

Southcentral Regional Office CLEAN WATER PROGRAM

Application Type
Renewal
NonFacility Type
Major / Minor
Minor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

 Application No.
 PA0247936

 APS ID
 771264

Authorization ID

1434806

Applicant Name	RV Management Services	Facility Name	Twin Grove Resort & Campground
Applicant Address	104 E Fairview Avenue #241	Facility Address	1445 Suedberg Road
	Meridian, ID 83642-1733		Pine Grove, PA 17963-9609
Applicant Contact	Philip Moreau	Facility Contact	Calvin Trimble
Applicant Phone	(301) 252-5600	Facility Phone	(717) 460-0042
Client ID	275647	Site ID	661336
Ch 94 Load Status	Not Overloaded	Municipality	Union Township
Connection Status	No Limitations	County	Lebanon
Date Application Rece	eived April 3, 2023	EPA Waived?	Yes
Date Application Acce	epted April 14, 2023	If No, Reason	

Summary of Review

1.0 General Discussions

This fact sheet supports the renewal of an existing NPDES permit for discharge of treated domestic wastewater from Twin Grove Park Campground wastewater treatment plant located in Union Township, Lebanon County. The treatment plant's annual average design capacity at built out according to the WQM permit is 0.0292 MGD with a maximum daily flow of 0.0423MGD. The project is progressing in phases and, phases I & II of the project has been completed. According to the original WQM permit approved for the facility, the facility is required to install phase III of the project when annual average discharge flow reaches 80% of 0.0292MGD which will be approximately 0.02336MGD. The facility receives flow from a 90-seater restaurant, an ice cream parlor, a store, office building, and a laundry. The campground ground is open year-round, and the restaurant operates between April and November. The facility is a Chromaglass secondary treatment system and discharges to an unnamed tributary of Swatara Creek classified for cold water fishes (CWF), aquatic life, water supply and recreation. The existing NPDES permit was issued on September 21, 2018 with an effective date of October 1, 2018 and expiration date of September 30, 2023. The applicant submitted an administratively complete NPDES renewal application to the Department and is currently operating under the terms and conditions in the existing permit under administrative extension provisions pending Department action on the renewal application. A topographic map showing the discharge location is presented in attachment A.

Approve	Deny	Signatures	Date
Х		g. Pascal Kwedza J. Pascal Kwedza, P.E. / Environmental Engineer	April 17, 2024
Х		Maria D. Bebeuek for Daniel W. Martin, P.E. / Environmental Engineer Manager	April 17, 2024
Х		Maria D. Bebenek Maria D. Bebenek, P.E. / Program Manager	April 17, 2024

Summary of Review

1.1 Sludge use and disposal description and location(s):

Sludge is hold up in an aerobic digester and hauled out by a licensed hauler periodically.

1.2 Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

B Discharge, Receiving Waters and Water Supply In	nformation	
Outfall No. 001	Design Flow (MGD)	.0292
Latitude 40° 30′ 48.39″	Longitude	-76° 30' 50.38"
Quad Name Tower City	Quad Code	1433
Wastewater Description: Sewage Effluent		
Unnamed tributary to Swatara Receiving Waters Creek	Stream Code	10005
NUD Com ID	DMI	0.85
Drainage Area 112	Viold (ofo/mi2)	0.00
Q ₇₋₁₀ Flow (cfs) 0.073	Q ₇₋₁₀ Basis	USGS Gage Station
Elevation (ft)	Slope (ft/ft)	0000 Gage Station
		CWF, MF
Existing Lico	Existing Use Qualifier	
F C (. 1)		
Assessment Status Attaining Use(s)	Exceptions to Criteria	
Cause(s) of Impairment		
Source(s) of Impairment		
TMDL Status	Name	
Background/Ambient Data	Data Source	
pH (SU)		
Temperature (°F) Hardness (mg/L)		
Other:		
Nearest Downstream Public Water Supply Intake	Lebanon City Water System	
PWS Waters	Flow at Intake (cfs)	
PWS RMI	Distance from Outfall (mi)	10

Changes Since Last Permit Issuance: None

1.3.1 Water Supply:

The nearest downstream water supply intake is approximately 10.38 miles downstream by Lebanon City Water System on Swatara Creek Dam, west of Jonestown Dauphin County. The discharge will not impact the intake because of the distance and dilution.

	2.0 T	Treatment Facility Sumn	nary	
Treatment Facility Na	me: Twin Grove Park WW	ТР		
WQM Permit No.	Issuance Date			
3806401 A-1	9/27/2013			
3806401	5/22/2006			
	Degree of			Avg Annual
Waste Type	Treatment	Process Type	Disinfection	Flow (MGD)
Sewage	Secondary With Ammonia Reduction	Activated Sludge	Hypochlorite	0.0292
Hydraulic Capacity	Organic Capacity			Biosolids
(MGD)	(lbs/day)	Load Status	Biosolids Treatment	Use/Disposal
				Combination of
0.0423	97.4	Not Overloaded	Aerobic Digestion	methods

Changes Since Last Permit Issuance: None

2.1 Treatment Facility Details

The treatment system is consists of influent pumping station, 3 equalization tanks, a splitter box, a denitrification tank, 3 Chromaglass treatment trains (that provide aeration and clarification with adjustable timers and surge capacity), flow meter, chlorination and an aerated sludge holding tank, post aeration sample tank. Sodium Hypochlorite is used for disinfection and lime is used for pH adjustment as needed.

The WQM permit includes one more phase (phase III) for the addition of a 15,000-gpd Chromaglass Aerobic Treatment Systems (CA-150) to be added if the annual average flow reaches 0.02336MGD.

3.1 Existing Effluent Limitations and Monitoring Requirements

			Effluent L	imitations			Monitoring Re	quirements
Parameter	Mass Units	(lbs/day) (1)		Concentrat	ions (mg/L)		Minimum ⁽²⁾	Required
Parameter	Average Monthly	Average Weekly	Minimum	Average Monthly	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report Daily Max	XXX	XXX	XXX	XXX	Continuous	Measured
pH (S.U.)	XXX	XXX	6.0 Daily Min	XXX	9.0 Daily Max	XXX	1/day	Grab
DO	XXX	XXX	5.0 Daily Min	XXX	XXX	XXX	1/day	Grab
TRC	XXX	XXX	XXX	0.25	XXX	0.80	1/day	Grab
CBOD5	XXX	XXX	XXX	25	XXX	50	2/month	8-Hr Composite
TSS	XXX	XXX	XXX	30	XXX	60	2/month	8-Hr Composite
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	2000 Geo Mean	XXX	10000	2/month	Grab
Fecal Coliform (No./100 ml) May 1 - Sep 30	XXX	XXX	XXX	200 Geo Mean	XXX	1000	2/month	Grab
E. Coli (No./100 ml)	XXX	XXX	XXX	XXX	XXX	Report	1/year	Grab
Nitrate-Nitrite	XXX	XXX	XXX	XXX	Report Daily Max	XXX	1/6 months	8-Hr Composite
Total Nitrogen	XXX	XXX	XXX	XXX	Report Daily Max	XXX	1/6 months	Calculation
Ammonia Nov 1 - Apr 30	XXX	XXX	XXX	16.5	XXX	33	2/month	8-Hr Composite
Ammonia May 1 - Oct 31	XXX	XXX	XXX	5.5	XXX	11	2/month	8-Hr Composite
TKN	XXX	XXX	XXX	XXX	Report Daily Max	XXX	1/6 months	8-Hr Composite
Total Phosphorus	XXX	XXX	XXX	XXX	Report Daily Max	XXX	1/6 months	8-Hr Composite

3.2 Compliance History

3.2.1 DMR Data for Outfall 001 (from March 1, 2023 to February 29, 2024)

Parameter	FEB-24	JAN-24	DEC-23	NOV-23	OCT-23	SEP-23	AUG-23	JUL-23	JUN-23	MAY-23	APR-23	MAR-23
Flow (MGD)												
Average Monthly	0.003	0.005	0.004	0.004	0.006	0.007	0.01	0.01	0.008	0.005	0.005	0.003
Flow (MGD)												
Daily Maximum	0.004	0.006	0.005	0.008	0.011	0.011	0.015	0.016	0.012	0.013	0.008	0.005
pH (S.U.)												
Daily Minimum	6.6	6.5	6.7	6.7	6.5	6.5	6.6	6.6	6.5	6.5	6.6	6.5
pH (S.U.)												
Daily Maximum	6.8	6.9	6.9	6.9	6.8	6.8	6.9	6.9	6.9	7.2	7.1	6.9
DO (mg/L)												
Daily Minimum	5.1	5.1	5.0	5.0	5.0	5.0	5.3	5.2	5.1	5.1	5.5	5.5
TRC (mg/L)												
Average Monthly	0.20	0.15	0.16	0.16	0.18	0.13	0.14	0.14	0.16	0.16	0.18	0.18
TRC (mg/L)												
Instantaneous												
Maximum	0.52	0.59	0.42	0.42	0.41	0.42	0.49	0.41	0.48	0.47	0.50	0.49
CBOD5 (mg/L)												
Average Monthly	3.1	11.7	6.3	< 3	5.9	6	6.2	9.7	4.4	< 3	2.7	5.2
TSS (mg/L)	00	45	40	40	4.4	40	4.4	00		-	_	_
Average Monthly	20	15	12	10	14	19	14	22	< 6	7	< 5	5
Fecal Coliform												
(No./100 ml)	. 5	. 50	< 11	. 10	< 5		14	< 5		< 1	5	< 1
Geometric Mean Fecal Coliform	< 5	< 53	< 11	< 10	< 5	< 5	14	< 5	< 1	< 1	5	< 1
(No./100 ml)												
Instantaneous												
Maximum	< 5	563	26	21	< 5	< 5	21	5	< 1	< 1	5	< 1
Nitrate-Nitrite (mg/L)	\ \ \	303	20	<u> </u>			<u> </u>	<u> </u>	_ ` '		3	
Daily Maximum			38.9						63.4			
Total Nitrogen (mg/L)			00.0						00.1			
Daily Maximum			41.1						< 64.4			
Ammonia (mg/L)												
Average Monthly	3.47	7.37	0.98	0.92	1.02	1.65	< 1.43	0.921	< 0.491	0.245	0.405	0.441
TKN (mg/L)	1											
Daily Maximum			2.2						< 1			
Total Phosphorus												
(mg/L)												
Daily Maximum			10.4						12.5			

3.2.2 Summary of DMRs:

DMRs review for the facility for the last 12 months of operation, presented on the table above in section 3.1.1 indicates permit limits have been met consistently. No effluent violations noted during the period reviewed.

3.2.3 Summary of Inspections:

The facility has been inspected a couple of times during the previous permit cycle. No effluent violations were found during plant inspections. The facility is operated and maintained well.

	4.0 Development of Effluent Limitations					
Outfall No.	001		Design Flow (MGD)	.0292		
Latitude	40° 30' 48.54	1"	Longitude	-76° 30' 50.18"		
Wastewater D	Description:	Sewage Effluent	-			

4.1 Basis for Effluent Limitations

In general, the Clean Water Act (CWA) requires that the effluent limits for a particular pollutant be the more stringent of either technology-based limits or water quality-based limits. Technology-based limits are set according to the level of treatment that is achievable using available technology. A water quality-based effluent limit is designed to ensure that the water quality standards applicable to a waterbody are being met and may be more stringent than technology-based effluent limits.

4.2 Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Pollutant	Limit (mg/l)	SBC	Federal Regulation	State Regulation
CBOD ₅	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
СВОВ				
Total Suspended	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Solids				
рН	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform				
(5/1 – 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform				
(5/1 – 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform				
(10/1 – 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform				
(10/1 – 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)

Comments: None

4.3 Water Quality-Based Limitations

4.3.1 WQM 7.0 Stream Model

WQM 7.0 is a water quality model DEP utilizes to establish appropriate effluent limits for CBOD₅, NH₃-N and DO in permits. The model simulates mixing and degradation of NH₃-N in the stream and compares calculated instream NH₃-N concentrations to NH₃-N water quality criteria and also simulates mixing and consumption of D.O. in the stream due to the degradation of CBOD₅ and NH₃N and compares calculated instream D.O. concentrations to D.O. water quality criteria and recommends effluent limits.

4.3.2 Receiving Stream

The receiving stream is UNT of Swatara Creek. According to 25 PA § 93.9, this stream is protected for Cold Water Fishes (CWF) and Migratory Fishes (MF). It is located in Drainage List N and State Watershed 7-D. It has been assigned stream code 10005. According to eMapPA, the segment of the UNT of Swatara Creek receiving the discharge is attaining its designated uses

4.3.3 Streamflow:

Streamflows for the water quality analysis were determined by correlating with the yield of USGS gauging station No 01573000 on Swatara Creek at Harper Tavern. The Q₇₋₁₀ and drainage area at the gage is 22.1ft3/s and 337 mi² respectively. The resulting yields are as follows:

- $Q_{7-10} = (22.1ft^3/s)/337 \text{ mi}^2 = 0.0656ft^3/s/ \text{mi}^2$
- $Q_{30-10} / Q_{7-10} = 1.36$
- $Q_{1-10} / Q_{7-10} = 0.64$

The drainage area at discharge is calculated by USGS StreamStats = 1.12mi²

The Q_{7-10} at discharge = 1.12 mi² x 0.0656ft³/s/mi² = 0.073 ft³/s.

4.3.4 NH₃N Calculations

NH₃N calculations were based on the Department's Implementation Guidance of Section 93.7 Ammonia Criteria, dated 11/4/97 (ID No. 391-2000-013). The following data is necessary to determine the instream NH₃N criteria used in modelling of the stream:

= 6.6 (DMR median July to Sept.)

Discharge pH = 6.6 (DMR media Discharge Temperature = 25 ° C (Default) = 7.0 (Default) = 20°C (Default) = 0.0 (default) Stream pH Stream Temperature Background NH₃-N

4.3.5 CBOD₅

The results of the WQM 7.0 stream model presented in attachment B indicates an average monthly limit (AML) of 25mg/L CBOD₅ is required to protect the water quality of the stream. This limit is consistent with the existing permit and past DMRs and inspection reports show that the facility has been consistently complying the limitation. Therefore, a limit of 25mg/L AML and 50 mg/L IMAX is recommended again for this permit cycle.

4.3.6 NH₃-N

The results of the WQM 7.0 stream model (attachment B) also indicates that a summer limitation of 5.5 mg/L NH₃-N as a monthly average is necessary to protect the aquatic life from toxicity effects. This limit is consistent with the existing limit and remain in the permit the winter limit of 16.5mg/L which is 3 times the summer limit. The facility is complying with the limitation.

4.3.7 Dissolved Oxygen

The existing permit contains a limit of 5 mg/l for Dissolved Oxygen (DO). DEP's Technical Guidance for the Development and Specification of Effluent Limitations (362-0400-001, 10/97) suggests that either the adopted minimum stream D.O. criteria for the receiving stream or the effluent level determined through water quality modeling be used for the limit. Since the WQM 7.0 model was run using a minimum D.O. of 5.0 mg/L, this limit will be continued in the renewed permit with a daily monitoring requirement.

4.3.8 Total Suspended Solids (TSS):

There is no water quality criterion for TSS. A limit of 30 mg/L AML required in the existing based on the minimum level of effluent quality attainable by secondary treatment as defined in 40 CFR 133.102b(1) and 25 PA § 92a.47(a)(1) will remain in the permit.

4.3.9 Total Residual Chlorine:

TRC analysis was based on the equations and calculations presented in the Department's May 1, 2003 Implementation Guidance for Total Residual Chlorine (TRC) (ID No. 391-2000-015) for developing chlorine limitations. The Guidance references Chapter 92a, Section 92a.48 (b) which establishes a standard BAT limit of 0.5 mg/L unless a facility-specific BAT has been developed. The attached results presented in attachment C indicates a water quality limit of 0.25 mg/L AML and IMAX of 0.80 mg/L would be needed to prevent toxicity concerns. This RECOMMENDATION is consistent with the existing permit and will remain in the permit for the current permit cycle. DMRs and inspection reports indicate the facility has been complying with the limitation.

4.3.10 Toxics

A reasonable potential (RP) analysis was done for pollutants in the discharge. The discharge consists entirely of domestic wastewater with no pollutants of concern that needs further analysis.

4.3.11 Fecal Coliform and E. Coli

The existing Fecal Coliform limit is consistent with the technology limits recommended in 92a.47(a)(4) and (a)(5) and will remain in the permit. In March of 2021, EPA approved DEP's Triennial Review of Water Quality Standards, which included a new swimming season criterion for E. coli. As a result, DEP is including monitoring requirements for E. Coli in new and renewed sewage permits above 2000gpd. Monitoring frequency is based on annual average flow as follows: 1/month for design flows >= 1 MGD, 1/quarter for design flows >= 0.05 and < 1 MGD and 1/year for design flows of 0.002 and < 0.05 MGD. Your discharge of 0.0292MGD requires 1/year monitoring as included in the permit.

4.3.12 Chesapeake Bay Strategy:

The Department formulated a strategy in April 2007, to comply with the EPA and Chesapeake Bay requirements to reduce point source loadings of Total Nitrogen (TN) and Total Phosphorus (TP) to the Bay. In the Strategy, sewage dischargers have been prioritized by DEP based on their delivered TN loadings to the Bay. The highest priority (Phases 1, 2, and 3) dischargers received annual loading caps based on their design flow on August 29, 2005 and concentrations of 6 mg/l TN and 0.8 mg/l TP. Phase 4 (0.2 -0.4mgd) and Phase 5(below 0.2mdg) are required to monitor and report TN and TP during permit renewal and any facility in Phases 4 and 5 that undergoes expansion is subjected to cap load right away. EPA published Chesapeake Bay TMDL in December of 2010. In order to address the TMDL, Pennsylvania developed Chesapeake Watershed Implementation Plan (WIP) Phase 1, Phase 2 and currently Phase 3 WIP and a supplement to the WIPs to be implemented with the original Chesapeake Bay Strategy.

Phase 3 WIP and the supplement to the WIP, indicates renewing permits for significant dischargers would follow the same phased approach formulated in the original Bay strategy whilst Phase 4 and Phase 5 will be required to monitor and report TN and TP during permit renewals. This facility is, classified as a phase 5, has been and will continue monitoring and reporting Total Phosphorus, Nitrate-Nitrite as N, Total Kjeldahl Nitrogen and Total Nitrogen semi-annually throughout the next permit cycle.

4.3.13 Stormwater:

No storm water outfall is associated with this facility

5.0 Other Considerations

5.1 Anti-backsliding

Not applicable to this permit

5.2 Anti-Degradation (93.4)

The effluent limits for this discharge have been developed to ensure that existing instream water uses and the level of water quality necessary to protect the existing uses are maintained and protected. No High-Quality Waters are impacted by this discharge. No Exceptional Value Waters are impacted by this discharge.

5.3 Class A Wild Trout Fisheries

No Class A Wild Trout Fisheries are impacted by this discharge.

5.4 303d Listed Streams

The discharge is not located on a 303d listed stream segment.

5.5 Special Permit Conditions

The permit contains the following special conditions:

 Stormwater Prohibition, Approval Contingencies, Management of collected screenings, slurries, sludges and other solids, Solids Management requirement and Chlorine minimization

5.6 Basis for Effluent and Surface Water Monitoring

Section 308 of the CWA and federal regulation 40 CFR 122.44(i) require monitoring in permits to determine compliance with effluent limitations. Monitoring may also be required to gather effluent and surface water data to determine if additional effluent limitations are required and/or to monitor effluent impacts on receiving water quality. The permittee is responsible for conducting the monitoring and for reporting results on Discharge Monitoring Reports (DMRs).

5.7 Effluent Monitoring Frequency

Monitoring frequencies are based on the nature and effect of the pollutant, as well as a determination of the minimum sampling necessary to adequately monitor the facility's performance. Permittees have the option of taking more frequent samples than are required under the permit. These samples can be used for averaging if they are conducted using EPA-approved test methods (generally found in 40 CFR 136) and if the Method Detection Limits are less than the effluent limits. The sampling location must be after the last treatment unit and prior to discharge to the receiving water. If no discharge occurs during the reporting period, "no discharge" shall be reported on the DMR.

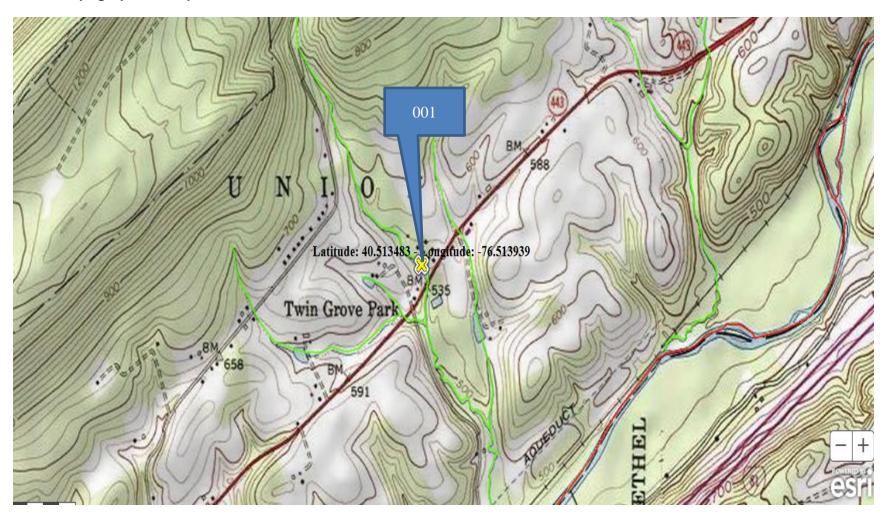
6.0 Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (386-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

			Effluent L	imitations			Monitoring Red	quirements
Parameter	Mass Units	(lbs/day) (1)		Concentrat	ions (mg/L)		Minimum ⁽²⁾	Required
Farameter	Average Monthly	Average Weekly	Minimum	Average Monthly	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report Daily Max	XXX	XXX	XXX	XXX	Continuous	Measured
pH (S.U.)	XXX	XXX	6.0 Daily Min	XXX	9.0 Daily Max	XXX	1/day	Grab
DO	XXX	XXX	5.0 Daily Min	XXX	XXX	XXX	1/day	Grab
TRC	XXX	XXX	XXX	0.25	XXX	0.80	1/day	Grab
CBOD5	XXX	XXX	XXX	25	XXX	50	2/month	8-Hr Composite
TSS	XXX	XXX	XXX	30	XXX	60	2/month	8-Hr Composite
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	2000 Geo Mean	XXX	10000	2/month	Grab
Fecal Coliform (No./100 ml) May 1 - Sep 30	XXX	XXX	XXX	200 Geo Mean	XXX	1000	2/month	Grab
E. Coli (No./100 ml)	XXX	XXX	XXX	XXX	XXX	Report	1/year	Grab
Nitrate-Nitrite	XXX	XXX	XXX	XXX	Report Daily Max	XXX	1/6 months	8-Hr Composite
Total Nitrogen	XXX	XXX	XXX	XXX	Report Daily Max	XXX	1/6 months	Calculation
Ammonia Nov 1 - Apr 30	XXX	XXX	XXX	16.5	XXX	33	2/month	8-Hr Composite
Ammonia May 1 - Oct 31	XXX	XXX	XXX	5.5	XXX	11	2/month	8-Hr Composite

Outfall 001, Continued (from Permit Effective Date through Permit Expiration Date)


		Effluent Limitations							
Parameter	Mass Units	(lbs/day) (1)		Concentrat	Minimum ⁽²⁾	Required			
	Average Monthly	Average Weekly	Minimum	Average Monthly	Maximum	Instant. Maximum	Measurement Frequency	Sample Type	
					Report			8-Hr	
TKN	XXX	XXX	XXX	XXX	Daily Max	XXX	1/6 months	Composite	
					Report			8-Hr	
Total Phosphorus	XXX	XXX	XXX	XXX	Daily Max	XXX	1/6 months	Composite	

Compliance Sampling Location: At Outfall 001

	7.0 Tools and References Used to Develop Permit
\square	MOM (as Wisdows Madel (as a Allechaser)
	WQM for Windows Model (see Attachment B)
	Toxics Management Spreadsheet (see Attachment)
	TRC Model Spreadsheet (see Attachment C)
	Temperature Model Spreadsheet (see Attachment)
	Water Quality Toxics Management Strategy, 361-0100-003, 4/06.
	Technical Guidance for the Development and Specification of Effluent Limitations, 386-0400-001, 10/97.
	Policy for Permitting Surface Water Diversions, 386-2000-019, 3/98.
	Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 386-2000-018, 11/96.
	Technology-Based Control Requirements for Water Treatment Plant Wastes, 386-2183-001, 10/97. Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 386-2183-002,
	12/97.
	Pennsylvania CSO Policy, 386-2000-002, 9/08.
	Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.
	Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 386-2000-008, 4/97.
\boxtimes	Determining Water Quality-Based Effluent Limits, 386-2000-004, 12/97.
	Implementation Guidance Design Conditions, 386-2000-007, 9/97.
	Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 386-2000-016, 6/2004.
	Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 386-2000-012, 10/1997.
	Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 386-2000-009, 3/99.
	Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 386-2000-015, 5/2004.
	Implementation Guidance for Section 93.7 Ammonia Criteria, 386-2000-022, 11/97.
	Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 386-2000-013, 4/2008.
\boxtimes	Implementation Guidance Total Residual Chlorine (TRC) Regulation, 386-2000-011, 11/1994.
	Implementation Guidance for Temperature Criteria, 386-2000-001, 4/09.
	Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 386-2000-021, 10/97.
	Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 386-2000-020, 10/97.
	Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 386-2000-005, 3/99.
	Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 386-2000-010, 3/1999.
	Design Stream Flows, 386-2000-003, 9/98.
	Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 386-2000-006, 10/98.
	Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 386-3200-001, 6/97.
	Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.
	SOP: Establishing effluent limitation for individual sewage permit.
	Other:

8. Attachments

A. Topographical Map

B. WQM Model Results

WQM 7.0 Effluent Limits

			-	-		
07D 100	05		Trib 10005 to Swatar	a Creek		
Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
Twin Grove Camp	PA0247936	0.029	CBOD5	25		
			NH3-N	5.79	11.58	
			Dissolved Oxygen			5
	Name	Name Permit Number	Disc Name Permit Flow Number (mgd)	Name Permit Flow Parameter (mgd) Twin Grove Camp PA0247936 0.029 CBOD5 NH3-N	Name Permit Number Parameter So-day Ave. (mg/L) Twin Grove Camp PA0247936 0.029 CBOD5 25 NH3-N 5.79	Name Permit Number Disc Flow (mgd) Parameter Effl. Limit 30-day Ave. (mg/L) Effl. Limit Maximum (mg/L) Twin Grove Camp PA0247936 0.029 CBOD5 25 NH3-N 5.79 11.58

Input Data WQM 7.0

	SWP Basin	Strea Cod		Stre	am Name		RMI	Eleva (ft		Drainag Area (sq mi		flope	PWS Withdra (mgd	wal	Apply FC
	07D	100	005 Trib 10	0005 to Sv	vatara Cree	k	0.88	50 5	35.00	1	.12 0.	.00000		0.00	~
					Sti	ream Dat	a						7,132,15		
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	<u>Tributar</u> ip	У pH	Tem	Stream o	рН	
Jona.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C)			
Q7-10 Q1-10 Q30-10	0.066	0.00 0.00 0.00	0.00	0.000 0.000 0.000	0.000 0.000 0.000	0.0	0.00	0.00	2	0.00	7.00	0	.00	0.00	
	1000			Discharge I			Data			energe and					
			Name	Per	rmit Numbei	Disc	Permitt Disc Flow (mgd	Flow	Res Fa	serve ictor	Disc Temp (°C)	Dis pl			
		Twin	Grove Car	np PA	0247936	0.029	2 0.029	92 0.02	92	0.000	25.0	00	6.60		
					Pa	arameter	Data								
					rameter Name				tream Conc	Fate Coef					
				raramete	11401116	(m	ng/L) (i	mg/L) (mg/L)	(1/days	3)				
			CBOD5				25.00	2.00	0.00) 1.5	50				
			Dissolved	Oxygen			5.00	8.24	0.00	0.0	00				

25,00

0.00

0.00

0.70

NH3-N

Input Data WQM 7.0

	SWP Basir			Stre	eam Name		RMI	E	levation (ft)	Drainag Area (sq mi)		Slope (ft/ft)	PW: Withdr (mg	awal	Apply FC
	07D	10	005 Trib 10	0005 to S	watara Cree	k	0.0	10	470.00	1.	.50 0.	.00000		0.00	V
					St	ream Dat	a								
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depti		<u>Tributary</u> np p	l pΗ	Tem	Stream p	рН	
	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C	;)		(°C)		
Q7-10 Q1-10 Q30-10	0.066	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000 0.000 0.000	0.0	0.00	0.	.00 2	0.00	7.00	(0.00	0.00	
	Discharg									JW-888-/					
			Name	Per	mit Number	Existing Disc Flow (mgd)	Permitte Disc Flow (mgd)	Di Fl	sc Res	erve ctor	Disc Temp (°C)	Di: p	sc H		
		V-				0.0000	0.000	0 0.	0000	0.000	25.0	10	7.00		
					Pa	ırameter E	Data								
			Parameter Name		Dis Co		Frib Conc	Stream Conc	Fate Coef						
	1				(m	g/L) (n	ng/L)	(mg/L)	(1/days))					
	_		CBOD5			2	25.00	2.00	0.00	1.50)	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
			Dissolved	Oxygen			5.00	8.24	0.00	0.00	0				
			NH3-N			2	25.00	0.00	0.00	0.70)				

WQM 7.0 Hydrodynamic Outputs

	SW	P Basin	Strea	ım Code				Stream	<u>Name</u>			
		07D	1	0005			Trib 100	005 to S	watara Ci	reek		
RMI	Stream Flow (cfs)	PWS With	Net Stream Flow (cfs)	Disc Analysis Flow (cfs)	Reach Slope (ft/ft)	Depth (ft)	Width (ft)	W/D Ratio	Velocity (fps)	Reach Trav Time (days)	Analysis Temp (°C)	Analysis pH
												-1
Q7-1	0 Flow											
0.850	0.07	0.00	0.07	.0452	0.01466	.358	4.88	13.61	0.07	0.756	21.90	6.80
Q1-1	0 Flow											
0.850	0.05	0.00	0.05	.0452	0.01466	NA	NA	NA	0.06	0.871	22.45	6.76
Q30-	10 Flow	,										
0.850	0.10	0.00	0.10	.0452	0.01466	NA	NA	NA	0.08	0.675	21.56	6.83

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	V
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.36	Temperature Adjust Kr	V
D.O. Saturation	90.00%	Use Balanced Technology	V
D.O. Goal	5		

WQM 7.0 Wasteload Allocations

SWP Basin	Stream Code	Stream Name
07D	10005	Trib 10005 to Swatara Creek

RMI	Discharge Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
0.85	0 Twin Grove Cam	16.33	33.32	16.33	33.32	0	0
H3-N (Chronic Allocati	ons					
H3-N (Chronic Allocati	ons Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction

Dissolved Oxygen Allocations

		CBOD5		<u>NH3-N</u>		Dissolved Oxygen		Critical	Percent	
RMI	Discharge Name	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Reach	Reduction	
0.85	Twin Grove Camp	25	25	5.79	5.79	5	5	0	0	

WQM 7.0 D.O.Simulation

SWP Basin S	Stream Code			Stream Name				
07D	10005		Trib 10	005 to Swatara Creel	k			
<u>RMI</u>	Total Discharge	Flow (mgd) <u>Anal</u>	ysis Temperature (°C)	Analysis pH			
0.850	0.02	9		21.904	6.803			
Reach Width (ft)	Reach De	Reach Depth (ft)		Reach WDRatio	Reach Velocity (fps)			
4.876	0.35	0.358		13.607	0.068			
Reach CBOD5 (mg/L)	Reach Kc (Reach Kc (1/days)		each NH3-N (mg/L)	Reach Kn (1/days)			
10.76	1,19			2.20	0.810			
Reach DO (mg/L)	Reach Kr (•		Kr Equation	Reach DO Goal (mg/L)			
7.008	25.00)5		Owens	5			
Reach Travel Time (days)	Subreach	Results					
0.756	TravTime (days)	CBOD5 (mg/L)	NH3-N (mg/L)	D.O. (mg/L)				
	0.076	9.74	2.07	7.63				
	0.151	8.83	1.95	7.80				
	0.227	7.99	1.83	7.90				
	0,302	7.24	1.73	1.73 7.96				
	0.378	6.56	1.62	7.96				
	0.454	5.94	1.53	7.96				
	0.529	5.38	1.44	7.96				
	0.605	4.88	1.35	7.96				
	0,680	4.42	1.27	7.96				
	0.756	4.00	1.19	7.96				

C. TRC Calculations

TRC EVALU	IATION							
		n A3:A9 and D3:D9						
	= Q stream		0.5	= CV Daily				
	= Q discha			= CV Hourly				
	= no. samp	• •	0.3	_	al Mix Factor			
		Demand of Stream	1	_	al Mix Factor			
		Demand of Discharge	15	_	ria Compliance Time (min)			
	= BAT/BPJ				ria Compliance Time (min)			
	-	r of Safety (FOS)		0 =Decay Coefficient (K)				
Source	Reference	AFC Calculations		Reference	CFC Calculations			
TRC	1.3.2.iii	WLA afc =	0.535	1.3.2.iii	WLA cfc = 0.514			
PENTOXSD TRG		LTAMULT afc =		5.1c	LTAMULT cfc = 0.581			
PENTOXSD TRG	5.1b	LTA_afc=	0.199	5.1d	LTA_cfc = 0.299			
Source		Effluer	nt Limit Calcu	lations				
PENTOXSD TRG	5.1f		AML MULT =	1.231				
PENTOXSD TRG	5.1g	AVG MON I	_IMIT (mg/l) =	0.245	AFC			
		INST MAX I	_IMIT (mg/l) =	0.802				
WLA afc	(.019/e(-k*	'AFC_tc)) + [(AFC_Yc*Q:	s*.019/Qd*e	(-k*AFC tc)).				
		FC_Yc*Qs*Xs/Qd)]*(1-F		(,,				
LTAMULT afc		I(cvh^2+1))-2.326*LN(cvh^						
LTA_afc	wla_afc*LTA	AMULT_afc						
WLA_cfc		*CFC_tc) + [(CFC_Yc*Qs *FC_Yc*Qs*Xs/Qd)]*(1-F		(-k*CFC_tc)).				
LTAMULT_cfc	EXP((0.5*LN	l(cvd^2/no_samples+1))-2.3	326*LN(cvd^2	2/no_samples+	1)^0.5)			
LTA_cfc	wla_cfc*LTA	MULT_cfc						
AML MULT	EXP(2.326*L	N((cvd^2/no_samples+1)^	0.5)-0.5*LN(c	vd^2/no_samp	les+1))			
AVG MON LIMIT	. –	PJ,MIN(LTA_afc,LTA_cfc)*A						
INST MAX LIMIT	1.5*((av_m	non_limit/AML_MULT)/L1	TAMULT_afd	;)				