization ID **1473083**

Applicant and Facility Information

Applicant Name	JMS Manufacturing LLC	Facility Name	Ridgway Powdered Metals
Applicant Address	417 Thorn Street Suite 300 Sewickley, PA 15143-1509	Facility Address	6931 Ridgway Saint Marys Road Ridgway, PA 15853
Applicant Contact	Jeremy Gabler	Facility Contact	Jeremy Gabler
Applicant Phone	(814) 772-5551	Facility Phone	(814) 772-5551
Client ID	369202	Site ID	259589
SIC Code	3399	Municipality	Ridgway Township
SIC Description	Manufacturing - Primary Metal Products, Nec	County	Elk
Date Application Received	January 22, 2024	EPA Waived?	Yes
Date Application Accepted	January 22, 2024	If No, Reason	
Purpose of Application	NPDES Renewal.		

Summary of Review

JMS Manufacturing LLC (JMS) has applied to the Pennsylvania Department of Environmental Protection (DEP) for reissuance of its NPDES permit renewal. The permit was last reissued on June 17, 2019 and became effective on July 1, 2019. The permit expired on June 30, 2024.

Based on the review, it is recommended that the permit be drafted.

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Approve	Deny	Signatures	Date
X		Jinsu Kim Jinsu Kim / Environmental Engineering Specialist	May 20, 2025
X		Adam Olesnanik Adam Olesnanik, P.E. / Environmental Engineer Manager	May 22, 2025

Discharge, Receiving Waters and Water Supply Information			
Outfall No.	001	Design Flow (MGD)	0.0091
Latitude	41° 25' 32.00"	Longitude	-78° 42' 52.00"
Quad Name	-	Quad Code	-
Wastewater Description:	Noncontact Cooling Water (NCCW)		
Receiving Waters	Small ditch to Elk Creek (CWF)	Stream Code	50459
NHD Com ID	102665463	RMI	2.3
Drainage Area	59.2	Yield (cfs/mi ²)	0.07
Q ₇₋₁₀ Flow (cfs)	4.32	Q ₇₋₁₀ Basis	Streamstats - Elk Creek
Elevation (ft)	1420	Slope (ft/ft)	0.00428
Watershed No.	17-A	Chapter 93 Class.	CWF
Existing Use	-	Existing Use Qualifier	-
Exceptions to Use	-	Exceptions to Criteria	-
Assessment Status	Attaining Use(s)		
Cause(s) of Impairment	-		
Source(s) of Impairment	-		
TMDL Status	Final (6/20/2006)*	Name	Elk Creek TMDL (Elk County) 50459 (impaired for AMD metals)
Nearest Downstream Public Water Supply Intake	Pennsylvania American Water Company - Clarion		
PWS Waters	Clarion River	Flow at Intake (cfs)	90.7
PWS RMI	33.3	Distance from Outfall (mi)	66.0

Drainage Area

The discharge is to a small ditch and then to Elk Creek at RM 2.3. A drainage area upstream of the point of discharge is estimated to be 59.2 sq.mi. according to USGS StreamStats available at <https://streamstats.usgs.gov/ss/>.

Streamflow

USGS StreamStats produced a Q7-10 flow of 4.32 cfs at the point of discharge.

Elk Creek

According to 25 Code § 93.9r, Elk Creek has a protected water use of cold water fishery (CWF). Clarion River which is a main stem of Elk Creek has also a protected water use of CWF. Therefore, no special protection water is impacted by this discharge. According to DEP's 2024 Integrated Water Quality Report, Elk Creek near the point of discharge is not impaired for aquatic life use but is in fact impaired for fish consumption due to Mercury as a result of atmospheric deposition. DEP developed a Total Maximum Daily Load (TMDL) for Elk Creek watershed on March 28, 2005 to address impairments resulted from acid drainage from abandoned coal mines within the Elk Creek watershed. The more details on this TMDL will be addressed later in this fact sheet.

Public Water Supply Intake

The fact sheet developed for the last permit renewal indicates that the nearest downstream public water supply intake is PA American Water on Clarion River approximately 66 miles from the discharge point. Given the distance, the discharge is not expected to adversely affect the intake.

Facility Information

JMS owns a powder metal parts manufacturing plant known as Ridgway Powdered Metals. According to the application, parts are compacted and sintered at an average temperature of 2070 °F. The sintering furnace contains cooling chambers that the parts pass through to reduce the temperature of the parts. This non-contact cooling water is then emptied into the holding pond. According to the application, about 0.0210 MGD of non-contact cooling water is generated as an average. Well water is used for this process. There is no treatment unit for this non-contact cooling water other than the pond that allows additional cooling and settling before discharges to a small ditch before Elk Creek. Sanitary wastewater is discharged to two septic systems comprised of holding tanks and leach fields according to the recent inspection report. This report also indicates that no chemicals are added to non-contact cooling water.

Compliance History																																																																													
Summary of DMRs:	A summary of past 12 month DMR data is presented on the next page.																																																																												
Summary of Inspections:	12/28/2022: DEP conducted a routine inspection and identified a number of violations at the time of inspection. A full report will be available for file review.																																																																												
Other Comments:	<p>The facility had a number of permit violations since the last permit reissuance. These violations are shown below.</p> <table border="1"><thead><tr><th>Date</th><th>Description</th><th>Date2</th><th>Description2</th></tr></thead><tbody><tr><td>Nov-19</td><td>Late DMR Submission</td><td>Jan-23</td><td>Late DMR Submission</td></tr><tr><td>Feb-20</td><td>Late DMR Submission</td><td>May-23</td><td>Late DMR Submission</td></tr><tr><td>May-21</td><td>Late DMR Submission</td><td>Nov-23</td><td>Late DMR Submission</td></tr><tr><td>May-21</td><td>Sample type not in accordance with permit</td><td>Dec-23</td><td>Late DMR Submission</td></tr><tr><td>Jun-21</td><td>Late DMR Submission</td><td>Mar-24</td><td>Late DMR Submission</td></tr><tr><td>Jun-21</td><td>Sample type not in accordance with permit</td><td>Apr-24</td><td>Late DMR Submission</td></tr><tr><td>Jul-21</td><td>Late DMR Submission</td><td>Jun-24</td><td>Late DMR Submission</td></tr><tr><td>Jul-21</td><td>Sample type not in accordance with permit</td><td>Aug-24</td><td>Late DMR Submission</td></tr><tr><td>Aug-21</td><td>Late DMR Submission</td><td>Sep-24</td><td>Late DMR Submission</td></tr><tr><td>Oct-21</td><td>Late DMR Submission</td><td>Oct-24</td><td>Late DMR Submission</td></tr><tr><td>Nov-21</td><td>Late DMR Submission</td><td>Nov-24</td><td>Late DMR Submission</td></tr><tr><td>Dec-21</td><td>Late DMR Submission</td><td>Jan-25</td><td>Late DMR Submission</td></tr><tr><td>Mar-22</td><td>Late DMR Submission</td><td>Feb-25</td><td>Late DMR Submission</td></tr><tr><td>Apr-22</td><td>Late DMR Submission</td><td></td><td></td></tr><tr><td>Jun-22</td><td>Late DMR Submission</td><td></td><td></td></tr><tr><td>Aug-22</td><td>Sample type not in accordance with permit</td><td></td><td></td></tr><tr><td>Sep-22</td><td>Late DMR Submission</td><td></td><td></td></tr><tr><td>Oct-22</td><td>Late DMR Submission</td><td></td><td></td></tr></tbody></table> <p>DEP's database shows there is no open violation associated with this facility or permittee.</p>	Date	Description	Date2	Description2	Nov-19	Late DMR Submission	Jan-23	Late DMR Submission	Feb-20	Late DMR Submission	May-23	Late DMR Submission	May-21	Late DMR Submission	Nov-23	Late DMR Submission	May-21	Sample type not in accordance with permit	Dec-23	Late DMR Submission	Jun-21	Late DMR Submission	Mar-24	Late DMR Submission	Jun-21	Sample type not in accordance with permit	Apr-24	Late DMR Submission	Jul-21	Late DMR Submission	Jun-24	Late DMR Submission	Jul-21	Sample type not in accordance with permit	Aug-24	Late DMR Submission	Aug-21	Late DMR Submission	Sep-24	Late DMR Submission	Oct-21	Late DMR Submission	Oct-24	Late DMR Submission	Nov-21	Late DMR Submission	Nov-24	Late DMR Submission	Dec-21	Late DMR Submission	Jan-25	Late DMR Submission	Mar-22	Late DMR Submission	Feb-25	Late DMR Submission	Apr-22	Late DMR Submission			Jun-22	Late DMR Submission			Aug-22	Sample type not in accordance with permit			Sep-22	Late DMR Submission			Oct-22	Late DMR Submission		
Date	Description	Date2	Description2																																																																										
Nov-19	Late DMR Submission	Jan-23	Late DMR Submission																																																																										
Feb-20	Late DMR Submission	May-23	Late DMR Submission																																																																										
May-21	Late DMR Submission	Nov-23	Late DMR Submission																																																																										
May-21	Sample type not in accordance with permit	Dec-23	Late DMR Submission																																																																										
Jun-21	Late DMR Submission	Mar-24	Late DMR Submission																																																																										
Jun-21	Sample type not in accordance with permit	Apr-24	Late DMR Submission																																																																										
Jul-21	Late DMR Submission	Jun-24	Late DMR Submission																																																																										
Jul-21	Sample type not in accordance with permit	Aug-24	Late DMR Submission																																																																										
Aug-21	Late DMR Submission	Sep-24	Late DMR Submission																																																																										
Oct-21	Late DMR Submission	Oct-24	Late DMR Submission																																																																										
Nov-21	Late DMR Submission	Nov-24	Late DMR Submission																																																																										
Dec-21	Late DMR Submission	Jan-25	Late DMR Submission																																																																										
Mar-22	Late DMR Submission	Feb-25	Late DMR Submission																																																																										
Apr-22	Late DMR Submission																																																																												
Jun-22	Late DMR Submission																																																																												
Aug-22	Sample type not in accordance with permit																																																																												
Sep-22	Late DMR Submission																																																																												
Oct-22	Late DMR Submission																																																																												

Effluent Data

DMR Data for Outfall 001 (from April 1, 2024 to March 31, 2025)

Parameter	MAR-25	FEB-25	JAN-25	DEC-24	NOV-24	OCT-24	SEP-24	AUG-24	JUL-24	JUN-24	MAY-24	APR-24
Flow (MGD)												
Average Monthly	0.025	0.023	0.021	0.021	0.021	0.024	0.026	0.027	0.024	0.0227	0.022	0.021
pH (S.U.)												
Instantaneous Minimum	8.4	8.2	8.2	8.3	8.3	8.3	8.2	8.3	8.1	7.8	8.1	8.2
pH (S.U.)												
Instantaneous Maximum	8.4	8.2	8.2	8.3	8.3	8.3	8.2	8.3	8.1	7.8	8.1	8.2

Existing Effluent Limits and Monitoring Requirements

The table below summarizes effluent limits and monitoring requirements specified in the existing permit.

Parameter	Effluent Limitations						Monitoring Requirements	
	Mass Units (lbs/day) ⁽¹⁾		Concentrations (mg/L)				Minimum ⁽²⁾ Measurement Frequency	Required Sample Type
	Average Monthly	Average Weekly	Minimum	Average Monthly	Maximum	Instant. Maximum		
Flow (MGD)	Report	XXX	XXX	XXX	XXX	XXX	1/month	Measured
pH (S.U.)	XXX	XXX	6.0 Inst Min	XXX	XXX	9.0	1/month	Grab

Development of Effluent Limitations

Outfall No.	001	Design Flow (MGD)	.0091
Latitude	41° 25' 32.00"	Longitude	-78° 42' 52.00"
Wastewater Description: Noncontact Cooling Water (NCCW)			

Technology-Based Limitations

Any industrial wastewater facilities are generally regulated by effluent standards found in 25 Pa. Code §§ 92a.48 and 95.2. These standards are as follows:

Parameter	Limit (mg/l)	SBC	Federal Regulation	State Regulation
ELGs			40 CFR § 430.00	25 Pa. Code § 92a.48(a)(1)
pH	6.0 – 9.0 (S.U.)	Minimum – Maximum	-	25 Pa. Code § 95.2 (1)
Oil and Grease	15	Average Monthly	-	25 Pa. Code § 95.2 (2)(ii)
	30	Daily Maximum		25 Pa. Code § 95.2 (2)(ii)
Dissolved Iron	7.0	Maximum	-	25 Pa. Code § 95.2 (4)
Total Residual Chlorine	0.5	Average Monthly	-	25 Pa. Code § 92a.48(b)(2)

According to the EPA's 2011 Effluent Guidelines Plan – 2011 Annual Review Report Appendix A, facilities under the SIC Code 3399 are subject to the federal ELGs for Nonferrous Metals Forming and Metal Powders (i.e., 40 CFR § 471.00). However, no Effluent Limitation Guidelines (ELGs) are applicable since the facility does not discharge process wastewater and it is only non-contact cooling water. Also, since the facility does not use chlorine, total residual chlorine (TRC) effluent limitation is not applicable. For oil and grease, no oil bearing wastewater will be discharged from this facility; therefore, effluent limitation is not applicable.

25 Pa. Code § 95.2 (4) recommends a maximum of 7.0 mg/L for dissolved iron for all industrial wastewater. However, the sample results provided in the application have a dissolved iron level of 0.129 mg/L. Accordingly, in the opinion of the Department, dissolved iron is not a parameter of concern.

In general, temperature requirements are imposed in the NPDES permit for heated wastewater (cooling water) discharges from industrial facilities. However, considering the quantity and frequency of cooling water discharges, temperature is not a parameter of concern. A significant cooling is also expected in the existing pond.

Water Quality-Based Limitations

WQM 7.0

CBOD5 and NH3-N are not pollutants of concern for noncontact cooling water and no chemicals are currently added to this noncontact cooling water. Therefore, WQM 7.0 modeling is not necessary and permit requirements for these pollutants are not recommended.

Toxics

Maximum concentrations of toxic pollutants reported on the application were entered into DEP's Toxics Management Spreadsheet (TMS). TMS output shows that there are no pollutants of concern and no water quality based effluent limits are required.

Additional Considerations

Flow Monitoring

Flow monitoring will remain in the permit and is required by 40 CFR § 122.44(i)(1)(ii).

Elk Creek Watershed TMDL

DEP developed a TMDL in 2005 to address impairments identified within the Elk Creek Watershed TMDL. These impairments are caused by metals (iron, manganese, aluminum) as a result of abandoned coalmines. The TMDL does not include the wasteload allocation for this discharge. Given the nature of discharge which is noncontact cooling water, the discharge is not expected to significantly contribute to impairments within this watershed. The Elk Creek at the point of

discharge is attaining its uses. Sample data provided with the application shows the discharge contains < 0.25 mg/L of Aluminum, 0.10 mg/L of Manganese, and 0.112 mg/L of Iron. These values are well below current water quality criteria. No further requirements are therefore recommended at this time.

Anti-Degradation Requirements

The effluent limits for this discharge have been developed to ensure the existing in-stream uses and the level of water quality necessary to protect the existing uses are maintained and protected. No High Quality Waters are impacted by this discharge. No Exceptional Value Waters are impacted by this discharge.

Anti-Backsliding Requirements

Unless stated otherwise in this fact sheet, permit requirements proposed in this fact sheet are at least as stringent as existing permit requirements.

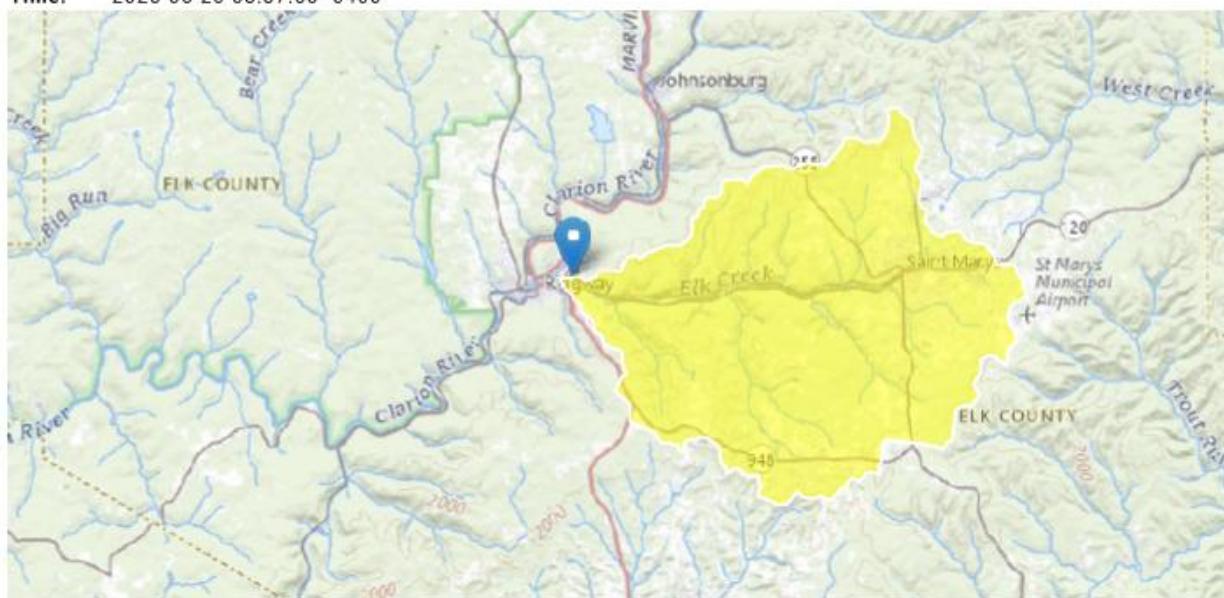
Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (386-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

Parameter	Effluent Limitations						Monitoring Requirements	
	Mass Units (lbs/day) ⁽¹⁾		Concentrations (mg/L)				Minimum ⁽²⁾ Measurement Frequency	Required Sample Type
	Average Monthly	Average Weekly	Minimum	Average Monthly	Maximum	Instant. Maximum		
Flow (MGD)	Report	XXX	XXX	XXX	XXX	XXX	1/month	Measured
pH (S.U.)	XXX	XXX	6.0 Inst Min	XXX	XXX	9.0	1/month	Grab

Tools and References Used to Develop Permit	
<input type="checkbox"/>	WQM for Windows Model (see Attachment [REDACTED])
<input type="checkbox"/>	Toxics Management Spreadsheet (see Attachment [REDACTED])
<input type="checkbox"/>	TRC Model Spreadsheet (see Attachment [REDACTED])
<input type="checkbox"/>	Temperature Model Spreadsheet (see Attachment [REDACTED])
<input type="checkbox"/>	Water Quality Toxics Management Strategy, 361-0100-003, 4/06.
<input type="checkbox"/>	Technical Guidance for the Development and Specification of Effluent Limitations, 386-0400-001, 10/97.
<input type="checkbox"/>	Policy for Permitting Surface Water Diversions, 386-2000-019, 3/98.
<input type="checkbox"/>	Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 386-2000-018, 11/96.
<input type="checkbox"/>	Technology-Based Control Requirements for Water Treatment Plant Wastes, 386-2183-001, 10/97.
<input type="checkbox"/>	Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 386-2183-002, 12/97.
<input type="checkbox"/>	Pennsylvania CSO Policy, 386-2000-002, 9/08.
<input type="checkbox"/>	Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.
<input type="checkbox"/>	Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 386-2000-008, 4/97.
<input type="checkbox"/>	Determining Water Quality-Based Effluent Limits, 386-2000-004, 12/97.
<input type="checkbox"/>	Implementation Guidance Design Conditions, 386-2000-007, 9/97.
<input type="checkbox"/>	Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 386-2000-016, 6/2004.
<input type="checkbox"/>	Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 386-2000-012, 10/1997.
<input type="checkbox"/>	Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 386-2000-009, 3/99.
<input type="checkbox"/>	Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 386-2000-015, 5/2004.
<input type="checkbox"/>	Implementation Guidance for Section 93.7 Ammonia Criteria, 386-2000-022, 11/97.
<input type="checkbox"/>	Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 386-2000-013, 4/2008.
<input type="checkbox"/>	Implementation Guidance Total Residual Chlorine (TRC) Regulation, 386-2000-011, 11/1994.
<input type="checkbox"/>	Implementation Guidance for Temperature Criteria, 386-2000-001, 4/09.
<input type="checkbox"/>	Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 386-2000-021, 10/97.
<input type="checkbox"/>	Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 386-2000-020, 10/97.
<input type="checkbox"/>	Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 386-2000-005, 3/99.
<input type="checkbox"/>	Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 386-2000-010, 3/1999.
<input type="checkbox"/>	Design Stream Flows, 386-2000-003, 9/98.
<input type="checkbox"/>	Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 386-2000-006, 10/98.
<input type="checkbox"/>	Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 386-3200-001, 6/97.
<input type="checkbox"/>	Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.
<input type="checkbox"/>	SOP: [REDACTED]
<input type="checkbox"/>	Other: [REDACTED]


StreamStats Report

Region ID: PA

Workspace ID: PA20250520123727291000

Clicked Point (Latitude, Longitude): 41.42556, -78.71432

Time: 2025-05-20 08:37:50 -0400

 [Collapse All](#)

➤ Basin Characteristics

Parameter Code	Parameter Description	Value	Unit
DRNAREA	Area that drains to a point on a stream	59.2	square miles
ELEV	Mean Basin Elevation	1870	feet
PRECIP	Mean Annual Precipitation	45	inches

General Disclaimers

Parameter values have been edited, computed flows may not apply.

➤ Low-Flow Statistics

Low-Flow Statistics Parameters [Low Flow Region 3]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	59.2	square miles	2.33	1720
ELEV	Mean Basin Elevation	1870	feet	898	2700
PRECIP	Mean Annual Precipitation	45	inches	38.7	47.9

Low-Flow Statistics Flow Report [Low Flow Region 3]

PIL: Lower 90% Prediction Interval, PIU: Upper 90% Prediction Interval, ASEp: Average Standard Error of Prediction, SE: Standard Error, PC: Percent Correct, RMSE: Root Mean Squared Error, PseudoR²: Pseudo R Squared (other -- see report)

Statistic	Value	Unit	SE	ASEp
7 Day 2 Year Low Flow	8.27	ft ³ /s	43	43
30 Day 2 Year Low Flow	11.4	ft ³ /s	38	38
7 Day 10 Year Low Flow	4.32	ft ³ /s	54	54
30 Day 10 Year Low Flow	5.55	ft ³ /s	49	49
90 Day 10 Year Low Flow	7.9	ft ³ /s	41	41

Low-Flow Statistics Citations

Stuckey, M.H., 2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5130, 84 p. (<http://pubs.usgs.gov/sir/2006/5130/>)

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.

USGS Product Names Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Application Version: 4.29.1

StreamStats Services Version: 1.2.22

NSS Services Version: 2.2.1

Discharge Information

Instructions **Discharge** Stream

Facility: Ridgway Powdered Metals NPDES Permit No.: PA0239046 Outfall No.: 001

Evaluation Type Major Sewage / Industrial Waste Wastewater Description: NCCW

Design Flow (MGD)*	Hardness (mg/l)*	pH (SU)*	Discharge Characteristics					
			Partial Mix Factors (PMFs)			Complete Mix Times (min)		
			AFC	CFC	THH	CRL	Q ₇₋₁₀	Q _h
0.0091	100	7						

Group 1	Discharge Pollutant	Units	Max Discharge Conc	0 if left blank		0.5 if left blank		0 if left blank		1 if left blank		
				Trib Conc	Stream Conc	Daily CV	Hourly CV	Stream CV	Fate Coeff	FOS	Criteri a Mod	Chem Transl
	Total Dissolved Solids (PWS)	mg/L	302									
	Chloride (PWS)	mg/L	62.9									
	Bromide	mg/L	0.44									
	Sulfate (PWS)	mg/L	16.6									
	Fluoride (PWS)	mg/L	0.32									
Group 2	Total Aluminum	µg/L	< 250									
	Total Antimony	µg/L	< 20									
	Total Arsenic	µg/L	< 10									
	Total Barium	µg/L	0.158									
	Total Beryllium	µg/L	< 1									
	Total Boron	µg/L	69.9									
	Total Cadmium	µg/L	< 2									
	Total Chromium (III)	µg/L	< 8									
	Hexavalent Chromium	µg/L	< 50									
	Total Cobalt	µg/L	< 20									
	Total Copper	µg/L	< 6									
	Free Cyanide	µg/L										
	Total Cyanide	µg/L										
	Dissolved Iron	µg/L	129									
	Total Iron	µg/L	112									
	Total Lead	µg/L	< 10									
	Total Manganese	µg/L	100									
	Total Mercury	µg/L	0.0002									
	Total Nickel	µg/L	< 20									
	Total Phenols (Phenolics) (PWS)	µg/L	0.05									
	Total Selenium	µg/L	< 8									
	Total Silver	µg/L	< 4									
	Total Thallium	µg/L	< 0.02									
	Total Zinc	µg/L	< 10									
	Total Molybdenum	µg/L	< 20									
	Acrolein	µg/L	< 1									
	Acrylamide	µg/L	< 1									
	Acrylonitrile	µg/L	< 1									
	Benzene	µg/L	< 1									
	Bromoform	µg/L	< 1									
	Carbon Tetrachloride	µg/L	< 1									

Group 3	Chlorobenzene	µg/L	1	
	Chlorodibromomethane	µg/L	<	1
	Chloroethane	µg/L	<	1
	2-Chloroethyl Vinyl Ether	µg/L	<	1
	Chloroform	µg/L	<	1
	Dichlorobromomethane	µg/L	<	1
	1,1-Dichloroethane	µg/L	<	1
	1,2-Dichloroethane	µg/L	<	1
	1,1-Dichloroethylene	µg/L	<	1
	1,2-Dichloropropane	µg/L	<	1
	1,3-Dichloropropylene	µg/L	<	1
	1,4-Dioxane	µg/L	<	1
	Ethylbenzene	µg/L	<	1
	Methyl Bromide	µg/L	<	1
	Methyl Chloride	µg/L	<	5
	Methylene Chloride	µg/L	<	1
	1,1,2,2-Tetrachloroethane	µg/L	<	1
	Tetrachloroethylene	µg/L	<	1
Group 4	Toluene	µg/L	<	1
	1,2-trans-Dichloroethylene	µg/L	<	1
	1,1,1-Trichloroethane	µg/L	<	1
	1,1,2-Trichloroethane	µg/L	<	1
	Trichloroethylene	µg/L	<	1
	Vinyl Chloride	µg/L	<	2
	2-Chlorophenol	µg/L	<	0.05
	2,4-Dichlorophenol	µg/L	<	0.05
	2,4-Dimethylphenol	µg/L	<	0.05
	4,6-Dinitro-o-Cresol	µg/L	<	0.1
	2,4-Dinitrophenol	µg/L	<	0.1
	2-Nitrophenol	µg/L	<	0.05
	4-Nitrophenol	µg/L	<	0.05
	p-Chloro-m-Cresol	µg/L	<	
	Pentachlorophenol	µg/L	<	
	Phenol	µg/L	<	
	2,4,6-Trichlorophenol	µg/L	<	0.05
Group 5	Acenaphthene	µg/L	<	0.05
	Acenaphthylene	µg/L	<	0.05
	Anthracene	µg/L	<	0.05
	Benzidine	µg/L	<	0.1
	Benzo(a)Anthracene	µg/L	<	0.2
	Benzo(a)Pyrene	µg/L	<	0.05
	3,4-Benzofluoranthene	µg/L	<	
	Benzo(ghi)Perylene	µg/L	<	0.05
	Benzo(k)Fluoranthene	µg/L	<	0.05
	Bis(2-Chloroethoxy)Methane	µg/L	<	0.05
	Bis(2-Chloroethyl)Ether	µg/L	<	0.05
	Bis(2-Chloroisopropyl)Ether	µg/L	<	0.05
	Bis(2-Ethylhexyl)Phthalate	µg/L	<	0.02
	4-Bromophenyl Phenyl Ether	µg/L	<	0.05
	Butyl Benzyl Phthalate	µg/L	<	0.05
	2-Chloronaphthalene	µg/L	<	0.05
	4-Chlorophenyl Phenyl Ether	µg/L	<	0.05
	Chrysene	µg/L	<	0.04
	Dibenzo(a,h)Anthracene	µg/L	<	0.1
	1,2-Dichlorobenzene	µg/L	<	0.2
	1,3-Dichlorobenzene	µg/L	<	0.05
	1,4-Dichlorobenzene	µg/L	<	0.05
	3,3-Dichlorobenzidine	µg/L	<	0.002
	Diethyl Phthalate	µg/L	<	0.05
	Dimethyl Phthalate	µg/L	<	0.1
	Di-n-Butyl Phthalate	µg/L	<	0.05
	2,4-Dinitrotoluene	µg/L	<	0.05
	2,6-Dinitrotoluene	µg/L	<	0.05
	Di-n-Octyl Phthalate	µg/L	<	0.05

Stream / Surface Water Information

Instructions Discharge Stream

Ridgway Powdered Metals, NPDES Permit No. PA0239046, Outfall 001

Toxics Management Spreadsheet
Version 1.4, May 2023

Receiving Surface Water Name: Elk Creek

No. Reaches to Model: 1

- Statewide Criteria
- Great Lakes Criteria
- ORSANCO Criteria

Location	Stream Code*	RMI*	Elevation (ft)*	DA (mi ²)*	Slope (ft/ft)	PWS Withdrawal (MGD)	Apply Fish Criteria*
Point of Discharge	050459	2.3	1420	59.2			Yes
End of Reach 1	050459	0	1368	63.5			Yes

Q₇₋₁₀

Location	RMI	LFY (cfs/m ²)*	Flow (cfs)	W/D Ratio	Width (ft)	Depth (ft)	Velocity y (fps)	Travel Time /days*	Tributary	Stream	Analysis
Point of Discharge	2.3	0.07							Hardness	pH	Hardness
End of Reach 1	0	0.07							100	7	100

Q_h

Location	RMI	LFY (cfs/m ²)*	Flow (cfs)	W/D Ratio	Width (ft)	Depth (ft)	Velocity y (fps)	Travel Time /days*	Tributary	Stream	Analysis
Point of Discharge	2.3								Hardness	pH	Hardness
End of Reach 1	0								100	7	100

Toxics Management Spreadsheet
Version 1.4, May 2023

Model Results

Instructions **Results**

RETURN TO INPUTS

SAVE AS PDF

PRINT

Waste/Load Allocations

AFC

CCT (min): **PMF:**

Analysis Hardness (mg/L): **Analysis pH:**

Hydrodynamics

Waste/Load Allocations

AFC

Pollutants	Stream Conc (µg/L)	Stream CV	Trb Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0	0	0	N/A	N/A	N/A
Chloride (PWS)	0	0	0	0	N/A	N/A	N/A
Sulfate (PWS)	0	0	0	0	N/A	N/A	N/A
Fluoride (PWS)	0	0	0	0	N/A	N/A	N/A
Total Aluminum	0	0	0	0	750	750	135.159
Total Antimony	0	0	0	0	1,100	1,100	198.234
Total Arsenic	0	0	0	0	340	340	61.272 Chem Translator of 1 applied
Total Barium	0	0	0	0	21,000	21,000	3,784.461
Total Boron	0	0	0	0	8,100	8,100	1,459.5721
Total Cadmium	0	0	0	0	2,014	2,13	384 Chem Translator of 0.944 applied
Total Chromium (III)	0	0	0	0	569.763	1,803	324.932 Chem Translator of 0.316 applied
Hexavalent Chromium	0	0	0	0	16	16.3	2,936 Chem Translator of 0.982 applied
Total Cobalt	0	0	0	0	95	95.0	17.120
Total Copper	0	0	0	0	13,439	14.0	2,523 Chem Translator of 0.96 applied
Dissolved Iron	0	0	0	0	N/A	N/A	N/A
Total Iron	0	0	0	0	N/A	N/A	N/A
Total Lead	0	0	0	0	64.581	81.6	14,713 Chem Translator of 0.791 applied
Total Manganese	0	0	0	0	N/A	N/A	N/A
Total Mercury	0	0	0	0	1,400	1,65	287 Chem Translator of 0.85 applied
Total Nickel	0	0	0	0	468,236	469	84,551 Chem Translator of 0.998 applied
Total Phenols (Phenolics) (PWS)	0	0	0	0	N/A	N/A	N/A
Total Selenium	0	0	0	0	N/A	N/A	Chem Translator of 0.922 applied
Total Silver	0	0	0	0	3,217	3,78	682 Chem Translator of 0.85 applied
Total Thallium	0	0	0	0	65	65.0	11,714 Chem Translator of 0.978 applied
Total Zinc	0	0	0	0	117,180	120	21,562 Chem Translator of 0.978 applied
Acrolein	0	0	0	0	3	3.0	541
Acrylamide	0	0	0	0	N/A	N/A	N/A
Acrylonitrile	0	0	0	0	65Q _{2020/2026/50}	0	117,138
Model Results							Page 5

Benzene	0	0	0	0	640	640	115,336
Bromoform	0	0	0	0	1,800	1,800	324,382
Carbon Tetrachloride	0	0	0	0	2,800	2,800	504,595
Chlorobenzene	0	0	0	0	1,200	1,200	216,255
Chlorodibromomethane	0	0	0	0	N/A	N/A	N/A
2-Chloroethyl Vinyl Ether	0	0	0	0	18,000	18,000	3,243,824
Chloroform	0	0	0	0	1,900	1,900	342,404
Dichlorobromomethane	0	0	0	0	N/A	N/A	N/A
1,2-Dichloroethane	0	0	0	0	15,000	15,000	2,703,187
1,1-Dichloroethylene	0	0	0	0	7,500	7,500	1,351,593
1,2-Dichloropropane	0	0	0	0	11,000	11,000	1,982,337
1,3-Dichloropropylene	0	0	0	0	310	310	55,866
Ethylbenzene	0	0	0	0	2,900	2,900	522,616
Methyl Bromide	0	0	0	0	550	550	99,117
Methyl Chloride	0	0	0	0	28,000	28,000	5,045,948
Methylene Chloride	0	0	0	0	12,000	12,000	2,162,549
1,1,2,2-Tetrachloroethane	0	0	0	0	1,000	1,000	180,212
Tetrachloroethylene	0	0	0	0	700	700	126,149
Toluene	0	0	0	0	1,700	1,700	306,361
1,2-trans-Dichloroethylene	0	0	0	0	6,800	6,800	1,225,445
1,1,1-Trichloroethane	0	0	0	0	3,000	3,000	540,637
1,1,2-Trichloroethane	0	0	0	0	3,400	3,400	612,722
Trichloroethylene	0	0	0	0	2,300	2,300	414,489
Vinyl Chloride	0	0	0	0	N/A	N/A	N/A
2-Chlorophenol	0	0	0	0	560	560	100,919
2,4-Dichlorophenol	0	0	0	0	1,700	1,700	306,361
2,4-Dimethylphenol	0	0	0	0	660	660	118,940
4,6-Dinitro-o-Cresol	0	0	0	0	80	80	14,417
2,4-Dinitrophenol	0	0	0	0	660	660	118,940
2-Nitrophenol	0	0	0	0	8,000	8,000	1,441,700
4-Nitrophenol	0	0	0	0	2,300	2,300	414,489
2,4,6-Trichlorophenol	0	0	0	0	460	460	82,898
Acenaphthene	0	0	0	0	83	83	14,958
Anthracene	0	0	0	0	N/A	N/A	N/A
Benzidine	0	0	0	0	300	300	54,064
Benzo(a)Anthracene	0	0	0	0	0.5	0.5	90,1
Benzo(a)Pyrene	0	0	0	0	N/A	N/A	N/A
Benzo(k)Fluoranthene	0	0	0	0	N/A	N/A	N/A
Bis(2-Chloroisopropyl) Ether	0	0	0	0	30,000	30,000	5,406,373
Bis(2-Ethylhexyl) Phthalate	0	0	0	0	4,500	4,500	810,956
4-Bromophenyl Phenyl Ether	0	0	0	0	270	270	48,657
Butyl Benzyl Phthalate	0	0	0	0	140	140	25,230
2-Chloronaphthalene	0	0	0	0	N/A	N/A	N/A
Chrysene	0	0	0	0	N/A	N/A	N/A
Dibenz(a,h)Anthracene	0	0	0	0	N/A	N/A	N/A
1,2-Dichlorobenzene	0	0	0	0	820	820	147,774
1,3-Dichlorobenzene	0	0	0	0	350	350	63,074
1,4-Dichlorobenzene	0	0	0	0	730	730	131,555

Model Results
5/20/2025

3,3-Dichlorobenzidine	0	0	0	0	N/A	N/A	N/A
Diethyl Phthalate	0	0	0	4,000	4,000	720,850	
Dimethyl Phthalate	0	0	0	2,500	2,500	450,531	
Di-n-Butyl Phthalate	0	0	0	110	110	19,823	
2,4-Dinitrotoluene	0	0	0	1,600	1,600	288,340	
2,6-Dinitrotoluene	0	0	0	990	990	178,410	
1,2-Diphenylhydrazine	0	0	0	15	15	2,703	
Fluoranthene	0	0	0	200	200	36,042	
Fluorene	0	0	0	N/A	N/A	N/A	
Hexachlorobenzene	0	0	0	N/A	N/A	N/A	
Hexachlorobutadiene	0	0	0	10	10	1,802	
Hexachlorocyclopentadiene	0	0	0	5	5	901	
Hexachloroethane	0	0	0	60	60	10,813	
Indeno[1,2,3-cd]Pyrene	0	0	0	N/A	N/A	N/A	
Isophorone	0	0	0	10,000	10,000	1,802,124	
Naphthalene	0	0	0	140	140	25,230	
Nitrobenzene	0	0	0	4,000	4,000	720,850	
n-Nitrosodimethylamine	0	0	0	17,000	17,000	3,063,611	
n-Nitrosodi-n-Propylamine	0	0	0	N/A	N/A	N/A	
n-Nitrosodiphenylamine	0	0	0	300	300	54,064	
Phenanthrene	0	0	0	5	5	901	
Pyrene	0	0	0	N/A	N/A	N/A	
1,2,4-Trichlorobenzene	0	0	0	130	130	23,428	
Aldrin	0	0	0	3	3	541	
alpha-BHC	0	0	0	N/A	N/A	N/A	
beta-BHC	0	0	0	N/A	N/A	N/A	
gamma-BHC	0	0	0	0.95	0.95	171	
Chlordane	0	0	0	2.4	2.4	433	
4,4-DDT	0	0	0	1.1	1.1	198	
4,4-DDE	0	0	0	1.1	1.1	198	
4,4-DDD	0	0	0	1.1	1.1	198	
Dieldrin	0	0	0	0.24	0.24	43.3	
alpha-Endosulfan	0	0	0	0.22	0.22	39.6	
beta-Endosulfan	0	0	0	0.22	0.22	39.6	
Endosulfan Sulfate	0	0	0	N/A	N/A	N/A	
Endrin	0	0	0	0.086	0.086	15.5	
Endrin Aldehyde	0	0	0	N/A	N/A	N/A	
Heptachlor	0	0	0	0.52	0.52	93.7	
Heptachlor Epoxide	0	0	0	0.5	0.5	90.1	
PCBs, Total	0	0	0	N/A	N/A	N/A	

CCT (min): PMF: Analysis Hardness (mg/l): Analysis pH:

Pollutants	Stream Conc (µg/L)	Stream CV	Trb Conc (µg/L)	Fate Coef	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0	0	0	N/A	N/A	N/A
Chloride (PWS)	0	0	0	0	N/A	N/A	N/A
Sulfate (PWS)	0	0	0	0	N/A	N/A	N/A
Model Results	Fluoride (PWS)	0	0	0	N/A _{2,202,202}	N/A	N/A

Total Aluminum	0	0	0	0	N/A	N/A	N/A
Total Antimony	0	0	0	0	220	220	64,981
Total Arsenic	0	0	0	0	150	44,305	Chem Translator of 1 applied
Total Barium	0	0	0	0	4,100	1,211,002	
Total Boron	0	0	0	0	1,600	472,586	
Total Cadmium	0	0	0	0	0.246	0.27	79.9
Total Chromium (III)	0	0	0	0	74,115	86.2	25,455
Hexavalent Chromium	0	0	0	0	10	10.4	3,070
Total Cobalt	0	0	0	0	19	19.0	5,612
Total Copper	0	0	0	0	8,956	9.33	2,755
Dissolved Iron	0	0	0	0	N/A	N/A	N/A
Total Iron	0	0	0	0	1,500	443,049	WQC = 30 day average; PMF = 1
Total Lead	0	0	0	0	2,517	3.18	940
Total Manganese	0	0	0	0	N/A	N/A	N/A
Total Mercury	0	0	0	0	0.770	0.91	268
Total Nickel	0	0	0	0	52,007	52.2	15,407
Total Phenols (Phenolics) (PWS)	0	0	0	0	N/A	N/A	Chem Translator of 0.791 applied
Total Selenium	0	0	0	0	4,600	4.99	1,474
Total Silver	0	0	0	0	N/A	N/A	N/A
Total Thallium	0	0	0	0	13	13.0	3,840
Total Zinc	0	0	0	0	118,139	120	35,390
Acrolein	0	0	0	0	3	3.0	886
Acrylamide	0	0	0	0	N/A	N/A	N/A
Acrylonitrile	0	0	0	0	130	130	38,398
Benzene	0	0	0	0	130	130	38,398
Bromodiform	0	0	0	0	370	370	109,286
Carbon Tetrachloride	0	0	0	0	560	560	165,405
Chlorobenzene	0	0	0	0	240	240	70,888
Chlorodibromomethane	0	0	0	0	N/A	N/A	N/A
2-Chloroethyl Vinyl Ether	0	0	0	0	3,500	3,500	1,033,782
Chloroform	0	0	0	0	390	390	115,193
Dichlorobromomethane	0	0	0	0	N/A	N/A	N/A
1,2-Dichloroethane	0	0	0	0	3,100	3,100	915,635
1,1-Dichloroethylene	0	0	0	0	1,500	1,500	443,049
1,2-Dichloropropane	0	0	0	0	2,200	2,200	649,806
1,3-Dichloropropylene	0	0	0	0	61	61.0	18,017
Ethylbenzene	0	0	0	0	580	580	171,312
Methyl Bromide	0	0	0	0	110	110	32,480
Methyl Chloride	0	0	0	0	5,500	5,500	1,624,514
Methylene Chloride	0	0	0	0	2,400	2,400	708,879
1,1,2,2-Tetrachloroethane	0	0	0	0	210	210	62,027
Tetrachloroethylene	0	0	0	0	140	140	41,351
Toluene	0	0	0	0	330	330	97,471
1,2-trans-Dichloroethylene	0	0	0	0	1,400	1,400	413,513
1,1,1-Trichloroethane	0	0	0	0	610	610	180,173
1,1,2-Trichloroethane	0	0	0	0	680	680	200,849
					45Q _{120/202450}	45Q _{120/202450}	132,915
							Page 8

Vinyl Chloride	0	0	0	0	N/A	N/A	N/A
2-Chlorophenol	0	0	0	0	110	110	32,480
2,4-Dichlorophenol	0	0	0	0	340	340	100,425
2,4-Dimethylphenol	0	0	0	0	130	130	38,398
4,6-Dinitro-o-Cresol	0	0	0	0	16	16.0	4,726
2,4-Dinitrophenol	0	0	0	0	130	130	38,398
2-Nitrophenol	0	0	0	0	1,600	1,600	472,586
4-Nitrophenol	0	0	0	0	470	470	138,822
2,4,6-Trichlorophenol	0	0	0	0	91	91.0	26,878
Acenaphthene	0	0	0	0	17	17	5,021
Anthracene	0	0	0	0	N/A	N/A	N/A
Benzidine	0	0	0	0	59	59.0	17,427
Benzol(a)Anthracene	0	0	0	0	0.1	0.1	29.5
Benzol(a)Pyrene	0	0	0	0	N/A	N/A	N/A
Benzol(k)Fluoranthene	0	0	0	0	N/A	N/A	N/A
Bis(2-Chloroethyl) Ether	0	0	0	0	6,000	6,000	1,772,198
Bis(2-Chloroisopropyl) Ether	0	0	0	0	N/A	N/A	N/A
Bis(2-Ethylhexyl) Phthalate	0	0	0	0	910	910	268,783
4-Bromophenyl Phenyl Ether	0	0	0	0	54	54.0	15,950
Butyl Benzyl Phthalate	0	0	0	0	35	35.0	10,338
2-Chloronaphthalene	0	0	0	0	N/A	N/A	N/A
Chrysene	0	0	0	0	N/A	N/A	N/A
Dibenzol(a,h)Anthracene	0	0	0	0	N/A	N/A	N/A
1,2-Dichlorobenzene	0	0	0	0	160	160	47,259
1,3-Dichlorobenzene	0	0	0	0	69	69.0	20,380
1,4-Dichlorobenzene	0	0	0	0	150	150	44,305
3,3-Dichlorobenzidine	0	0	0	0	N/A	N/A	N/A
Diethyl Phthalate	0	0	0	0	800	800	236,293
Dimethyl Phthalate	0	0	0	0	500	500	147,683
Di-n-Butyl Phthalate	0	0	0	0	21	21.0	6,203
2,4-Dinitrotoluene	0	0	0	0	320	320	94,517
2,6-Dinitrotoluene	0	0	0	0	200	200	59,073
1,2-Diphenylhydrazine	0	0	0	0	3	3.0	886
Fluoranthene	0	0	0	0	40	40.0	11,815
Fluorene	0	0	0	0	N/A	N/A	N/A
Hexachlorobenzene	0	0	0	0	N/A	N/A	N/A
Hexachlorobutadiene	0	0	0	0	2	2.0	591
Hexachlorocyclopentadiene	0	0	0	0	1	1.0	295
Hexachloroethane	0	0	0	0	12	12.0	3,544
Indeno(1,2,3-cd)Pyrene	0	0	0	0	N/A	N/A	N/A
Isophorone	0	0	0	0	2,100	2,100	620,269
Naphthalene	0	0	0	0	43	43.0	12,701
Nitrobenzene	0	0	0	0	810	810	239,247
n-Nitrosodimethylamine	0	0	0	0	3,400	3,400	1,004,245
n-Nitrosod-n-Propylamine	0	0	0	0	N/A	N/A	N/A
n-Nitrosodiphenylamine	0	0	0	0	59	59.0	17,427
Middle Results	0	0	0	0	1,520,202	1,520,202	295

Pyrene	0	0	0	0	N/A	N/A	N/A
1,2,4-Trichlorobenzene	0	0	0	0	26	26.0	7,680
Aldrin	0	0	0	0	0.1	0.1	29.5
alpha-BHC	0	0	0	0	N/A	N/A	N/A
beta-BHC	0	0	0	0	N/A	N/A	N/A
gamma-BHC	0	0	0	0	N/A	N/A	N/A
Chlordane	0	0	0	0	0.0043	0.004	1.27
4,4-DDT	0	0	0	0	0.001	0.001	0.3
4,4-DDE	0	0	0	0	0.001	0.001	0.3
4,4-DDD	0	0	0	0	0.001	0.001	0.3
Dieldrin	0	0	0	0	0.056	0.056	16.5
alpha-Endosulfan	0	0	0	0	0.056	0.056	16.5
beta-Endosulfan	0	0	0	0	0.056	0.056	16.5
Endosulfan Sulfate	0	0	0	0	N/A	N/A	N/A
Endrin	0	0	0	0	0.036	0.036	10.6
Endrin Aldehyde	0	0	0	0	N/A	N/A	N/A
Heptachlor	0	0	0	0	0.0038	0.004	1.12
Heptachlor Epoxide	0	0	0	0	0.0038	0.004	1.12
PCBs, Total	0	0	0	0	0.014	0.014	4.14

THH CCT (min): 40.470

PMF: 1

Analysis Hardness (mg/l):

Analysis pH:

N/A

Pollutants	Stream Conc (µg/L)	Stream CV	Trb Conc (µg/L)	Fate Coef	WQC (µg/L)	WQA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0	0	0	500,000	500,000	N/A
Chloride (PWS)	0	0	0	0	250,000	250,000	N/A
Sulfate (PWS)	0	0	0	0	250,000	250,000	N/A
Fluoride (PWS)	0	0	0	0	2,000	2,000	N/A
Total Aluminum	0	0	0	0	N/A	N/A	N/A
Total Antimony	0	0	0	0	5.6	5.6	1,654
Total Arsenic	0	0	0	0	10	10.0	2,954
Total Barium	0	0	0	0	2,400	2,400	708,879
Total Boron	0	0	0	0	3,100	3,100	915,635
Total Cadmium	0	0	0	0	N/A	N/A	N/A
Total Chromium (III)	0	0	0	0	N/A	N/A	N/A
Hexavalent Chromium	0	0	0	0	N/A	N/A	N/A
Total Cobalt	0	0	0	0	N/A	N/A	N/A
Total Copper	0	0	0	0	N/A	N/A	N/A
Dissolved Iron	0	0	0	0	300	300	88,610
Total Iron	0	0	0	0	N/A	N/A	N/A
Total Lead	0	0	0	0	N/A	N/A	N/A
Total Manganese	0	0	0	0	1,000	1,000	295,366
Total Mercury	0	0	0	0	0.050	0.05	14.8
Total Nickel	0	0	0	0	610	610	180,173
Total Phenols (Phenolics) (PWS)	0	0	0	0	5	5.0	N/A
Total Selenium	0	0	0	0	N/A	N/A	N/A
Model Results	0	0	0	0	N/A ₁ /20/2025	N/A	N/A

Page 10

Total Thallium	0	0	0	0.24	0.24	70.9
Total Zinc	0	0	0	N/A	N/A	N/A
Acrolein	0	0	0	3	3.0	886
Acrylamide	0	0	0	N/A	N/A	N/A
Acrylonitrile	0	0	0	N/A	N/A	N/A
Benzene	0	0	0	N/A	N/A	N/A
Bromoform	0	0	0	N/A	N/A	N/A
Carbon Tetrachloride	0	0	0	N/A	N/A	N/A
Chlorobenzene	0	0	0	100	100.0	29,537
Chlorodibromomethane	0	0	0	N/A	N/A	N/A
2-Chloroethyl Vinyl Ether	0	0	0	N/A	N/A	N/A
Chloroform	0	0	0	5.7	5.7	1,684
Dichlorobromomethane	0	0	0	N/A	N/A	N/A
1,2-Dichloroethane	0	0	0	N/A	N/A	N/A
1,1-Dichloroethylene	0	0	0	33	33.0	9,747
1,2-Dichloropropane	0	0	0	N/A	N/A	N/A
1,3-Dichloropropene	0	0	0	N/A	N/A	N/A
Ethylbenzene	0	0	0	68	68.0	20,085
Methyl Bromide	0	0	0	100	100.0	29,537
Methyl Chloride	0	0	0	N/A	N/A	N/A
Methylene Chloride	0	0	0	N/A	N/A	N/A
1,1,2,2-Tetrachloroethane	0	0	0	N/A	N/A	N/A
Tetrachloroethylene	0	0	0	N/A	N/A	N/A
Toluene	0	0	0	57	57.0	16,836
1,2-trans-Dichloroethylene	0	0	0	100	100.0	29,537
1,1,1-Trichloroethane	0	0	0	10,000	10,000	2,953,663
1,1,2-Trichloroethane	0	0	0	N/A	N/A	N/A
Trichloroethylene	0	0	0	N/A	N/A	N/A
Vinyl Chloride	0	0	0	N/A	N/A	N/A
2-Chlorophenol	0	0	0	30	30.0	8,861
2,4-Dichlorophenol	0	0	0	10	10.0	2,954
2,4-Dimethylphenol	0	0	0	100	100.0	29,537
4,6-Dinitro-o-Cresol	0	0	0	2	2.0	591
2,4-Dinitrophenol	0	0	0	10	10.0	2,954
2-Nitrophenol	0	0	0	N/A	N/A	N/A
4-Nitrophenol	0	0	0	N/A	N/A	N/A
2,4,6-Trichlorophenol	0	0	0	N/A	N/A	N/A
Acenaphthene	0	0	0	70	70.0	20,676
Anthracene	0	0	0	300	300	88,610
Benzidine	0	0	0	N/A	N/A	N/A
Benzo(a)Anthracene	0	0	0	N/A	N/A	N/A
Benz(a)Pyrene	0	0	0	N/A	N/A	N/A
Benz(k)Fluoranthene	0	0	0	N/A	N/A	N/A
Bis(2-Chloroethyl)Ether	0	0	0	N/A	N/A	N/A
Bis(2-Chloroisopropyl)Ether	0	0	0	200	200	59,073
Bis(2-Ethylhexyl)Phthalate	0	0	0	N/A	N/A	N/A
Middle-Ethylphenyl Phenyl Ether	0	0	0	N/A	N/A	N/A

Butyl Benzyl Phthalate	0	0	0	0.1	0.1	29.5
2-Chlorophthalene	0	0	0	800	800	236,293
Chrysene	0	0	0	N/A	N/A	N/A
Dibenzo(a,h)Anthracene	0	0	0	N/A	N/A	N/A
1,2-Dichlorobenzene	0	0	0	1,000	1,000	295,366
1,3-Dichlorobenzene	0	0	0	7	7.0	2,068
1,4-Dichlorobenzene	0	0	0	300	300	88,610
3,3-Dichlorobenzidine	0	0	0	N/A	N/A	N/A
Diethyl Phthalate	0	0	0	600	600	177,220
Dimethyl Phthalate	0	0	0	2,000	2,000	590,733
Di-n-Butyl Phthalate	0	0	0	20	20.0	5,907
2,4-Dinitrotoluene	0	0	0	N/A	N/A	N/A
2,6-Dinitrotoluene	0	0	0	N/A	N/A	N/A
1,2-Diphenylhydrazine	0	0	0	N/A	N/A	N/A
Fluoranthene	0	0	0	20	20.0	5,907
Fluorene	0	0	0	50	50.0	14,768
Hexachlorobenzene	0	0	0	N/A	N/A	N/A
Hexachlorobutadiene	0	0	0	N/A	N/A	N/A
Hexachlorocyclopentadiene	0	0	0	4	4.0	1,181
Hexachloroethane	0	0	0	N/A	N/A	N/A
Indeno[1,2,3-cd]Pyrene	0	0	0	N/A	N/A	N/A
Isophorone	0	0	0	34	34.0	10,042
Naphthalene	0	0	0	N/A	N/A	N/A
Nitrobenzene	0	0	0	10	10.0	2,954
n-Nitrosodimethylamine	0	0	0	N/A	N/A	N/A
n-Nitrosodi-n-Propylamine	0	0	0	N/A	N/A	N/A
n-Nitrosodiphenylamine	0	0	0	N/A	N/A	N/A
Phenanthrene	0	0	0	N/A	N/A	N/A
Pyrene	0	0	0	20	20.0	5,907
1,2,4-Trichlorobenzene	0	0	0	0.07	0.07	20.7
Aldrin	0	0	0	N/A	N/A	N/A
alpha-BHC	0	0	0	N/A	N/A	N/A
beta-BHC	0	0	0	N/A	N/A	N/A
gamma-BHC	0	0	0	4.2	4.2	1,241
Chlordane	0	0	0	N/A	N/A	N/A
4,4-DDT	0	0	0	N/A	N/A	N/A
4,4-DDE	0	0	0	N/A	N/A	N/A
4,4-DDD	0	0	0	N/A	N/A	N/A
Dieldrin	0	0	0	N/A	N/A	N/A
alpha-Endosulfan	0	0	0	20	20.0	5,907
beta-Endosulfan	0	0	0	20	20.0	5,907
Endosulfan Sulfate	0	0	0	20	20.0	5,907
Endrin	0	0	0	0.03	0.03	8.86
Endrin Aldehyde	0	0	0	1	1.0	295
Heptachlor	0	0	0	N/A	N/A	N/A
Heptachlor Epoxide	0	0	0	N/A	N/A	N/A
PCBs, Total	0	0	0	N/A _{1/20/2025}	N/A	N/A
Model Results						

CRL	CCT (min):	12.215	PMF:	1	Analysis Hardness (mg/l):	N/A	Analysis pH:	N/A
Pollutants	Stream Conc (µg/L)	Stream CV	Trb Conc (µg/L)	Fate Coef	WQC Obj (µg/L)	WLA (µg/L)	Comments	
Total Dissolved Solids (PWS)	0	0	0	0	N/A	N/A	N/A	
Chloride (PWS)	0	0	0	0	N/A	N/A	N/A	
Sulfate (PWS)	0	0	0	0	N/A	N/A	N/A	
Fluoride (PWS)	0	0	0	0	N/A	N/A	N/A	
Total Aluminum	0	0	0	0	N/A	N/A	N/A	
Total Antimony	0	0	0	0	N/A	N/A	N/A	
Total Arsenic	0	0	0	0	N/A	N/A	N/A	
Total Barium	0	0	0	0	N/A	N/A	N/A	
Total Boron	0	0	0	0	N/A	N/A	N/A	
Total Cadmium	0	0	0	0	N/A	N/A	N/A	
Total Chromium (III)	0	0	0	0	N/A	N/A	N/A	
Hexavalent Chromium	0	0	0	0	N/A	N/A	N/A	
Total Cobalt	0	0	0	0	N/A	N/A	N/A	
Total Copper	0	0	0	0	N/A	N/A	N/A	
Dissolved Iron	0	0	0	0	N/A	N/A	N/A	
Total Iron	0	0	0	0	N/A	N/A	N/A	
Total Lead	0	0	0	0	N/A	N/A	N/A	
Total Manganese	0	0	0	0	N/A	N/A	N/A	
Total Mercury	0	0	0	0	N/A	N/A	N/A	
Total Nickel	0	0	0	0	N/A	N/A	N/A	
Total Phenols (Phenolics) (PWS)	0	0	0	0	N/A	N/A	N/A	
Total Selenium	0	0	0	0	N/A	N/A	N/A	
Total Silver	0	0	0	0	N/A	N/A	N/A	
Total Thallium	0	0	0	0	N/A	N/A	N/A	
Total Zinc	0	0	0	0	N/A	N/A	N/A	
Acrolein	0	0	0	0	N/A	N/A	N/A	
Acrylamide	0	0	0	0.07	0.07	128	N/A	
Acrylonitrile	0	0	0	0.06	0.06	110	N/A	
Benzene	0	0	0	0.58	0.58	1,061	N/A	
Bromofrom	0	0	0	7	7.0	12,806	N/A	
Carbon Tetrachloride	0	0	0	0.4	0.4	732	N/A	
Chlorobenzene	0	0	0	N/A	N/A	N/A	N/A	
Chlorodibromomethane	0	0	0	0.8	0.8	1,464	N/A	
2-Chloroethyl Vinyl Ether	0	0	0	N/A	N/A	N/A	N/A	
Chloroform	0	0	0	N/A	N/A	N/A	N/A	
Dichlorobromomethane	0	0	0	0.95	0.95	1,738	N/A	
1,2-Dichloroethane	0	0	0	9.9	9.9	18,112	N/A	
1,1-Dichloroethylene	0	0	0	N/A	N/A	N/A	N/A	
1,2-Dichloropropane	0	0	0	0.9	0.9	1,647	N/A	
1,3-Dichloropropylene	0	0	0	0.27	0.27	494	N/A	
Ethylbenzene	0	0	0	N/A	N/A	N/A	N/A	
Model Results Methyl Bromide	0	0	0	N/A	N/A	N/A	N/A	

Methyl Chloride	0	0	0	0	N/A	N/A	N/A	N/A
Methylene Chloride	0	0	0	0	20	20.0	36.589	36.589
1,1,2,2-Tetrachloroethane	0	0	0	0	0.2	0.2	365	365
Tetrachloroethylene	0	0	0	0	10	10.0	18.294	18.294
Toluene	0	0	0	0	N/A	N/A	N/A	N/A
1,2-Trans-Dichloroethylene	0	0	0	0	N/A	N/A	N/A	N/A
1,1,1-Trichloroethane	0	0	0	0	N/A	N/A	N/A	N/A
1,1,2-Trichloroethane	0	0	0	0	0.55	0.55	1.006	1.006
Trichloroethylene	0	0	0	0	0.6	0.6	1.098	1.098
Vinyl Chloride	0	0	0	0	0.02	0.02	36.6	36.6
2-Chlorophenol	0	0	0	0	N/A	N/A	N/A	N/A
2,4-Dichlorophenol	0	0	0	0	N/A	N/A	N/A	N/A
2,4-Dimethylphenol	0	0	0	0	N/A	N/A	N/A	N/A
4,6-Dinitro-o-Cresol	0	0	0	0	N/A	N/A	N/A	N/A
2,4-Dinitrophenol	0	0	0	0	N/A	N/A	N/A	N/A
2-Nitrophenol	0	0	0	0	N/A	N/A	N/A	N/A
4-Nitrophenol	0	0	0	0	N/A	N/A	N/A	N/A
2,4,6-Trichlorophenol	0	0	0	0	1.5	1.5	2.744	2.744
Acenaphthene	0	0	0	0	N/A	N/A	N/A	N/A
Anthracene	0	0	0	0	N/A	N/A	N/A	N/A
Benzidine	0	0	0	0	0.0001	0.0001	0.18	0.18
Benzo(a)Anthracene	0	0	0	0	0.001	0.001	1.83	1.83
Benzo(a)Pyrene	0	0	0	0	0.0001	0.0001	0.18	0.18
Benzo(k)Fluoranthene	0	0	0	0	0.01	0.01	18.3	18.3
Bis(2-Chloroethyl) Ether	0	0	0	0	0.03	0.03	54.9	54.9
Bis(2-Chloroisopropyl) Ether	0	0	0	0	N/A	N/A	N/A	N/A
Bis(2-Ethylhexyl) Phthalate	0	0	0	0	0.32	0.32	585	585
4-Bromophenyl Phenyl Ether	0	0	0	0	N/A	N/A	N/A	N/A
Butyl Benzyl Phthalate	0	0	0	0	N/A	N/A	N/A	N/A
2-Chloronaphthalene	0	0	0	0	0.12	0.12	220	220
Chrysene	0	0	0	0	0.0001	0.0001	0.18	0.18
Dibenzo(a,h)Anthracene	0	0	0	0	N/A	N/A	N/A	N/A
1,2-Dichlorobenzene	0	0	0	0	N/A	N/A	N/A	N/A
1,3-Dichlorobenzene	0	0	0	0	N/A	N/A	N/A	N/A
1,4-Dichlorobenzene	0	0	0	0	N/A	N/A	N/A	N/A
3,3-Dichlorobenzidine	0	0	0	0	0.05	0.05	91.5	91.5
Diethyl Phthalate	0	0	0	0	N/A	N/A	N/A	N/A
Dimethyl Phthalate	0	0	0	0	N/A	N/A	N/A	N/A
Di-n-Butyl Phthalate	0	0	0	0	N/A	N/A	N/A	N/A
2,4-Dinitrotoluene	0	0	0	0	0.05	0.05	91.5	91.5
2,6-Dinitrotoluene	0	0	0	0	0.05	0.05	91.5	91.5
1,2-Diphenylhydrazine	0	0	0	0	0.03	0.03	54.9	54.9
Fluoranthene	0	0	0	0	N/A	N/A	N/A	N/A
Fluorene	0	0	0	0	N/A	N/A	N/A	N/A
Hexachlorobenzene	0	0	0	0	0.00008	0.00008	0.15	0.15
Hexachlorobutadiene	0	0	0	0	0.01	0.01	18.3	18.3
Middle Range	0	0	0	0	N/A _{2/20/2025}	N/A	N/A	N/A

Hexachloroethane	0	0	0	0	0.1	0.1	183
Indeno(1,2,3-cd)Pyrene	0	0	0	0.001	0.001	1.83	
Isophorone	0	0	0	N/A	N/A	N/A	
Naphthalene	0	0	0	N/A	N/A	N/A	
Nitrobenzene	0	0	0	N/A	N/A	N/A	
n-Nitrosodimethylamine	0	0	0	0.0007	0.0007	1.28	
n-Nitrosodi-n-Propylamine	0	0	0	0.005	0.005	9.15	
n-Nitrosodiphenylamine	0	0	0	3.3	3.3	6.037	
Phenanthrene	0	0	0	N/A	N/A	N/A	
Pyrene	0	0	0	N/A	N/A	N/A	
1,2,4-Trichlorobenzene	0	0	0	N/A	N/A	N/A	
Aldrin	0	0	0	0.0000008	8.00E-07	0.001	
alpha-BHC	0	0	0	0.0004	0.0004	0.73	
beta-BHC	0	0	0	0.008	0.008	14.6	
gamma-BHC	0	0	0	N/A	N/A	N/A	
Chlordane	0	0	0	0.0003	0.0003	0.55	
4,4-DDT	0	0	0	0.00003	0.00003	0.055	
4,4-DDE	0	0	0	0.00002	0.00002	0.037	
4,4-DDD	0	0	0	0.0001	0.0001	0.18	
Dieldrin	0	0	0	0.000001	0.000001	0.002	
alpha-Endosulfan	0	0	0	N/A	N/A	N/A	
beta-Endosulfan	0	0	0	N/A	N/A	N/A	
Endosulfan Sulfate	0	0	0	N/A	N/A	N/A	
Ethdrin	0	0	0	N/A	N/A	N/A	
Endrin Aldehyde	0	0	0	N/A	N/A	N/A	
Heptachlor	0	0	0	0.000006	0.000006	0.011	
Heptachlor Epoxyde	0	0	0	0.00003	0.00003	0.055	
PCBs, Total	0	0	0	0.000064	0.00006	0.12	

Recommended WOBEI's & Monitoring Requirements

No Samples/Mont

Page 15

Other Pollutants without Limits or Monitoring

The following pollutants do not require effluent limits or monitoring based on water quality because reasonable potential to exceed water quality criteria was not determined and the discharge concentration was less than thresholds for monitoring, or the pollutant was not detected and a sufficiently sensitive analytical method was used (e.g., < Target QL).

Pollutants	Governing WQBEL	Units	Comments
Total Dissolved Solids (PWS)	N/A	N/A	PWS Not Applicable
Chloride (PWS)	N/A	N/A	PWS Not Applicable
Bromide	N/A	N/A	No WQS
Sulfate (PWS)	N/A	N/A	PWS Not Applicable
Fluoride (PWS)	N/A	N/A	PWS Not Applicable
Total Aluminum	86.632	µg/L	Discharge Conc ≤ 10% WQBEL
Total Antimony	1.654	µg/L	Discharge Conc ≤ 10% WQBEL
Total Arsenic	2.954	µg/L	Discharge Conc ≤ 10% WQBEL
Total Barium	708.879	µg/L	Discharge Conc ≤ 10% WQBEL
Total Beryllium	N/A	N/A	No WQS
Total Boron	472.586	µg/L	Discharge Conc ≤ 10% WQBEL
Total Cadmium	79.9	µg/L	Discharge Conc ≤ 10% WQBEL
Total Chromium (III)	25.455	µg/L	Discharge Conc ≤ 10% WQBEL
Hexavalent Chromium	1.882	µg/L	Discharge Conc ≤ 10% WQBEL
Total Cobalt	5.612	µg/L	Discharge Conc ≤ 10% WQBEL
Total Copper	1.617	µg/L	Discharge Conc ≤ 10% WQBEL
Dissolved Iron	88.610	µg/L	Discharge Conc ≤ 10% WQBEL
Total Iron	443.049	µg/L	Discharge Conc ≤ 10% WQBEL
Total Lead	940	µg/L	Discharge Conc ≤ 10% WQBEL
Total Manganese	295.366	µg/L	Discharge Conc ≤ 10% WQBEL
Total Mercury	14.8	µg/L	Discharge Conc ≤ 10% WQBEL
Total Nickel	15.407	µg/L	Discharge Conc ≤ 10% WQBEL
Total Phenols (Phenolics) (PWS)			PWS Not Applicable
Total Selenium	1.474	µg/L	Discharge Conc ≤ 10% WQBEL
Total Silver	437	µg/L	Discharge Conc ≤ 10% WQBEL
Total Thallium	70.9	µg/L	Discharge Conc < TQL
Total Zinc	13,840	µg/L	Discharge Conc ≤ 10% WQBEL
Total Molybdenum	N/A	N/A	No WQS
Acrolein	347	µg/L	Discharge Conc < TQL
Acrylamide	128	µg/L	Discharge Conc ≤ 25% WQBEL
Acrylonitrile	110	µg/L	Discharge Conc < TQL

Benzene	1,061	µg/L	Discharge Conc ≤ 25% WQBEL
Bromoform	12,806	µg/L	Discharge Conc ≤ 25% WQBEL
Carbon Tetrachloride	732	µg/L	Discharge Conc ≤ 25% WQBEL
Chlorobenzene	29,537	µg/L	Discharge Conc ≤ 25% WQBEL
Chlorodibromomethane	1,464	µg/L	Discharge Conc ≤ 25% WQBEL
Chloroethane	N/A	µg/L	No WQS
2-Chloroethyl Vinyl Ether	1,033,782	µg/L	Discharge Conc < TQL
Chloroform	1,684	µg/L	Discharge Conc ≤ 25% WQBEL
Dichlorobromomethane	1,738	µg/L	Discharge Conc ≤ 25% WQBEL
1,1-Dichloroethane	N/A	µg/L	No WQS
1,2-Dichloroethane	18,112	µg/L	Discharge Conc ≤ 25% WQBEL
1,1-Dichloroethylene	9,747	µg/L	Discharge Conc ≤ 25% WQBEL
1,2-Dichloropropane	1,647	µg/L	Discharge Conc ≤ 25% WQBEL
1,3-Dichloropropene	494	µg/L	Discharge Conc ≤ 25% WQBEL
1,4-Dioxane	N/A	µg/L	No WQS
Ethylbenzene	20,085	µg/L	Discharge Conc ≤ 25% WQBEL
Methyl Bromide	29,537	µg/L	Discharge Conc ≤ 25% WQBEL
Methyl Chloride	1,624,514	µg/L	Discharge Conc ≤ 25% WQBEL
Methylene Chloride	36,589	µg/L	Discharge Conc ≤ 25% WQBEL
1,1,2,2-Tetrachloroethane	366	µg/L	Discharge Conc ≤ 25% WQBEL
Tetrachloroethylene	18,294	µg/L	Discharge Conc ≤ 25% WQBEL
Toluene	16,836	µg/L	Discharge Conc ≤ 25% WQBEL
1,2-Trans-Dichloroethylene	29,537	µg/L	Discharge Conc ≤ 25% WQBEL
1,1,1-Trichloroethane	180,173	µg/L	Discharge Conc ≤ 25% WQBEL
1,1,2-Trichloroethane	1,006	µg/L	Discharge Conc ≤ 25% WQBEL
Trichloroethylene	1,098	µg/L	Discharge Conc ≤ 25% WQBEL
Vinyl Chloride	36,6	µg/L	Discharge Conc ≤ 25% WQBEL
2-Chlorophenol	8,861	µg/L	Discharge Conc < TQL
2,4-Dichlorophenol	2,954	µg/L	Discharge Conc < TQL
2,4-Dimethylphenol	29,537	µg/L	Discharge Conc < TQL
4,6-Dinitro-o-Cresol	591	µg/L	Discharge Conc < TQL
2,4-Dinitrophenol	2,954	µg/L	Discharge Conc < TQL
2-Nitrophenol	472,586	µg/L	Discharge Conc < TQL
4-Nitrophenol	138,822	µg/L	Discharge Conc < TQL
2,4,6-Trichlorophenol	2,744	µg/L	Discharge Conc < TQL
Acenaphthene	5,021	µg/L	Discharge Conc < TQL
Acenaphthylene	N/A	µg/L	No WQS
Anthracene	88,610	µg/L	Discharge Conc < TQL
Benzidine	0.18	µg/L	Discharge Conc < TQL
Benz(a)Anthracene	1.83	µg/L	Discharge Conc < TQL
Benz(a)Pyrene	0.18	µg/L	Discharge Conc < TQL
Benz(ghi)Perylene	N/A	µg/L	No WQS
Benz(k)Fluoranthene	18.3	µg/L	Discharge Conc < TQL
Bis(2-Chloroethoxy)Methane	N/A	µg/L	No WQS
Bis(2-Chloroethyl)Ether	54.9	µg/L	Discharge Conc < TQL
Bis(2-Chloroisopropyl)Ether	59,073	µg/L	Discharge Conc < TQL
Middle Range (2-Ethylhexyl)Phthalate	585	µg/L	Discharge Conc ≤ TQL

4-Bromophenyl Phenyl Ether	15,950	µg/L	Discharge Conc < TQL
Butyl Benzyl Phthalate	29.5	µg/L	Discharge Conc < TQL
2-Chloronaphthalene	236,293	µg/L	Discharge Conc < TQL
4-Chlorophenyl Phenyl Ether	N/A	N/A	No WQS
Chrysene	220	µg/L	Discharge Conc < TQL
Dibenz(a,h)Anthracene	0.18	µg/L	Discharge Conc < TQL
1,2-Dichlorobenzene	47,259	µg/L	Discharge Conc < TQL
1,3-Dichlorobenzene	2,068	µg/L	Discharge Conc < TQL
1,4-Dichlorobenzene	44,305	µg/L	Discharge Conc < TQL
3,3-Dichlorobenzidine	91.5	µg/L	Discharge Conc < TQL
Diethyl Phthalate	177,220	µg/L	Discharge Conc < TQL
Dimethyl Phthalate	147,683	µg/L	Discharge Conc < TQL
Di-n-Butyl Phthalate	5,907	µg/L	Discharge Conc < TQL
2,4-Dinitrotoluene	91.5	µg/L	Discharge Conc < TQL
2,6-Dinitrotoluene	91.5	µg/L	Discharge Conc < TQL
Di-n-Octyl Phthalate	N/A	N/A	No WQS
1,2-Diphenylhydrazine	54.9	µg/L	Discharge Conc < TQL
Fluoranthene	5,907	µg/L	Discharge Conc < TQL
Fluorene	14,768	µg/L	Discharge Conc < TQL
Hexachlorobenzene	0.15	µg/L	Discharge Conc < TQL
Hexachlorobutadiene	18.3	µg/L	Discharge Conc < TQL
Hexachlorocyclopentadiene	295	µg/L	Discharge Conc < TQL
Hexachloroethane	183	µg/L	Discharge Conc < TQL
Indeno[1,2,3-cd]Pyrene	1.83	µg/L	Discharge Conc < TQL
Isophorone	10,042	µg/L	Discharge Conc < TQL
Naphthalene	12,701	µg/L	Discharge Conc < TQL
Nitrobenzene	2,954	µg/L	Discharge Conc < TQL
n-Nitrosodimethylamine	1.28	µg/L	Discharge Conc < TQL
n-Nitrosod-n-Propylamine	9.15	µg/L	Discharge Conc < TQL
n-Nitrosodiphenylamine	6,037	µg/L	Discharge Conc < TQL
Phenanthrene	295	µg/L	Discharge Conc < TQL
Pyrene	5,907	µg/L	Discharge Conc < TQL
1,2,4-Trichlorobenzene	20.7	µg/L	Discharge Conc < TQL
Aldrin	0.001	µg/L	Discharge Conc < TQL
alpha-BHC	0.73	µg/L	Discharge Conc < TQL
beta-BHC	14.6	µg/L	Discharge Conc < TQL
gamma-BHC	110	µg/L	Discharge Conc < TQL
delta BHC	N/A	N/A	No WQS
Chlordane	0.55	µg/L	Discharge Conc < TQL
4,4-DDT	0.055	µg/L	Discharge Conc < TQL
4,4-DDE	0.037	µg/L	Discharge Conc < TQL
4,4-DDD	0.18	µg/L	Discharge Conc < TQL
Dieldrin	0.002	µg/L	Discharge Conc < TQL
alpha-Endosulfan	16.5	µg/L	Discharge Conc < TQL
beta-Endosulfan	16.5	µg/L	Discharge Conc < TQL
Endosulfan Sulfate	5,907	µg/L	Discharge Conc < TQL
Endrin	8.86	µg/L	Discharge Conc < TQL
Middle Results			

Endrin Aldehyde	295	µg/L	Discharge Conc < TQL
Heptachlor	0.011	µg/L	Discharge Conc < TQL
Heptachlor Epoxide	0.055	µg/L	Discharge Conc < TQL
PCB-1016	N/A	N/A	No WQS
PCB-1221	N/A	N/A	No WQS
PCB-1232	N/A	N/A	No WQS
PCB-1242	N/A	N/A	No WQS
PCB-1248	N/A	N/A	No WQS
PCB-1254	N/A	N/A	No WQS
PCB-1260	N/A	N/A	No WQS
PCBs, Total	0.12	µg/L	Discharge Conc < TQL