

Southwest Regional Office CLEAN WATER PROGRAM

Application Type Renewal
Facility Type Non-Municipal
Major / Minor Minor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

Application No. PA0254444

APS ID 1027967

Authorization ID 1335257

		Applicant and	Facility Information	
Applicant Name	Cons	ol PA Coal Company, LLC	Facility Name	Enlow Fork Mine Oak Spring Slope & Supply Yard STP
Applicant Address	1000	Consol Energy Drive	Facility Address	Oak Spring Road
	Canor	nsburg, PA 15317	<u></u>	East Finley, PA 15323
Applicant Contact	Jaculy	n Duke	Facility Contact	Brian Benson
Applicant Phone	(724)	416-8299	Facility Phone	(724) 416-8271
Client ID	25945	7	Site ID	744867
Ch 94 Load Status	Not O	verloaded	Municipality	East Finley Township
Connection Status	No Lir	nitations	County	Washington County
Date Application Rece	eived	November 25, 2020	EPA Waived?	Yes
Date Application Acce	epted	December 7, 2020	If No, Reason	-

Summary of Review

Act 14 - Proof of Notification was submitted and received.

A Part II Water Quality Management permit is not required at this time.

The applicant should be able to meet the limits of this permit, which will protect the uses of the receiving stream.

I. OTHER REQUIREMENTS:

A. Stormwater into sewers

D. Public Sewer Availability

B. Right of way

E. Effluent Chlorine Optimization and Minimization

C. Solids handling

SPECIAL CONDITIONS:

- II. Solids Management
- III. TRC Effluent Limitations Below Quantitation Limits

There are 11 open violations in efacts associated with the subject Client ID (259457) as of 4/21/2021 (see Attachment 1).

Approve	Deny	Signatures	Date
V		Stephen A. McCauley	4/21/2021
^		Stephen A. McCauley, E.I.T. / Environmental Engineering Specialist	4/21/2021
		Justin C. Dickey	4/22/2021
^		Justin C. Dickey, P.E. / Environmental Engineer Manager	4/22/2021

Discharge, Receiving	g Waters and Water Supply Inform	nation	
Outfall No. 001		Design Flow (MGD)	0.0028
Latitude 40° 2°	' 32.00"	Longitude	-80° 22' 35.00"
Quad Name -		Quad Code	-
Wastewater Descrip	ption: Sewage Effluent		
Receiving Waters	Unnamed Tributary to the Rocky Run (TSF)	Stream Code	N/A
NHD Com ID	73869286	 RMI	N/A (1.2)
Drainage Area	0.25	Yield (cfs/mi²)	0.1
Q ₇₋₁₀ Flow (cfs)	0.025	Q ₇₋₁₀ Basis	calculated
Elevation (ft)	1242	Slope (ft/ft)	0.003472
Watershed No.	20-E	Chapter 93 Class.	TSF
Existing Use	<u>_</u>	Existing Use Qualifier	-
Exceptions to Use	<u>_ =</u>	Exceptions to Criteria	
Assessment Status	Attaining Use(s)		
Cause(s) of Impairn	ment		
Source(s) of Impaire	ment -		
TMDL Status	-	Name	
Background/Ambier	nt Data	Data Source	
pH (SU)	-	-	
Temperature (°F)	-	-	
Hardness (mg/L)	-	-	
Other:	-	-	
Nearest Downstread	m Public Water Supply Intake	PA - West Virginia State borde	er
	Enlow Fork of the Wheeling Creek	Flow at Intake (cfs)	-
PWS RMI -		Distance from Outfall (mi)	16.0
	 -		

Sludge use and disposal description and location(s): Sludge is not used, it is disposed of at an approved landfill.

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the Pennsylvania Bulletin in accordance with 25 Pa. Code § 92a.82. Upon publication in the Pennsylvania Bulletin, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the Pennsylvania Bulletin at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Narrative: This Fact Sheet details the determination of draft NPDES permit limits for an existing discharge of 0.0028 MGD of treated sewage from a non-municipal STP in East Finley Township, Washington County.

NPDES Permit Fact Sheet Enlow Fork Mine Oak Spring Slope & Supply Yard STP

Treatment permitted under WQM Permit No. 6311401 consists of the following: Screening/comminution, equalization, aeration, clarification, chlorination/dechlorination, and sludge digestion.

1. Streamflow:

Since there are no nearby streams with gages, the default yieldrate of 0.1 cfsm was used.

Yieldrate: <u>0.1</u> cfsm (default)

Drainage Area: <u>0.25</u> sq. mi. (USGS StreamStats) % of stream allocated: <u>100%</u> Basis: No nearby discharges

 Q_{7-10} : 0.025 cfs (calculated)

2. Wasteflow:

Maximum discharge: 0.0028 MGD = 0.0054 cfs

Runoff flow period: 24 hours Basis: <u>Used for STPs with flow equalization</u>

There is greater than 3 parts stream flow (Q7-10) to 1 part effluent (design flow). In accordance with the SOP, and since this is an existing discharge, the treatment requirements in document number 391-2000-014, titled, "Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers", dated April 12, 2008, will not be implemented in this NPDES Permit.

Flow will be required to be monitored as authorized under Chapter 92a.61, and as recommended in the SOP.

3. Parameters:

The following parameters were evaluated: pH, Total Suspended Solids, Fecal Coliform, E. Coli, Total Phosphorus, Total Nitrogen, NH₃-N, CBOD₅, Dissolved Oxygen, Total Residual Chlorine, influent Total Suspended Solids, and influent BOD₅. NH₃-N, CBOD₅, and Dissolved Oxygen were evaluated using WQM 7.0 at the discharge point.

a. pH

Between 6.0 and 9.0 at all times

Basis: Application of Chapter 93.7 technology-based limits. The measurement frequency was

previously set to 1/day (when discharging) as recommended in the SOP, based on Table 6-3 in the "Technical Guidance for the Development and Specification of Effluent Limitations"

(362-0400-001), which will be retained.

b. <u>Total Suspended Solids</u>

Limits are 30 mg/l as a monthly average and 60 as a daily maximum.

Basis: Application of Chapter 92a47 technology-based limits

c. Fecal Coliform

05/01 - 09/30: <u>200/100ml</u> (monthly average geometric mean)

1,000/100ml (instantaneous maximum)

10/01 - 04/30: 2,000/100ml (monthly average geometric mean)

10,000/100ml (instantaneous maximum)

Basis: Application of Chapter 92a47 technology-based limits

d. E. Coli

Monitoring was added for E. Coli at a frequency of 1/quarter.

Basis: Application of Chapter 92a.61 as recommended by the SOP.

e. Phosphorus

Limi	t necessary due to:
	Discharge to lake, pond, or impoundment

☐ Discharge to stream

Basis: N/A

Limit not necessary

Basis: Chapter 96.5 does not apply. However, the previous monitoring for Total Phosphorus will

be retained in accordance with the SOP, based on Chapter 92a.61.

f. Total Nitrogen

The previous monitoring for Total Nitrogen will be retained in accordance with the SOP, based on Chapter 92a.61.

g. <u>Ammonia-Nitrogen (NH₃-N)</u>

Median discharge pH to be used: 7.3 Standard Units (S.U.)

Basis: default value used in the absence of data

Discharge temperature: <u>25°C</u> (default value used in the absence of data)

Median stream pH to be used: 7.0 Standard Units (S.U.)

Basis: default value used in the absence of data

Stream Temperature: 25°C (default value used for TSF modeling)

Background NH₃-N concentration: 0.1 mg/l

Basis: Default value.

Calculated NH₃-N Summer limits: 11.9 mg/l (monthly average)

23.8 mg/l (instantaneous maximum)

Calculated NH₃-N Winter limits: <u>25.0</u> mg/l (monthly average)

50.0 mg/l (instantaneous maximum)

Result: WQ modeling resulted in the summer limits above (see Attachment 2), which are less restrictive

than the previous permit. The winter limits are calculated as three times the summer limits, but since the technology-based limits are more protective, they will be used. Since the previous limits

are attainable, they will be retained with this renewal.

h. CBOD₅

Median discharge pH to be used: 7.3 Standard Units (S.U.)

Basis: default value used in the absence of data

Discharge temperature: 25°C (default value used in the absence of data) Median stream pH to be used: 7.0 Standard Units (S.U.) Basis: default value used in the absence of data Stream Temperature: 25°C (default value used for TSF modeling) Background CBOD₅ concentration: 2.0 mg/l Basis: Default value CBOD₅ Summer limits: mg/l (monthly average) <u>25.0</u> 50.0 mg/l (instantaneous maximum) CBOD₅ Winter limits: 25.0 mg/l (monthly average) 50.0 mg/l (instantaneous maximum) Result: WQ modeling resulted in the calculated summer limits above (see Attachment 2), which are the same as the previous NPDES Permit. The winter limits are calculated as three times the summer limits, but since the technology-based limits are more protective, they will be used. Since the summer and winter limits are technology-based, per the SOP, the year-round limit of 25.0 mg/l monthly average and 50.0 mg/l instantaneous maximum will be retained with this renewal. Dissolved Oxygen (DO) 4.0 - minimum desired in effluent to protect all aquatic life mg/l 5.0 mg/l - desired in effluent for WWF or TSF desired in effluent for CWF 6.0 ma/l

8.0 Discussion:

6.0

 \boxtimes

i.

Since the previous Dissolved Oxygen minimum of 6.0 mg/l is attainable, it will be retained with this renewal. The technology-based minimum of 4.0 mg/l is recommended by the WQ Model (see Attachment 2) and the SOP based on Chapter 93.7, under the authority of Chapter 92a.61. The measurement frequency was previously set to 1/day (when discharging) as recommended in the SOP, based on Table 6-3 in the "Technical Guidance for the Development and Specification of Effluent Limitations" (362-0400-001), which will be retained.

- minimum required due to discharge falling under guidance document 391-2000-014

- required due to discharge going to a naturally reproducing salmonid stream

j. Total Residual Chlorine (TRC)

No limit necessary

mg/l

Basis: N/A

TRC limits: mg/l (monthly average) 0.5

> 1.6 mg/l (instantaneous maximum)

The TRC limits above were calculated using the TRC Calc spreadsheet (see Attachment 3).

Since the previous TRC limits are attainable, they will be retained with this renewal. The measurement frequency was previously set to 1/day (when discharging) as recommended in the SOP, based on Table 6-3 in the "Technical Guidance for the Development and Specification

of Effluent Limitations" (362-0400-001), which will be retained.

k. Influent Total Suspended Solids and BOD₅

Monitoring for these two parameters will not be required since this is a non-municipal STP.

I. Anti-Backsliding

Since all the permit limits in this renewal are the same or more restrictive than the previous NPDES Permit, anti-backsliding is not applicable.

4. Reasonable Potential Analysis for Receiving Stream:

A Reasonable Potential Analysis was not performed in accordance with State practices for Outfall 001 since there were only sewage-related parameters sampled for this facility with the renewal application.

5. Reasonable Potential for Downstream Public Water Supply (PWS):

Nearest Downstream potable water supply (PWS):	PA - West Virginia State border
Distance downstream from the point of discharge:	16.0 miles (approximate)
No limits necessaryLimits needed	
Basis: Significant dilution available.	

6. Attachment List:

Attachment 1 - Open violations in efacts for client ID

Attachment 2 - WQ Modeling Printouts

Attachment 3 - TRC_Calc Spreadsheet

(The Attachments above can be found at the end of this document)

Compliance History

DMR Data for Outfall 001 (from March 1, 2020 to February 28, 2021)

Parameter	FEB-21	JAN-21	DEC-20	NOV-20	OCT-20	SEP-20	AUG-20	JUL-20	JUN-20	MAY-20	APR-20	MAR-20
Flow (MGD)												
Average Monthly	0.00035	0.00045	0.0002	0.00018	0.00006	0.00105	0.0016	0.00074	0.00183	0.0001	0.00013	0.0002
pH (S.U.)												
Minimum	7.0	7.0	7.0	7.0	7.0	7.2	6.5	7.0	6.5	7.0	7.0	7.3
pH (S.U.)												
Maximum	8.0	8.4	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.2	8.0	8.0
DO (mg/L)												
Minimum	7.5	7.3	7.9	7.0	7.3	7.7	7.7	7.1	7.6	7.5	7.1	8.0
TRC (mg/L)												
Average Monthly	0.01	< 0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
TRC (mg/L)		0.04										
Instantaneous Maximum	0.02	< 0.01	0.02	0.02	0.02	0.03	0.02	0.02	0.02	0.02	0.02	0.02
CBOD5 (mg/L)	-		_	_		0		7	0.4	40	40	40
Average Monthly	7	< 8	< 5	< 5	< 3	< 9	6	7	24	< 18	10	10
CBOD5 (mg/L)	8	17	6			40	0	11	66	38	4.4	40
Instantaneous Maximum	8	17	ь	< 6	4	16	8	11	66	38	11	12
TSS (mg/L)	< 5	. 5	< 5		< 5	. =	< 8	. 0	. 5		. 0	. 5
Average Monthly TSS (mg/L)	< 5	< 5	< 5	< 5	< 5	< 5	< 0	< 6	< 5	< 5	< 6	< 5
Instantaneous Maximum	< 5	< 5	< 5	< 5.0	< 5	< 5	10	6	< 5	< 5	7	< 5
Fecal Coliform	< 3		~ 3	< 5.0		7.5	10	U	<u> </u>		,	
(CFU/100 ml)												
Geometric Mean	< 2	< 2	< 2	< 1	< 3	< 1	< 2	< 1	< 1	< 1	< 1	< 1
Total Nitrogen (mg/L)	``_	``_	``_	` '		, ,	``_	` '	` '	` '	` '	_ ` '
Daily Maximum			34.6									
Ammonia (mg/L)												
Average Monthly	< 1.4	< 2.1	< 0.8	< 0.8	< 0.9	< 0.8	< 0.8	< 0.6	< 0.8	< 0.8	< 0.8	< 0.8
Ammonia (mg/L)												
Instantaneous Maximum	1.9	8.6	< 0.8	< 0.8	0.9	< 0.8	< 0.8	< 0.8	< 0.8	< 0.8	< 0.8	< 0.8
Total Phosphorus (mg/L)												
Daily Maximum			1.6									

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

			Effluent L	imitations			Monitoring Red	quirements	
Parameter	Mass Units	(lbs/day) (1)		Concentrat	tions (mg/L)		Minimum ⁽²⁾	Required	
Farameter	Average Monthly	Average Weekly	Minimum	Average Monthly	Maximum	Instant. Maximum	Measurement Frequency	Sample Type	
Flow (MGD)	Report	XXX	XXX	XXX	XXX	XXX	2/month	Measured	
pH (S.U.)	XXX	XXX	6.0 Inst Min	XXX	XXX	9.0	Daily when Discharging	Grab	
DO	XXX	XXX	6.0 Inst Min	XXX	XXX	XXX	Daily when Discharging	Grab	
TRC	XXX	XXX	XXX	0.02	XXX	0.04	Daily when Discharging	Grab	
CBOD5	XXX	XXX	XXX	25.0	XXX	50.0	2/month	Grab	
TSS	XXX	XXX	XXX	30.0	XXX	60.0	2/month	Grab	
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	2000 Geo Mean	XXX	10000	2/month	Grab	
Fecal Coliform (No./100 ml) May 1 - Sep 30	XXX	XXX	XXX	200 Geo Mean	XXX	1000	2/month	Grab	
E. Coli (No./100 ml)	XXX	XXX	XXX	XXX	XXX	Report	1/year	Grab	
Total Nitrogen	XXX	XXX	XXX	XXX	Report Daily Max	XXX	1/year	Grab	
Ammonia-Nitrogen Nov 1 - Apr 30	XXX	XXX	XXX	2.8	XXX	5.6	2/month	Grab	
Ammonia-Nitrogen May 1 - Oct 31	XXX	XXX	XXX	1.9	XXX	3.8	2/month	Grab	
Total Phosphorus	XXX	XXX	XXX	XXX	Report Daily Max	XXX	1/year	Grab	

Compliance Sampling Location: Outfall 001, after disinfection.

Flow is monitor only based on Chapter 92a.61. The limits for pH and Dissolved Oxygen are technology-based on Chapter 93.7. The limits for Total Residual Chlorine (TRC) are water quality-based on Chapter 93.7. The limits for CBOD₅, Total Suspended Solids, and Fecal Coliforms are technology-based on Chapter 92a.47. The limits for Ammonia-Nitrogen are water quality-based on Chapter 93.7. Monitoring for E. Coli, Total Nitrogen, and Total Phosphorus is based on Chapter 92a.61.

Attachment 1

WATER MANAGEMENT SYSTEM OPEN VIOLATIONS BY CLIENT

Client ID: 259457 Client: All

Open Violations: 11

CLIENT ID	CLIENT	PF ID	FACILITY	PF KIND	PF STATUS	INSP PROGRAM	PROGRAM SPECIFIC ID	INSP ID	VIOLATION ID
259457	CONSOL PA COAL CO LLC	642227	D GRAY 1	Coal	Active		059-02117	2980875	874236
259457	CONSOL PA COAL CO LLC	551609	BAILEY MINE		Active	Mine Safety	21-01	3167867	913927
259457	CONSOL PA COAL CO LLC	281083	CONSOL PA COAL CO LLC/BAILEY PREP PLT		Active	Air Quality	25-1402386-1	2964145	873727
259457	CONSOL PA COAL CO LLC	281083	CONSOL PA COAL CO LLC/BAILEY PREP PLT		Active	Air Quality	25-1402386-1	2964146	873740
259457	CONSOL PA COAL CO LLC	281083	CONSOL PA COAL CO LLC/BAILEY PREP PLT		Active	Air Quality	25-1402386-1	2964147	873743
259457	CONSOL PA COAL CO LLC	281083	CONSOL PA COAL CO LLC/BAILEY PREP PLT		Active	Air Quality	25-1402386-1	2964148	873744
259457	CONSOL PA COAL CO LLC	281083	CONSOL PA COAL CO LLC/BAILEY PREP PLT		Active	Air Quality	25-1402386-1	3101659	898533
259457	CONSOL PA COAL CO LLC	277471	BAILEY DEEP MINE	Underground	Active	MING Coal Regulatory	30841316	1586418	504391
259457	CONSOL PA COAL CO LLC	277952	ENLOW FORK MINE	Underground	Active	MING Coal Regulatory	30841317	3155110	909032
259457	CONSOL PA COAL CO LLC					Safe Drinking Water	784380	3154664	908957
259457	CONSOL PA COAL CO LLC					Oil & Gas	OGO-31846	2389500	729376

INSPECTION	VIOLATION DATE	VIOLATION CODE	VIOLATION	PF INSPECTOR	INSP REGION
PF	01/08/2020	OGA3220(A)	PLUGGING REQUIREMENTS - Failure to plug the well upon abandoning it.		OG - SWRO
PF	04/14/2021	334-A-2-IV	(iv) At least one of the equipment safety ground conductors to each component is visible for its entire length. High-voltage resistance grounded systems shall have ground wire monitors to continuously monitor the continuity of the grounding circuits. All ground wire monitors shall be designed and constructed to be fallest.		co
PF	11/13/2019	127.444	Construction, Modification, Reactivation and Operation of Sources, Operating Permit Requirements, Compliance requirements. A person may not cause or permit the operation of a source subject to this article unless the source and air cleaning devices identified in the application for the plan approval and operating permit and the plan approval issued to the source are operated and maintained in accordance with specifications in the application and conditions in the plan approval and operating permit issued by the Department. A person may not cause or permit the operation of an air contamination source subject to this chapter in a manner inconsistent with good operating practices.	JESTER, WILLIAM	SWRO
PF	11/13/2019	127.444	Construction, Modification, Reactivation and Operation of Sources, Operating Permit Requirements, Compliance requirements. A person may not cause or permit the operation of a source subject to this article unless the source and air cleaning devices identified in the application for the plan approval and operating permit and the plan approval issued to the source are operated and maintained in accordance with specifications in the application and conditions in the plan approval and operating permit issued by the Department. A person may not cause or permit the operation of an air contamination source subject to this chapter in a manner inconsistent with good operating practices.	JESTER, WILLIAM	SWRO
PF	11/13/2019	127.25	Construction, Modification, Reactivation and Operation of Sources, Plan Approval Requirements, Compliance requirement. Failure to Operate and maintain a source or control device in accordance with the specifications.	JESTER, WILLIAM	SWRO
PF	11/13/2019	127.25	Construction, Modification, Reactivation and Operation of Sources, Plan Approval Requirements, Compliance requirement. Failure to Operate and maintain a source or control device in accordance with the specifications.	JESTER, WILLIAM	SWRO
PF	08/19/2020	127.444	Construction, Modification, Reactivation and Operation of Sources, Operating Permit Requirements, Compliance requirements. A person may not cause or permit the operation of a source subject to this article unless the source and air cleaning devices identified in the application for the plan approval and operating permit and the plan approval issued to the source are operated and maintained in accordance with specifications in the application and conditions in the plan approval and operating permit issued by the Department. A person may not cause or permit the operation of an air contamination source subject to this chapter in a manner inconsistent with good operating practices.	JESTER, WILLIAM	SWRO
PF	12/12/2006	89.52(C)	Discharging water that does not meet water quality limits	KOVACH, KENNETH	DMO - CALIFORNIA
PF	02/24/2021	86.13	Failure to comply with the terms and conditions of the permit	KOVACH, KENNETH	DMO - GREENSBURG
Site	12/08/2020	27	DISINFECTION/DISINFECTION BYPRODUCTS MONITORING/REPORTING VIOLATION		SWRO
CInt	04/01/2015	78.88(e)	OPERATING WELLS - MECHANICAL INTEGRITY OF OPERATING WELLS - Operator failed to submit an annual report to the Department identifying the compliance status of each well with the mechanical integrity requirements for structurally sound wells in compliance with 25 Pa. Code Section 78.73(c).		со

Attachment 2

WQM 7.0 Effluent Limits

		<u>am Code</u> 32712		Stream Name ROCKY RUN			
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
1.200	Consol Coal	PA0254444	0.003	CBOD5	25		
				NH3-N	11.98	23.96	
				Dissolved Oxygen			4

Input Data WQM 7.0

					885 60			508 3 565						
	SWP Basin			Stream Name			RMI		evation (ft)	Drainage Area (sq mi)	Slop (ft/f	With	WS idrawal ngd)	Appl FC
	20E	327	712 ROCK	Y RUN			1.20	00	1242.00	0.2	25 0.00	000	0.00	✓
.					St	ream Dat	a							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	n Ten	Tributary	Н	<u>Strea</u> Temp	<u>ım</u> pH	
Conu.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C	:)		(°C)		
Q7-10 Q1-10 Q30-10	0.100	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000	0.0	0.00	0.0	00 2	5.00	7.00	0.00	0.00	
		Discharge Data												
			Name	Per	rmit Number	Disc	Permitte Disc Flow (mgd)	Dis Flo	sc Res	erve T ictor	Disc emp °C)	Disc pH		
		Cons	ol Coal	PA	0254444	0.0028	в 0.000	0.0	0000	0.000	25.00	7.30	-	
					Pa	arameter l	Data							
				Paramete	r Name			Γrib ≎on c	Stream Conc	Fate Coef				
					25 - 200-201-000-00-001-000-0	(m	g/L) (n	ng/L)	(mg/L)	(1/days)				
			CBOD5			:	25.00	2.00	0.00	1.50				
			Dissolved	Oxygen			4.00	8.24	0.00	0.00				
			NH3-N			:	25.00	0.00	0.00	0.70				
													_	

Input Data WQM 7.0

	SWI Basi			Stream Name			RMI	Ele	evation (ft)	Area		With	WS ndrawal ngd)	Apply FC
	20E	327	712 ROCK	Y RUN			0.0	00	1130.00	0.6	4 0.00	0000	0.00	~
de:					St	ream Dat	a							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	n Tem	<u>Tributary</u> np pł	ł	<u>Strea</u> Temp	<u>am</u> pH	
	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C	:)		(°C)		
Q7-10 Q1-10 Q30-10	0.100	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000	0.0	0.00	0.	00 2	5.00 7	7.00	0.00	0.00	
					Di	scharge I	Data							
			Name	Per	rmit Number	Disc	Permitt Disc Flow (mgd	Di:	sc Res	erve Te	isc emp °C)	Disc pH		
						0.0000	0.00	00 0.	0000	0.000	0.00	7.00	-	
					Pa	arameter l	Data							
]	Paramete	r Name			Trib Conc	Stream Conc	Fate Coef				
					9 5000000	(m	ıg/L) (ı	mg/L)	(mg/L)	(1/days)				
			CBOD5				25.00	2.00	0.00	1.50		_		
			Dissolved	Oxygen			3.00	8.24	0.00	0.00				
			NH3-N			;	25.00	0.00	0.00	0.70				

WQM 7.0 D.O.Simulation

SWP Basin St	ream Code			Stream Name	
20E	32712				
<u>RMI</u> 1.200 <u>Reach Width (ft)</u>	0.003	harge Flow (mgd) Analysis Temperature (°C) 0.003 25.000 ch Depth (ft) Reach WDRatio			C) Analysis pH 7.033 Reach Velocity (fps)
2.292 Reach CBOD5 (mg/L) 5.40 Reach DO (mg/L) 7.614	0.29 <u>2</u> <u>Reach Kc (</u> 0.47 <u>2</u> <u>Reach Kr (</u> * 29.37	1/days) 2 1/days)	R	7.857 each NH3-N (mg/L) 1.77 Kr Equation Owens	0.044 <u>Reach Kn (1/days)</u> 1.029 <u>Reach DO Goal (mg/L)</u> 5
Reach Travel Time (days) 1.672	TravTime (days) 0.167 0.334 0.502 0.669 0.836 1.003 1.170 1.338 1.505 1.672	Subreach CBOD5 (mg/L) 4.89 4.42 4.01 3.63 3.29 2.97 2.69 2.44 2.21 2.00	1.49 1.25 1.06 0.89 0.75 0.63 0.45 0.38 0.32	D.O. (mg/L) 7.54 7.54 7.54 7.54 7.54 7.54 7.54 7.54 7.54 7.54 7.54	

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	✓
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.36	Temperature Adjust Kr	✓
D.O. Saturation	90.00%	Use Balanced Technology	✓
D.O. Goal	5		

1.20 Consol Coal

WQM 7.0 Wasteload Allocations

SWP Basin	Stream Code	Stream Name
20E	32712	ROCKY RUN

25

25

11.98

11.98

RMI	Discharge Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction	
1.20	0 Consol Coal	10.59	49.73	10.59	49.73	0	0	-0
RMI	Chronic Allocati	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction	
1.20	0 Consol Coal	1.35	11.98	1.35	11.98	0	0	8 2
issolve	ed Oxygen Alloc	ations						

WQM 7.0 Hydrodynamic Outputs

SWP Basin Stream Code						Stream Name						
		20E	3:	2712				ROCKY	RUN			
RMI	Stream Flow	PWS With	Net Stream Flow	Disc Analysis Flow	- 10	Depth	Width	W/D Ratio	Velocity	Tra∨ Time	Analysis Temp	Analysis pH
	(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	(°C)	
Q7-1	0 Flow											
1.200	0.03	0.00	0.03	.0043	0.01768	.292	2.29	7.86	0.04	1.672	25.00	7.03
Q1-1	0 Flow											
1.200	0.02	0.00	0.02	.0043	0.01768	NA	NA	NA	0.04	2.053	25.00	7.05
Q30-	10 Flow	,										
1.200	0.03	0.00	0.03	.0043	0.01768	NA	NA	NA	0.05	1.439	25.00	7.03

Attachment 3

TRC EVALUATION										
Input appropria	te values in <i>i</i>	A3:A9 and D3:D9								
0.025	= Q stream (cfs)	0.5	= CV Daily						
0.0028	= Q discharg	je (MGD)	= CV Hourly							
30	= no. sample	8	= AFC_Partial Mix Factor							
0.3	= Chlorine D	emand of Stream	= CFC_Partial Mix Factor							
0	= Chlorine D	emand of Discharge	= AFC_Criteria Compliance Time (min)							
0.5	= BAT/BPJ V	alue	= CFC_Criteria Compliance Time (min)							
0	= % Factor o	of Safety (FOS)	=Decay Coefficient (K)							
Source	Reference	AFC Calculations		Reference	CFC Calculations					
TRC	1.3.2.iii	WLA afc =	1.860	1.3.2.iii	WLA cfc = 1.806					
PENTOXSD TRG	5.1a	LTAMULT afc =	0.373	5.1c	LTAMULT cfc = 0.581					
PENTOXSD TRG	5.1b	LTA_afc=	0.693	5.1d	LTA_cfc = 1.050					
	Source Effluent Limit Calculations									
PENTOXSD TRG										
PENTOXSD TRG										
	INST MAX LIMIT (mg/l) = 1.635									
					+					
WLA afc	(.019/e(-k*Al	FC tc)) + [(AFC Yc*Qs*.019	/Qd*e(-k*AFC	tc))						
	PROPERTY PROPERTY OF THE ST. ST.	C_Yc*Qs*Xs/Qd)]*(1-FOS/10	Rough (1991 - Albert British) - March - Said	//						
LTAMULT afc	0.54	cvh^2+1))-2.326*LN(cvh^2+	100							
LTA_afc	wla afc*LTAMULT afc									
WLA_cfc	(.011/e(-k*Cl	FC_tc) + [(CFC_Yc*Qs*.011/	Qd*e(-k*CFC	_tc))						
		C_Yc*Qs*Xs/Qd)]*(1-FOS/10	collision annual some or an		000 000					
LTAMULT_cfc	EXP((0.5*LN(cvd^2/no_samples+1))-2.326*LN(cvd^2/no_samples+1)^0.5)									
LTA_cfc	wla_cfc*LTA	MULT_cfc								
AML MULT	EVD/2 326*I	N((cvd^2/no samples+1)^0.	5) 0 5*I N/ava	A2/no comples	L4))					
AML MULI AVG MON LIMIT	10-11	N((cvd^2/no_samples+1)^0.: J,MIN(LTA afc,LTA cfc)*AN	24 1000	zmo_samples	- 1))					
INST MAX LIMIT	secondarium varieti in accessorum varieti i	INVESTIGATION AND THE PROPERTY OF THE PROPERTY	NO.							
ING! WAX LIWIT	NST MAX LIMIT 1.5*((av_mon_limit/AML_MULT)/LTAMULT_afc)									
1										