

 Application Type
 Renewal

 Facility Type
 Municipal

 Major / Minor
 Minor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

Application No.PA0252999APS ID1052600Authorization ID1377857

Applicant and Facility Information

Applicant Name	Unity T	ownship Municipal Authority	Facility Name	14 Mile Run STP
Applicant Address	PO Box	\$506	Facility Address	Beatty County Road
	Pleasa	nt Unity, PA 15676-0506	_	Latrobe, PA 15650
Applicant Contact	Dougla	as Pike	Facility Contact	Same as Applicant
Applicant Phone	(724) 4	23-6888	Facility Phone	Same as Applicant
Client ID	62039		Site ID	654515
Ch 94 Load Status	Not Ov	erloaded	Municipality	Unity Township
Connection Status	No Lim	itations	County	Westmoreland
Date Application Receiv	ved	December 2, 2021	EPA Waived?	Yes
Date Application Accept	oted	December 3, 2021	If No, Reason	
Purpose of Application		Application for renewal of a NPDE	S Permit for an existing	discharge of treated sewage.

Summary of Review

The permittee has applied for a renewal of NPDES Permit No. PA0252999. PA0252999 was previously issued by the PA Department of Environmental Protection (DEP) on May 23, 2017 and expires on May 31, 2022.

Sewage at this facility is treated with grit removal, extended aeration, final clarification, and UV disinfection before discharging to Fourmile Run through Outfall 001 which is classified as a Warm Water Fishery (WWF) per Chapter 93 Designated Use.

The permittee is currently enrolled in and will continue to use eDMR.

The applicant complied with Act 14 Notification and no comments were received.

Sludge produced at this facility is treated by aerobic digestion and centrifuge dewatering prior to disposal in a landfill.

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is

Approve	Deny	Signatures	Date
х		It al	
		Stephanie Conrad / Environmental Engineering Specialist	March 15, 2022
x		MAHBUBA IASMIN	
		Mahbuba lasmin, Ph.D., P.E. / Environmental Engineer Manager	April 19, 2022

Summary of Review

significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Discharge, Receiving Waters and Water Supply Info	rmation
Outfall No. 001	Design Flow (MGD)95
Latitude 40° 17' 54"	Longitude79º 24' 39"
Quad Name Latrobe	Quad Code 1610
Wastewater Description: Sewage Effluent	
Receiving Waters Fourmile Run (WWF)	Stream Code75717
NHD Com ID 125292644	RMI 0.69
Drainage Area 7.84	Yield (cfs/mi ²) 0.031
Q ₇₋₁₀ Flow (cfs) 0.243	Q7-10 Basis USGS Stream Stats
Elevation (ft) 1000	Slope (ft/ft)
Watershed No. 18-C	Chapter 93 Class. WWF
Existing Use	Existing Use Qualifier
Exceptions to Use	Exceptions to Criteria
Assessment Status Impaired	
Cause(s) of Impairment Metals, Total Suspended	d Solids (TSS)
Source(s) of Impairment Acid Mine Drainage	
	Kiskiminetas-Conemaugh River
Final, Superseded by the	e Watersheds TMDL, Monastery Run
IMDL Status Kiski-Cohemaugh Water	sned. Name watersned
	Data Causa
	Data Source
ρπ (SO)	
Hardness (mg/L)	
Other:	
Nearest Downstream Public Water Supply Inteke	Buffalo Township Municipal Authority Freeport
	Elow at latako (MCD) 1.25
	Distance from Outfall (mi) 53.4

Changes Since Last Permit Issuance:

Other Comments:

	Treatment Facility Summary								
Treatment Facility Na	me: 14 Mile Run STP								
WQM Permit No.	Issuance Date								
6505410	May 30, 2006								
	Degree of			Avg Annual					
Waste Type	Treatment	Process Type	Disinfection	Flow (MGD)					
Sewage	Secondary	Extended Aeration	Ultraviolet	0.905					
Hydraulic Capacity	Organic Capacity			Biosolids					
(MGD)	(lbs/day)	Load Status	Biosolids Treatment	Use/Disposal					
0.905	1,106	Not Overloaded	Dewatering	Landfill					

Changes Since Last Permit Issuance: None

Other Comments:

Compliance History

Facility: 14 Mile Run STP

NPDES Permit No.: PA0252999

Compliance Review Period: 2/2017 – 2/2022

Inspection Summary:

INSP ID	INSPECTED DATE	INSP TYPE	AGENCY	INSPECTION RESULT DESC
<u>2991432</u>	11/19/2019	Compliance Evaluation	PA Dept of Environmental Protection	No Violations Noted
<u>2676310</u>	12/27/2017	Compliance Evaluation	PA Dept of Environmental Protection	No Violations Noted

Violation Summary:

No Violations

Open Violations by Client ID:

No open violations for client id 62039

Enforcement Summary:

No open enforcements

DMR Violation Summary:

MONITORING END DATE	OUTFALL	PARAMETER	STATISTICAL BASE CODE	PERMIT VALUE	SAMPLE VALUE	UNIT OF MEASURE
9/30/2017	1	Ammonia- Nitrogen	Weekly Average	3.6	12.3	mg/L
9/30/2017	1	Ammonia- Nitrogen	Average Monthly	2.4	3.2	mg/L
10/31/2017	1	Ammonia- Nitrogen	Weekly Average	3.6	4.9	mg/L

Compliance Status:

Permittee in compliance.

Completed by: John Murphy

Completed date: 2/10/2022

Compliance History

DMR Data for Outfall 001 (from November 1, 2020 to October 31, 2021)

Parameter	OCT-21	SEP-21	AUG-21	JUL-21	JUN-21	MAY-21	APR-21	MAR-21	FEB-21	JAN-21	DEC-20	NOV-20
Flow (MGD)												
Average Monthly	0.277	0.323	0.291	0.258	0.285	0.377	0.301	0.38	0.379	0.339	0.364	0.268
Flow (MGD)												
Daily Maximum	0.475	1.509	0.859	0.345	0.53	0.887	0.443	0.979	1.13	0.892	0.745	0.493
pH (S.U.)												
Minimum	7.0	7.0	6.7	6.4	6.4	6.4	6.0	6.4	6.6	6.0	6.8	6.1
pH (S.U.)												
Maximum	7.4	7.5	7.6	7.0	7.4	7.1	7.0	7.1	7.1	7.2	7.2	7.0
DO (mg/L)												
Minimum	7.5	7.3	7.4	6.4	6.1	6.8	6.6	7.5	7.4	7.4	8.7	8.0
CBOD₅ (lbs/day)												
Average Monthly	3	4	7	8	6	9	7	8	17	8	8	5
CBOD₅ (lbs/day)												
Weekly Average	4	14	14.3	9	7	15	7.2	17	31	11	14	6
CBOD₅ (mg/L)												
Average Monthly	1	2	2	4	3	3	3	3	5	3	2	2
CBOD₅ (mg/L)	_	_	_	_	_	_	_		_			-
Weekly Average	2	2	3	4	3	5	3	4	8	4	3	3
BOD₅ (lbs/day)												
Raw Sewage Influent												
 Average							450	100		100		
Monthly	293	312	341	393	445	367	452	438	600	439	522	327
BOD ₅ (Ibs/day)												
Raw Sewage Influent	000	000	070	400	000	44.0		400	050	574	050	0.07
<pre> <</pre>	369	363	378	428	692	418	555	488	953	571	652	397
BOD ₅ (mg/L)												
Raw Sewage Inituent												
 Solitz Average	142	111	170	104	172	126	201	165	100	164	174	162
TSS (lbc/day)	142	144	172	194	175	130	201	105	102	104	174	102
Average Monthly	7	5	7	q	132	10	14	18	47	15	17	13
TSS (lbs/day)	,	5	,		102	10	17	10	17	10	17	10
Raw Sewage Influent												
<pre> Average</pre>												
Monthly	215	166	258	346	376	318	343	361	503	377	457	306

NPDES Permit Fact Sheet 14 Mile Run STP

NPDES Permit No. PA0252999

TSS (lbs/day)												
Raw Sewage Influent												
 br/> Daily Maximum	316	294	296	422	484	415	453	476	854	462	698	387
TSS (lbs/day)												
Weekly Average	13	13	15	15	20	14	21.3	42	122	18	32	26
TSS (mg/L)												
Average Monthly	3	2	3	4	5	4	7	6	13	5	5	7
TSS (mg/L)												
Raw Sewage Influent												
 Average												
Monthly	110	76	130	171	157	114	153	130	146	136	146	152
TSS (mg/L)												
Weekly Average	4	6	7	7	10	4	10	10	31	7	9	13
Fecal Coliform												
(No./100 ml)												
Geometric Mean	7	15	27	9	7	3	12	13	106	65	41	36
Fecal Coliform												
(No./100 ml)												
Instantaneous												
Maximum	37						120	128	120	120	158	120
UV Intensity (mW/cm ²)												
Minimum	10.5	10.5	10.5	10.5	4.3	10.5	10.6	4.3	10.6	4.3	4.3	10.6
Total Nitrogen (mg/L)												
Daily Maximum	GG	GG	43.8	GG	GG	11.3	GG	GG	GG	29.6	GG	38.7
Ammonia (lbs/day)												
Average Monthly	0.2	0.6	0.6	0.2	0.5	0.3	0.2	0.9	9.9	0.4	0.3	0.2
Ammonia (lbs/day)												
Weekly Average	1.1	1.0	1.9	0.4	1.4	0.5	0.2	2.5	30.3	0.6	0.5	0.2
Ammonia (mg/L)												
Average Monthly	0.1	0.3	0.3	0.1	0.2	0.1	0.1	0.3	2.5	0.1	0.1	0.1
Ammonia (mg/L)												
Weekly Average	0.5	0.5	1.0	0.2	0.4	0.2	0.1	0.6	6.1	0.2	0.1	0.1
Total Phosphorus												
(mg/L)												
Daily Maximum	6.2	4.4	5.3	6.1	5.9	7	5.0	5.1	4.6	5.4	4.7	5.6

Summary of Inspections: The facility was last inspected by the Department of Environmental Protection on November 19, 2019 and no violations were noted.

Development of Effluent Limitations

Outfall No.	001	Design Flow (MGD)	.95
Latitude	40° 17' 54.00"	Longitude	-79º 24' 39.00"
Wastewater D	escription: Sewage Effluent		

Technology-Based Limitations (TBELs)

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Pollutant	Limit (mg/l)	SBC	Federal Regulation	State Regulation
	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
CBOD5	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
Total Suspended	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Solids	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
рН	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform				
(5/1 – 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform				
(5/1 – 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform				
(10/1 – 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform				
(10/1 – 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)

Water Quality-Based Limitations (WQBELs)

Pursuant to EPA's approval of Pennsylvania's 2017 Triennial Review of Water Quality Standards and corresponding regulatory change published in *Pennsylvania Bulletin* on July 11, 2020, new water quality criteria for ammonia-nitrogen apply for waters of the commonwealth. Therefore, WQBELs for Outfall 001 are being re-evaluated even though there have been no changes to the STP.

The effluent was modeled using WQM 7.0 to evaluate CBOD₅, ammonia-nitrogen, and Dissolved Oxygen (DO) parameters. Modeling confirmed that water-quality based effluent limits are necessary for ammonia-nitrogen, CBOD₅, and DO. The modeling also determined that stricter water-quality based effluent limits are necessary to meet instream criteria for ammonia-nitrogen and CBOD₅. In accordance with the SOP's. winter ammonia-nitrogen limits are assessed by comparing the winter WQM 7.0 output value with one calculated from the summer limit using a seasonal multiplier of three. The more restrictive of two values is then imposed. For this facility, the winter ammonia-nitrogen limit to be imposed is the WQM 7.0 winter model output value. WQM 7.0 output files are provided in Attachment A.

Ammonia-nitrogen and CBOD₅ limits are becoming more restrictive. Based on eDMR data, the facility as currently operating should be able to meet the new, more restrictive limits.

The following limitations were determined through water quality modeling (output files attached):

Parameter	Limit (mg/l)	SBC	Model
Dissolved Oxygon		Instantaneous	
Dissolved Oxygen	5.0	Minimum	WQM 7.0
Ammonia-Nitrogen			
(summer)	2.0	Average Monthly	WQM 7.0

Ammonia-Nitrogen			
(winter)	4.5	Average Monthly	WQM 7.0
CBOD₅	15	Average Monthly	WQM7.0

Monastery Run Watershed TMDL

Section 303(d) of the Clean Water Act and the U.S. Environmental Protection Agency's Water Quality Planning and Management Regulations (codified at Title 40 of the Code of Federal Regulations Part 130) require states to develop a TMDL for impaired water bodies. A TMDL establishes the amount of a pollutant that a water body can assimilate without exceeding water quality criteria for the pollutant. TMDLs also provide a scientific basis for states to establish water qualitybased controls for reducing pollution from both point and non-point sources in order to restore and maintain the quality of the state's water resources (USEPA 1991a). Stream Reaches within the Monastery Run Watershed were included in the state's 1996 Section 303(d) list because of various impairments including metals, pH, and sulfates. A Final TMDL for Monastery Run Watershed was complete on March 17, 2005 for the control of acid mine drainage pollutants: aluminum, iron, manganese, pH, and sulfates. In accordance with 40 CFR § 122.44(d)(1)(vii)(B), when

developing WQBELs, the permitting authority shall ensure that effluent limits developed to protect a narrative water criterion, a numeric water quality criterion, or both, are consistent with the assumptions and requirements of any available wasteload allocation (WLA) for the discharge.

The facility permit, PA0252999, is not listed in the Monastery Run Watershed TMDL as the facility was built after the TMDL was finalized. This TMDL was superseded by the 2010 Final Kiskiminetas-Conemaugh River Watershed TMDL, so not limits or monitoring requirements will be imposed based on the Monastery Run Watershed TMDL.

Kiskiminetas-Conemaugh River Watershed TMDL

Stream reaches within the Kiskiminetas-Conemaugh River Watershed are included in the state's 2008 Section 303(d) list because of various impairments including metals, pH, and sediment.

14 Mile Run STP (PA0252999) discharges to the Kiskiminetas-Conemaugh River Watershed, for which a TMDL was finalized on January 29, 2010. The TMDL addresses metals, pH, and sediment impairments associated with abandoned mine drainage. This facility is listed as a negligible discharger in Appendix C of the approved TMDL and is covered under the aggregate WLA for negligible dischargers in Appendix G. The WLA for this facility is based on a flow of 0.95 and the in-stream water quality for each pollutant of concern.

In accordance with 25 PA Code §92a.61, a 1/year monitoring requirement for iron, manganese, and aluminum will be imposed to verify that the sewage discharge is not contributing to stream impairment.

Anti-Backsliding

Section 402(o) of the Clean Water Act (CWA), enacted in the Water Quality Act of 1987, establishes anti-backsliding rules governing two situations. The first situation occurs when a permittee seeks to revise a Technology-Based effluent limitation based on BPJ to reflect a subsequently promulgated effluent guideline which is less stringent. The second situation addressed by Section 402(o) arises when a permittee seeks relaxation of an effluent limitation which is based upon a State treatment standard of water quality standard.

Previous limits can be used pursuant to EPA's anti-backsliding regulation 40 CFR 122.44 (I) Reissued permits. (1) Except as provided in paragraph (I)(2) of this section when a permit is renewed or reissued. Interim effluent limitations, standards or conditions must be at least as stringent as the final effluent limitations, standards, or conditions in the previous permit (unless the circumstances on which the previous permit was based have materially and substantially changed since the time the permit was issued and would constitute cause for permit modification or revocation and reissuance under §122.62). (2) In the case of effluent limitations established on the basis of Section 402(a)(1)(B) of the CWA, a permit may not be renewed, reissued, or modified on the basis of effluent guidelines promulgated under section 304(b) subsequent to the original issuance of such permit, to contain effluent limitations which are less stringent than the comparable effluent limitations in the previous permit.

The facility is not seeking to revise the previously permitted effluent limits.

Additional Considerations

Pursuant to EPA's approval of Pennsylvania's 2017 Triennial Review of Water Quality Standards and corresponding regulatory changes published in the *Pennsylvania Bulletin* on July 11, 2020, sewage discharges will include monitoring, at a minimum for *E. coli,* in new and reissued permits, with a monitoring frequency of 1/quarter for design flows >=0.05 and < 1MGD.

Ultraviolet (UV) disinfection is used; therefore, Total Residual Chlorine (TRC) limits are not applicable. Routine monitoring of UV Intensity in mW/cm² will be required at the same frequency that is used for TRC.

Quarterly Sampling for Total Nitrogen and Total Phosphorus has been imposed per 25 PA Code §92a.61.

Monitoring frequency for the proposed effluent limits are based upon Table 6.3, Self-Monitoring Requirements for Sewage Dischargers, from the Department's Technical Guidance for the *Development and Specification of Effluent Limitations*. Please note that monitoring requirements were changes for DO, pH, and UV from 1/weekday to daily. During the last permit cycle, the authority was informed to anticipate and to begin to budget for this change.

Mass Loading

Mass loading limits are applicable for publicly owned treatment works. Current policy requires average monthly mass loading limits be established for CBOD₅, TSS, and ammonia-nitrogen. Average monthly mass loading limits (lbs/day) are based on the formula: design flow (MGD x concentration limit (mg/L) x conversion factor (8.34).

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

			Effluent Li	mitations			Monitoring Re	quirements
Parameter	Mass Units	s (Ibs/day) ⁽¹⁾		Concentration	ons (mg/L)		Minimum ⁽²⁾	Required
Farameter	Average Monthly	Weekly Average	Instantaneous Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report Daily Max	XXX	xxx	XXX	xxx	Continuous	Metered
pH (S.U.)	ХХХ	ххх	6.0	XXX	ххх	9.0	1/day	Grab
DO	XXX	XXX	5.0	XXX	ХХХ	XXX	1/day	Grab
CBOD₅	115	175	XXX	15.0	22.5	30	1/week	8-Hr Composite
BOD₅ Raw Sewage Influent	Report	Report Daily Max	XXX	Report	XXX	XXX	1/week	8-Hr Composite
TSS Raw Sewage Influent	Report	Report Daily Max	XXX	Report	XXX	xxx	1/week	8-Hr Composite
TSS	235	355	XXX	30.0	45.0	60		8-Hr Composite
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	2000 Geo Mean	XXX	10000	1/week	Grab
Fecal Coliform (No./100 ml) May 1 - Sep 30	ххх	xxx	XXX	200 Geo Mean	XXX	1000	1/week	Grab
E. Coli (No./100 ml)	ххх	XXX	XXX	XXX	ххх	Report	1/quarter	Grab
UV Intensity (mW/cm ²)	ххх	xxx	Report	XXX	ххх	xxx	1/day	Measured
Total Nitrogen	ххх	XXX	XXX	Report Daily Max	XXX	ххх	1/quarter	8-Hr Composite
Ammonia-Nitrogen Nov 1 - Apr 30	35	70	XXX	4.5	6.5	9.0	1/week	8-Hr Composite

Outfall 001, Continued (from Permit Effective Date through Permit Expiration Date)

			Effluent Lir	nitations			Monitoring Re	quirements
Baramotor	Mass Units	(lbs/day) ⁽¹⁾		Concentration	ons (mg/L)		Minimum ⁽²⁾	Required
Falameter	Average Monthly	Weekly Average	Instantaneous Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type
Ammonia-Nitrogen								8-Hr
May 1 - Oct 31	15	30	XXX	2.0	3.0	4.0	1/week	Composite
				Report				8-Hr
Total Phosphorus	XXX	XXX	XXX	Daily Max	XXX	XXX	1/quarter	Composite
				Report				
Total Aluminum	XXX	XXX	XXX	Daily Max	XXX	XXX	1/year	Grab
				Report				
Total Iron	XXX	XXX	XXX	Daily Max	XXX	XXX	1/year	Grab
				Report				
Total Manganese	XXX	XXX	XXX	Daily Max	XXX	XXX	1/year	Grab

Compliance Sampling Location: Outfall 001

ATTACHMENT A

WQM 7.0 Modeling Results

3800-PM-BPNPSM0011 Rev. 10/2014 Permit

Permit No. PA0252999

Summer

					- mp									
	SWF Basi	o Strea n Cod	am Je	Str	am Name		RMI	Elev (1	ation t)	Drainage Area (sq mi)	Slop (ft/ft	e PV Witho) (m	VS trawal gd)	Appl FC
	18C	434	458 FOUR	MILE RU	N		0.6	90 1	000.00	7.84	0.000	000	0.00	¥
					St	ream Dat	ta							
Design	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Terr	<u>Tributary</u> p pH	1	<u>Strear</u> Femp	т рн	
Cond.	(cfsm)	(cfs)	(CfS)	(days)	(fps)		(ff)	(ft)	(°C)		(°C)		
27-10 21-10 230-10	0.031	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000 0.000 0.000	10.0	0.00	0.00) 2	5.00 7.	00	0.00	0.00	
			Name	Pe	Di mit Number	Ischarge Existing Disc r Flow (mgd)	Data Permitt Disc Flow (mgd	ed Desig Disc Flow) (mgd	n Res v Fa I)	Di erve Tei ctor (%	sc mp C)	Disc pH		
		14 M	lle Run STR	P PAI	1252999 Pa	0.000 arameter	0 0.95 Data	00 0.00	00	0.000	20.00	7.00		
			;	Paramete	r Name	D C (n	lisc . conc (ng/L) (1	Trib S Conc mg/L) (tream Conc (mg/L)	Fate Coef (1/days)				
			CBOD5				20.00	2.00	0.00	1.50				
			Dissolved NH3-N	Oxygen			5.00 2.40	8.24 0.00	0.00	0.00				

Input Data WQM 7.0

Tuesday, December 21, 2021

Version 1.1

	SWP Basir	Strea Coo	am Je	Stre	am Name		RMI	Elev	vation (ft)	Drainage Area (sq mi)	Siop (ft/ft	e PV Withd) (m	VS frawal gd)	Apply FC
	18C	43	458 FOUR	MILE RU	N		0.0	10	980.00	8.2	9 0.000	000	0.00	\checkmark
					St	ream Dat	a							
Design	LFY	Trib Flow	Stream Flow	Rch Trav	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	Tributary p pł		<u>Strear</u> Temp	п рн	
Cond.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C)		
Q7-10	0.031	0.00	0.00	0.000	0.000	10.0	0.00	0.0	0 2	5.00 7	7.00	0.00	0.00	
Q30-10		0.00	0.00	0.000	0.000									
			Name	Per	mit Number	Existing Disc Flow (mgd)	Permitt Disc Flow (mgd)	ed Desk Disk Flor (mg	gn c Res w Fa d)	D erve Te ctor ('	lisc emp °C)	Disc pH		
						0.000	0 0.000	0.0 0.0	000	0.000	25.00	7.00		
					Pa	arameter	Data							
				Daramete	r Name	C	isc 1 onc 0	Trib : Conc	Stream Conc	Fate Coef				
				Faramete	i wanne	(m	ng/L) (n	ng/L)	(mg/L)	(1/days)				
			CBOD5				25.00	2.00	0.00	1.50				
			Dissolved	Oxygen			3.00	8.24	0.00	0.00				
			NH3-N				25.00	0.00	0.00	0.70				

Input Data WQM 7.0

Tuesday, December 21, 2021

Version 1.1

Page 2 of 2

			WQI	M 7.0	Hydr	odyn	<u>amic</u>	Out	outs			
	SW	P Basin	Strea	im Code				Stream	Name			
		18C	4	3458			F	OURMIL	E RUN			
RMI	Stream Flow	PWS With	Net Stream Flow	Disc Analysis Flow	Reach Slope	Depth	Width	W/D Ratio	Velocity	Reach Trav Time	Analysis Temp	Analysis pH
	(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	(°C)	
Q7-1	0 Flow											
0.690	0.24	0.00	0.24	1.4697	0.00557	.549	17.12	31.18	0.18	0.228	20.71	7.00
Q1-1	0 Flow											
0.690	0.16	0.00	0.16	1.4697	0.00557	NA	NA	NA	0.18	0.235	20.48	7.00
Q30-	10 Flow	,										
0.690	0.33	0.00	0.33	1.4697	0.00557	NA	NA	NA	0.19	0.222	20.92	7.00

Tuesday, December 21, 2021

Version 1.1

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	\checkmark
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.36	Temperature Adjust Kr	V
D.O. Saturation	90.00%	Use Balanced Technology	V
D.O. Goal	5		

Tuesday, December 21, 2021

Version 1.1

	SWP Basin	Stream	n Code		st	ream Name		
	18C	43	458		FOU	JRMILE RUN		
NH3-N	Acute Alloca	ations	;					
RMI	Discharge M	Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
0.69	0 14 Mile Run S	STP	16.11	4.8	16.11	4.8	0	0
NH3-N	Chronic Allo	ocatio	ns					
RMI	Discharge Na	ame (Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
	0.14 Mile Pup 9	то	1 79	2.19	1 79	2.19	0	0

Dissolved Oxygen Allocations

		CBC	DD5	NH	3-N	Dissolver	d Oxygen	Orthool	Demont
RMI	Discharge Name	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Reach	Reduction
0.69	14 Mile Run STP	18.67	18.67	2.18	2.18	5	5	0	0

Tuesday, December 21, 2021

Version 1.1

SWP Basin S	tream Code			Stream Name	
18C	43458		I	FOURMILE RUN	
RMI	Total Discharge	Flow (mgd) <u>Ana</u>	ysis Temperature	(°C) Analysis pH
Reach Width (ft)	Reach De	oth (ft)		Reach WDRatio	Reach Velocity (fps)
17.124	0.54	9		31.184	0.182
Reach CBOD5 (mg/L)	Reach Kc (1/days)	B	each NH3-N (mg/L	.) Reach Kn (1/days)
16.30	1.37	1		1.87	0.739
Reach DO (mg/L)	Reach Kr (1/days)		Kr Equation	Reach DO Goal (mg/L)
5.460	9.60	•		Tsivogiou	5
Reach Travel Time (days)		Subreach	n Results		
0.228	TravTime (days)	CBOD5 (mg/L)	NH3-N (mg/L)	D.O. (mg/L)	
	0.023	15.78	1.84	5.35	
	0.046	15.28	1.81	5.29	
	0.068	14.80	1.78	5.27	
	0.091	14.33	1.75	5.27	
	0.114	13.87	1.72	5.29	
	0.137	13.43	1.69	5.33	
	0.160	13.00	1.66	5.39	
	0.183	12.59	1.63	5.45	
	0.205	12.19	1.61	5.52	
	0.228	11.80	1.58	5.59	

WQM 7.0 D.O.Simulation

Tuesday, December 21, 2021

Version 1.1

					-		
	<u>SWP Basin</u> <u>S</u> 18C	43458		Stream Name FOURMILE RU	<u>e</u> IN		
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effi. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
0.690	14 Mile Run ST	PA0252999	0.000	CBOD5	18.67		
				NH3-N	2.18	4.36	
				Dissolved Oxygen			5

WQM 7.0 Effluent Limits

Tuesday, December 21, 2021

Version 1.1

3800-PM-BPNPSM0011 Rev. 10/2014 Permit

Permit No. PA0252999

Winter

	SWP Basi	n Coo	am de	Stre	am Name		RMI	Eleva (ft	ition)	Drainage Area (sq mi)	Slop (ft/ft	e PV Witho) (m	VS trawal gd)	Apply FC
	18C	43	458 FOUR	MILE RU	N		0.69	90 10	00.00	7.84	4 0.000	000	0.00	\checkmark
					St	ream Dat	a							
Design	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	<u>Tributary</u> p pH		<u>Strear</u> Temp	т рн	
Cond.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ff)	(ff)	(°C))		(°C)		
27-10	0.062	0.00	0.00	0.000	0.000	10.0	0.00	0.00	ŝ	5.00 7	.00	0.00	0.00	
21-10 230-10		0.00	0.00	0.000	0.000									
					DI	scharge	Data						1	
			Name	Per	mit Number	Existing Disc Flow (mgd)	Permitte Disc Flow (mgd)	ed Design Disc Flow (mgd)	Rese Fac	D erve Te ctor (°	lisc imp (C)	Disc pH		
		14 M	lle Run STF	P PAG	1252999	0.000	0.950	0 0.000	00 0	0.000	15.00	7.00		
					Pa	rameter	Data							
						D	ISC 1 onc C	Trib St Conc (ream Conc	Fate Coef				
				Paramete	rName	(m	19/L) (n	ng/L) (r	mg/L)	(1/days)				
			CBOD5				15.00	2.00	0.00	1.50				
			Dissolved	Oxygen			5.00	8.24	0.00	0.00				
			NH3-N				7.20	0.00	0.00	0.70				

Input Data WQM 7.0

Tuesday, December 21, 2021

Version 1.1

	SWP Basin	Strea Cod	im le	Stre	am Name		RMI	Ele	evation (ft)	Drainag Area (sq mi	je S) (1	lope fi/ft)	PW: Withdr (mg	S awal d)	Apply FC
	18C	434	458 FOUR	MILE RU	N		0.0	10	980.00	8	.29 0.	00000		0.00	\checkmark
					St	ream Dat	a								
Design	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Terr	<u>Tributar</u> Ip	ұ рн	Tem	<u>Stream</u> p	рн	
Cond.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ff)	(ft)	(°C)		(°C)			
Q7-10 Q1-10 Q30-10	0.062	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000 0.000 0.000	10.0	0.00	0.0	00	5.00	7.00	C	.00	0.00	
			Name	Per	Di mit Number	scharge (Existing Disc Flow (mgd)	Data Permitti Disc Flow (mgd)	ed Des Dis Fic) (mg	lgn sc Res ow Fa gd)	erve ctor	Disc Temp (°C)	Dis pi	ic H		
					Pa	0.000 rameter I	0 0.000 Data	00 0.0	0000	0.000	25.0	0	7.00		
			;	Paramete	r Name	Di Ci (m	sc 1 onc 0 g/L) (n	Trib Conc ng/L)	Stream Conc (mg/L)	Fate Coef (1/days	i)				
	-		CBOD5 Dissolved	Oxygen		:	25.00	2.00 8.24	0.00	1.5	i0 10				
			NH3-N				25.00	0.00	0.00	0.7	0				

Input Data WQM 7.0

Tuesday, December 21, 2021

Version 1.1

Page 2 of 2

	SW	P Basin	Strea	m Code				Stream	Name			
		18C	4	3458			F	OURMIL	E RUN			
RMI	Stream Flow	PWS With	Net Stream Flow	Disc Analysis Flow	Reach Slope	Depth	Width	W/D Ratio	Velocity	Reach Trav Time	Analysis Temp	Analysis pH
	(cfs)	(CIS)	(CfS)	(cfs)	(fi/fi)	(ff)	(ft)		(fps)	(days)	(°C)	
Q7-1	0 Flow											
0.690	0.49	0.00	0.49	1.4697	0.00557	.559	17.83	31.88	0.20	0.212	12.51	7.00
Q1-1	0 Flow											
0.690	0.31	0.00	0.31	1.4697	0.00557	NA	NA	NA	0.19	0.223	13.25	7.00
Q30-	10 Flow	,										
0.690	0.66	0.00	0.66	1.4697	0.00557	NA	NA	NA	0.21	0.202	11.90	7.00

WQM 7.0 Hydrodynamic Outputs

Tuesday, December 21, 2021

Version 1.1

3800-PM-BPNPSM0011 Rev. 10/2014 Permit

Permit No. PA0252999

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	\checkmark
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.36	Temperature Adjust Kr	¥
D.O. Saturation	90.00%	Use Balanced Technology	\checkmark
D.O. Goal	5		

Tuesday, December 21, 2021

Version 1.1

0.69 14 Mile Run STP

						113		
	SWP Basin Str	eam Code		st	ream Name			
	18C	43458		FOU	URMILE RUN			
NH3-N	Acute Allocatio	ins						
RMI	Discharge Nam	e Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction	I
0.69	0 14 Mile Run STP	24.1	1 14.4	24.1	14.4	0	0	-
								-
nno-n	Chronic Alloca	tions Baseline	Baseline	Multiple	Multiple	Critical	Percent	
RMI	Chronic Alloca Discharge Name	tions Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction	
RMI 0.69	Chronic Alloca Discharge Name 10 14 Mile Run STP	tions Baseline Criterion (mg/L) 3.18	Baseline WLA (mg/L) 3 4.61	Multiple Criterion (mg/L) 3.18	Multiple WLA (mg/L) 4.61	Critical Reach 0	Percent Reduction	

15

15

4.61

4.61

5

5

0

0

Tuesday, December 21, 2021

Version 1.1

43458 Total Discharge 0.950 Reach Dep 0.555	Flow (mgd) pth (ft)) <u>Ana</u>	Stream Name FOURMILE RU	2 IN Jre (°C)	Analysis pH
43458 Total Discharge 0.950 Reach Dep 0.555	Flow (mgd) oth (ft)) <u>Anai</u>	Ivsis Temperati	IN Jre (°C)	Analysis pH
Total Discharge 0.950 Reach Dep 0.559	Flow (mgd) oth (ft)) <u>Ana</u> i	iysis Temperati	ure (°C)	Analysis pH
0.950 Reach Dep 0.559	oth (ft)				7 000
Reach Dep 0.559	DTN (TT)		12.010		7.000
0.555			Reach WDRa	10	Reach Velocity (fps)
Elements Mar 4		_	31.877		0.196
Reach KC (1/days)	E	each NH3-N (n	19/L)	Reach Kh (1/days)
1.423 Report Kr./	(dawe)		3.47 Kr Equation		U.393 Reach DO Cool (molil)
8 604	i unakel		Tshoolou		react bo Goar (ingrej
0.050	,		Taivogiou		2
TravTime (days)	Subreach CBOD5 (mg/L)	NH3-N (mg/L)	D.O. (mg/L)		
0.021	11.52	3.44	6.16		
0.042	11.27	3.41	6.46		
0.064	11.03	3.38	6.72		
0.085	10.80	3.35	6.94		
0.106	10.57	3.32	7.13		
0.127	10.35	3.30	7.30		
0.148	10.13	3.27	7.45		
0.169	9.91	3.24	7.58		
0.191	9.70	3.22	7.70		
0.212	9.50	3.19	7.80		
	1.425 <u>Reach Kr ('</u> 8.695 TravTime (days) 0.021 0.042 0.064 0.085 0.106 0.127 0.148 0.169 0.191 0.212	1.429 <u>Reach Kr (1/days)</u> 8.695 TravTime CBODS (days) CBODS (mg/L) 0.021 11.52 0.042 11.27 0.064 11.03 0.085 10.80 0.106 10.57 0.127 10.35 0.148 10.13 0.169 9.91 0.191 9.70 0.212 9.50	Interior inductor Subreach Results 1.429 8.695 Subreach Results TravTime (days) CBOD5 (mg/L) NH3-N (mg/L) 0.021 11.52 3.44 0.042 11.27 3.41 0.064 11.03 3.38 0.085 10.80 3.35 0.106 10.57 3.32 0.127 10.35 3.30 0.148 10.13 3.27 0.169 9.91 3.24 0.191 9.70 3.22 0.212 9.50 3.19	Instant in transmission Instant in transmission 1.429 3.47 Reach Kr (1/days) Kr Equation 8.695 Tsivoglou TravTime (days) CBOD5 NH3-N (mg/L) 0.021 11.52 3.44 0.042 11.27 3.41 0.054 11.03 3.38 0.055 10.80 3.35 0.106 10.57 3.30 0.106 10.57 3.30 0.106 10.35 3.30 0.148 10.13 3.27 0.169 9.91 3.24 0.191 9.70 3.22 0.212 9.50 3.19	Itelati Not, Inserver, Integer, In

WQM 7.0 D.O.Simulation

Tuesday, December 21, 2021

Version 1.1

		WQM :	7.0 Eff	fluent Limits	5		
	SWP Basin Str	Stream Code Stream Name					
	18C	43458		FOURMILE RU	N		
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
.690	14 Mile Run STP	PA0252999	0.000	CBOD5	15		
				NH3-N	4.61	9.22	
				Dissolved Oxygen			5

Tuesday, December 21, 2021

Version 1.1

3800-PM-BPNPSM0011 Rev. 10/2014 Permit

Permit No. PA0252999

ATTACHMENT B

USGS Stream Stats Output

3800-PM-BPNPSM0011 Rev. 10/2014 Permit

Permit No. PA0252999

Discharge Point

StreamStats Report

```
        Region ID:
        PA

        Workspace ID:
        PA20211220134604170000

        Clicked Point (Latitude, Longitude):
        40.29816, -79.41073

        Time:
        2021-12-20 08:46:23 -0500
```


Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	7.84	square miles	2.33	1720
ELEV	Mean Basin Elevation	1210	feet	898	2700
PRECIP	Mean Annual Precipitation	41	inches	38.7	47.9

Low-Flow Statistics Flow Report [99.9 Percent (7.83 square miles) Low Flow Region 3]

PII: Prediction Interval-Lower, PIu: Prediction Interval-Upper, ASEp: Average Standard Error of Prediction, SE: Standard Error (other -- see report)

Statistic	Value	Unit	SE	ASEp
7 Day 2 Year Low Flow	0.607	ft^3/s	43	43
30 Day 2 Year Low Flow	0.876	ft^3/s	38	38
7 Day 10 Year Low Flow	0.243	ft*3/s	54	54
30 Day 10 Year Low Flow	0.36	ft^3/s	49	49
90 Day 10 Year Low Flow	0.54	ft^3/s	41	41

Low-Flow Statistics Citations

Stuckey, M.H.,2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5130, 84 p. (http://pubs.usgs.gov/sir/2006/5130/) 3800-PM-BPNPSM0011 Rev. 10/2014 Permit

Permit No. PA0252999

Downstream of Discharge Point

StreamStats Report

```
        Region ID:
        PA

        Workspace ID:
        PA20211220135917537000

        Clicked Point (Latitude, Longitude):
        40.29771, -79.40437

        Time:
        2021-12-20 08:59:37 -0500
```


Basin Characteristics			
Paramete <mark>r</mark> Code	Parameter Description	Value	Unit
DRNAREA	Area that drains to a point on a stream	8.29	square miles
ELEV	Mean Basin Elevation	1203	feet
PRECIP	Mean Annual Precipitation	41	inches