

Northwest Regional Office CLEAN WATER PROGRAM

Application Type	Renewal
Facility Type	Municipal
Maior / Minor	Minor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

Application No.	PA0254606
APS ID	946034
Authorization ID	1100007

pplicant Name	Saltsburg Borough	Facility Name	Saltsburg STP
pplicant Address	320 Point Street	Facility Address	High Street & Canal Street
	Saltsburg, PA 15681-1118	<u></u>	Saltsburg, PA 15681
pplicant Contact	Mr. Donald Kelly	Facility Contact	Same as Applicant
pplicant Phone	(724) 639-9413	Facility Phone	Same as Applicant
ient ID	145865	Site ID	755082
94 Load Status	Existing Hydraulic Overload	Municipality	Saltsburg Borough
nnection Status	Self Imposed Connection Prohibition	County	Indiana
te Application Rece	eived June 30, 2017	EPA Waived?	Yes
te Application Acce	pted July 20, 2017	If No, Reason	

Summary of Review

The applicant has applied for a renewal of an existing NPDES Permit, Permit No. PA0254606, which was previously issued by the Department on December 12, 2012. That permit expired on December 31, 2017.

WQM Permit 3213400 was issued by the Department on August 26, 2013 and authorizes construction of a new extended aeration plant with an annual average design flow of 0.2 MGD.

The receiving stream, Conemaugh River, is classified as a WWF and is located in State Watershed No. 18-C.

CSO Outfalls 003, 004, 005, and 006 will again be permitted. These outfalls serve as combined sewer overflows necessitated by storm water entering the sewer system and exceeding the hydraulic capacity of the sewers and/or the treatment plant and are permitted to discharge only for this reason. Dry weather discharges from these outfalls are Prohibited. Part A.I.B, Identification of Combined Sewer Overflow Discharges, and Part C.II, Combined Sewer Overflows, have been added to the permit.

The Department previously approved the NMC and LTCP Reports. The LTCP proposes to comply with the Presumption Approach Criteria of the EPA CSO Policy with an 85% capture rate for the system-wide combined sewage volume collected in the combined sewer system during precipitation events under average design conditions.

The applicant has failed to submit a Post Construction Compliance Monitoring Plan (PCCMP) to the Department as required by the approved LTCP Task Implementation Schedule. The PCCMP was to be submitted to the Department on or before December 1, 2015. This milestone was not included in the previous NPDES Permit. Submission of the PCCMP will be required within 12 months of the permit effective date.

Approve	Deny	Signatures	Date
Х		William C. Mitchell, E.I.T. / Environmental Engineering Specialist	May 25, 2022
Х		Christopher Kriley, P.E. / Program Manager	May 26, 2022

Summary of Review

The Chapter 94 Load Status for this facility indicates an Existing Hydraulic Overload. The Department's NW Regional Office approved a Corrective Action Plan (CAP) for this facility on April 3, 2019. In accordance with the approved CAP, the applicant is required to submit quarterly progress reports to the Department until they have successfully completed the CAP and eliminated the hydraulic overload of the sewage conveyance system and STP. Attached is a copy of the most recently submitted quarterly report (Attachment #4)

The applicant has complied with Act 14 Notifications and no comments were received.

Sludge use and disposal description and location(s): Hauled to another regional WWTP.

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Discharge, Receiving Waters and Water Supply Information				
Outfall No. 001	Design Flow (MGD)	0.2		
Latitude 40° 28' 53.00"	Longitude	-79° 26' 49.00"		
Quad Name Saltsburg	Quad Code			
Wastewater Description: Sewage Effluent				
·				
Receiving Waters Conemaugh River (WWF)	Stream Code	43832		
NHD Com ID 123722219	RMI	0.56		
Drainage Area 1370	Yield (cfs/mi²)	0.0905		
Q ₇₋₁₀ Flow (cfs) 124	Q ₇₋₁₀ Basis	USGS StreamStats		
Elevation (ft) 828	Slope (ft/ft)	0.00069		
Watershed No. <u>18-C</u>	Chapter 93 Class.	WWF		
Existing Use	Existing Use Qualifier			
Exceptions to Use NONE	Exceptions to Criteria	NONE		
Assessment Status Impaired				
·	EGIME MODIFICATION, METAL	.S, POLYCHLORINATED		
Cause(s) of Impairment BIPHENYLS (PCBS)	DAM OR IMPOUNDMENT, IMPA	ACTS EDOM		
	OW REGULATION/MODIFICATI			
		-Conemaugh River		
TMDL Status Final	Name Watersheds	TMDL		
Background/Ambient Data	Data Source			
pH (SU)				
Temperature (°F)				
Hardness (mg/L)				
Other:				
Nearest Downstream Public Water Supply Intake	Buffalo TWP MA – Freeport			
PWS Waters Allegheny River	Flow at Intake (cfs)			
PWS RMI	Distance from Outfall (mi)			

Changes Since Last Permit Issuance: None

Other Comments: The discharge is to the Kiskiminetas-Conemaugh River Watersheds, which has a Final TMDL, and is impaired by sediment, metals, and pH. No WLAs have been developed, as verified in Appendix C & G of the TMDL, and this sewage discharge is not expected to contribute to the stream impairment for which abandoned mine drainage is source of such impairment. A 1/quarter monitoring requirement for Iron, Manganese, and Aluminum will be imposed on this facility in accordance with § 92a.61(B). Application data states that maximum concentration values for Iron, Manganese, and Aluminum are 0.037 mg/L, 0.088 mg/L, and 0.03 mg/L respectively, which are below their criteria based concentration values.

Treatment Facility Summary					
Treatment Facility Na	me: Saltsburg STP				
WQM Permit No.	Issuance Date				
3213400	08/26/2013				
	Degree of			Avg Annual	
Waste Type	Treatment	Process Type	Disinfection	Flow (MGD)	
Sewage	Secondary	Extended Aeration	Ultraviolet	0.2	
Hydraulic Capacity	Organic Capacity			Biosolids	
(MGD)	(lbs/day)	Load Status	Biosolids Treatment	Use/Disposal	
0.2	423.4	Existing Hydraulic Overload	Sludge Holding Tank	Hauled to Other WWTP	

Changes Since Last Permit Issuance: A new STP was constructed during the last permit cycle and the organic design capacity has increased to 423.4 lbs/day.

The new STP consistent of the following:

- Comminutor
- Two aerated flow equalization tanks
- Two aeration tanks
- Two final clarifiers
- Two aerated sludge holding tanks
- UV disinfection system

Compliance History

Operations Compliance Check Summary Report

Facility: Saltsburg Boro STP

NPDES Permit No.: PA0254606

Compliance Review Period: 5/2017 – 5/2022

Inspection Summary:

INSP ID	INSPECTED DATE	INSP TYPE	AGENCY	INSPECTION RESULT DESC
3339377	03/30/2022	Chapter 94 Inspection	PA Dept of Environmental Protection	No Violations Noted
3307615	12/17/2021	Compliance Evaluation	PA Dept of Environmental Protection	No Violations Noted
3150734	02/03/2021	Compliance Evaluation	PA Dept of Environmental Protection	No Violations Noted
3013859	03/24/2020	Chapter 94 Inspection	PA Dept of Environmental Protection	No Violations Noted
2976558	12/31/2019	Chapter 94 Inspection	PA Dept of Environmental Protection	No Violations Noted
2873505	04/11/2019	Compliance Evaluation	PA Dept of Environmental Protection	Viol(s) Noted & Immediately Corrected
2863070	03/27/2019	Sanitary Sewer Overflow- Sampling	PA Dept of Environmental Protection	Violation(s) Noted
2862142	10/24/2018	Administrative/File Review	PA Dept of Environmental Protection	Violation(s) Noted

Violation Summary:

VIOL ID	VIOLATION DATE	VIOLATION TYPE DESC	RESOLVED DATE	VIOLATION COMMENT
848129	04/11/2019	NPDES - Failure to properly operate and maintain all facilities which are installed or used by the permittee to achieve compliance	04/11/2019	Sludge Removed
845849	03/27/2019	CSL - Failure to comply with terms and conditions of a WQM permit	03/27/2019	Partial blockage in the line that was immediately addressed.
845665	10/24/2018	Wasteload Management - Failure to implement required measures for an existing overload	04/03/2019	10/24/2018 letter from SWRO for hydraulic overload

Open Violations by Client ID:

No open violations for client id 145865

Enforcement Summary:

ENF TYPE	ENF TYPE DESC	ENF CREATION DATE	VIOLATIONS	ENF FINALSTATUS	ENF CLOSED DATE
VVN	Verbal Violation Notice	04/29/2019	92A.41(A)5	Comply/Closed	04/11/2019
NOV	Notice of Violation	04/03/2019	94.21	Administrative Close Out	04/03/2019
PROG	Case in Progress	04/03/2019	94.21		

DMR Violation Summary:

END_DATE	PARAMETER	STAT_BASE_CODE	PERMIT	SAMPLE	UNIT
4/30/22	Flow	Average Monthly	0.2	0.237	MGD
3/31/22	Flow	Average Monthly	0.2	0.204	MGD
2/28/22	Flow	Average Monthly	0.2	0.294	MGD
	Total Suspended	,			
10/31/21	Solids	Average Monthly	30	39.75	mg/L
9/30/21	Fecal Coliform	Instantaneous Maximum	1000	> 12100	CFU/100 ml
7/31/21	Flow	Average Monthly	0.2	0.201	MGD
3/31/21	Flow	Average Monthly	0.2	0.206	MGD
4/30/20	Flow	Average Monthly	0.2	0.229	MGD
3/31/20	Flow	Average Monthly	0.2	0.235	MGD
2/29/20	Flow	Average Monthly	0.2	0.256	MGD
1/31/20	Flow	Average Monthly	0.2	0.207	MGD
12/31/19	Flow	Average Monthly	0.2	0.202	MGD
11/30/19	рН	Minimum	6	5.8	S.U.
7/31/19	Fecal Coliform	Instantaneous Maximum	1000	1404	CFU/100 ml
5/31/19	Flow	Average Monthly	0.2	0.229	MGD
2/28/19	Flow	Average Monthly	0.2	0.313	MGD
1/31/19	Flow	Average Monthly	0.2	0.24	MGD
12/31/18	Flow	Average Monthly	0.2	0.254	MGD
11/30/18	Flow	Average Monthly	0.2	0.28	MGD
10/31/18	Flow	Average Monthly	0.2	0.222	MGD
9/30/18	Fecal Coliform	Instantaneous Maximum	1000	1240	CFU/100 ml
9/30/18	Flow	Average Monthly	0.2	0.271	MGD
8/31/18	Fecal Coliform	Instantaneous Maximum	1000	1306	CFU/100 ml
6/30/18	Flow	Average Monthly	0.2	0.222	MGD
4/30/18	Flow	Average Monthly	0.2	0.279	MGD
3/31/18	Flow	Average Monthly	0.2	0.202	MGD
2/28/18	Flow	Average Monthly	0.2	0.389	MGD
11/30/17	Flow	Average Monthly	0.2	0.216	MGD
5/31/17	Flow	Average Monthly	0.2	0.211	MGD

Compliance Status:

Permittee has open enforcement from NW region. Will need closed prior to issuance.

Completed by: John Murphy

Completed date: 5/16/2022

Development of Effluent Limitations					
Outfall No.	001	Design Flow (MGD)	0.2		
Latitude	40° 28' 53.00"	Longitude	-79° 26' 49.00"		
Wastewater Description: Sewage Effluent					

Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Pollutant	Limit (mg/l)	SBC	Federal Regulation	State Regulation
CBOD ₅	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
CBOD5	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
Total Suspended	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Solids	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
pН	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform				
(5/1 – 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform				
(5/1 – 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform				
(10/1 - 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform				
(10/1 – 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)

Comments: The proposed discharge was evaluated using WQM 7.0 to evaluate CBOD $_5$, Ammonia Nitrogen and Dissolved Oxygen parameters. The modeling results (Attachment #2) show technology based effluent limitations for CBOD $_5$ are appropriate.

For existing discharges (NPDES Renewal Applications), if WQM7.0 modeling results (Attachment #2) for summer indicate that an average monthly warm period limit of 25 mg/L (default in model) is acceptable for ammonia-nitrogen, a year-round monitoring requirement, at a minimum should be established.

Water Quality-Based Limitations

Comments: No WQBELs will be established. Please see the Attached WQM 7.0 and TMS modeling results for further details.

Best Professional Judgment (BPJ) Limitations

Comments: A minimum Dissolved Oxygen (DO) limit of 4.0 mg/L will be established based on BPJ to ensure adequate operation and maintenance.

Anti-Backsliding

Section 402(o) of the Clean Water Act (CWA), enacted in the Water Quality Act of 1987, establishes anti-backsliding rules governing two situations. The first situation occurs when a permittee seeks to revise a Technology-Based effluent limitation based on BPJ to reflect a subsequently promulgated effluent guideline which is less stringent. The second situation addressed by Section 402(o) arises when a permittee seeks relaxation of an effluent limitation which is based upon a State treatment standard of water quality standard.

Previous limits can be used pursuant to EPA's anti-backsliding regulation 40 CFR 122.44 (I) Reissued permits. (1) Except as provided in paragraph (I)(2) of this section when a permit is renewed or reissued. Interim effluent limitations, standards or conditions must be at least as stringent as the final effluent limitations, standards, or conditions in the previous permit (unless the circumstances on which the previous permit was based have materially and substantially changed since the time the permit was issued and would constitute cause for permit modification or revocation and reissuance under §122.62).

NPDES Permit Fact Sheet Saltsburg STP

(2) In the case of effluent limitations established on the basis of Section 402(a)(1)(B) of the CWA, a permit may not be renewed, reissued, or modified on the basis of effluent guidelines promulgated under section 304(b) subsequent to the original issuance of such permit, to contain effluent limitations which are less stringent than the comparable effluent limitations in the previous permit.

The facility is not seeking to revise the previously permitted effluent limits.

Additional Considerations

Ultraviolet (UV) disinfection is used, and therefore, Total Residual Chlorine (TRC) limits are not applicable. Routine monitoring of UV Transmittance will be at the same monitoring frequency that is used for TRC.

For pH, Dissolved Oxygen (DO) and UV Transmittance, a monitoring frequency of 1/day has been imposed. In general, less frequent monitoring may be established only when the permittee demonstrates that there will be no discharge on days where monitoring is not required.

Sewage discharges will include monitoring, at a minimum, for E. Coli, in new and reissued permits, with a monitoring frequency of 1/year for facilities with a design flows of 0.02 - 0.05 MGD per Chapter 92.a.61.

Nutrient monitoring is required to establish the nutrient load from the wastewater treatment facility and the impacts that load may have on the quality of the receiving stream(s). A 1/quarter monitoring requirement for Total N & Total P has been added to the permit per Chapter 92.a.61.

Mass loading limits are applicable for publicly owned treatment works (POTWs). Current policy requires average monthly mass loading limits be established for CBOD $_5$, TSS, and NH $_3$ -N and average weekly mass loading limits be established for CBOD $_5$ and TSS. Average monthly mass loading limits (lbs/day) are based on the formula: design flow (MGD) x concentration limit (mg/L) x conversion factor (8.34).

For POTWs with design flows greater than 2,000 GPD influent BOD₅ and TSS monitoring must be established in the permit, and the monitoring should be consistent with the same frequency and sample type as is used for other effluent parameters.

Monitoring frequency for the proposed effluent limits are based upon Table 6-3, Self-Monitoring Requirements for Sewage Dischargers, from the Departments Technical Guidance for the Development and Specification of Effluent Limitations and Other Permit Conditions in NPDES Permits (362-0400-001).

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

			Effluent Lir	nitations			Monitoring Re	quirements
Parameter	Mass Units	(lbs/day) (1)		Concentrati	ons (mg/L)		Minimum ⁽²⁾	Required
r ai ainetei	Average Monthly	Weekly Average	Instantaneous Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report Daily Max	XXX	XXX	XXX	XXX	1/week	Metered
pH (S.U.)	XXX	XXX	6.0	XXX	XXX	9.0	1/day	Grab
DO	XXX	XXX	4.0	XXX	XXX	XXX	1/day	Grab
CBOD5	41.0	66.0	XXX	25.0	40.0	50	1/week	8-Hr Composite
BOD5 Raw Sewage Influent	Report	Report Daily Max	XXX	Report	XXX	XXX	1/week	8-Hr Composite
TSS Raw Sewage Influent	Report	Report Daily Max	XXX	Report	XXX	XXX	1/week	8-Hr Composite
TSS	50.0	75.0	XXX	30.0	45.0	60	1/week	8-Hr Composite
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	2000 Geo Mean	XXX	10000	1/week	Grab
Fecal Coliform (No./100 ml) May 1 - Sep 30	XXX	XXX	XXX	200 Geo Mean	XXX	1000	1/week	Grab
E. Coli (No./100 ml)	XXX	XXX	XXX	XXX	XXX	Report	1/quarter	Grab
UV Transmittance (%)	XXX	XXX	Report	XXX	XXX	XXX	1/day	Measured
Total Nitrogen	XXX	XXX	XXX	XXX	Report Daily Max	XXX	1/quarter	8-Hr Composite
Ammonia-Nitrogen	XXX	XXX	XXX	Report	XXX	XXX	1/week	8-Hr Composite
Total Phosphorus	XXX	XXX	XXX	XXX	Report Daily Max	XXX	1/quarter	8-Hr Composite

Outfall 001, Continued (from Permit Effective Date through Permit Expiration Date)

			Effluent Lin	nitations			Monitoring Red	quirements
Parameter	Mass Units	(lbs/day) (1)		Concentrati	Minimum ⁽²⁾	Required		
Farameter	Average Monthly	Weekly Average	Instantaneous Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type
					Report			8-Hr
Total Aluminum	XXX	XXX	XXX	XXX	Daily Max	XXX	1/quarter	Composite
					Report			8-Hr
Total Iron	XXX	XXX	XXX	XXX	Daily Max	XXX	1/quarter	Composite
					Report			8-Hr
Total Manganese	XXX	XXX	XXX	XXX	Daily Max	XXX	1/quarter	Composite

Compliance Sampling Location: Outfall 001

Attachment #1 - USGS StreamStats Report

StreamStats Report

Region ID: PA

Workspace ID: PA20220516151626056000

Clicked Point (Latitude, Longitude): 40.48095, -79.44684

Time: 2022-05-16 11:16:52 -0400

Parameter Code	Parameter Description	Value	Unit
DRNAREA	Area that drains to a point on a stream	1370	square miles
ELEV	Mean Basin Elevation	1831	feet
PRECIP	Mean Annual Precipitation	45	inches

Low-Flow Statistics Parameters [100.0 Percent (1370 square miles) Low Flow Region 3]

Parameter Code Parameter Name Value Units Min Limit Max Limit

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	1370	square miles	2.33	1720
ELEV	Mean Basin Elevation	1831	feet	898	2700
PRECIP	Mean Annual Precipitation	45	inches	38.7	47.9

Low-Flow Statistics Flow Report [100.0 Percent (1370 square miles) Low Flow Region 3]

PII: Prediction Interval-Lower, PIu: Prediction Interval-Upper, ASEp: Average Standard Error of Prediction, SE: Standard Error (other -- see report)

Statistic	Value	Unit	SE	ASEp
7 Day 2 Year Low Flow	201	ft^3/s	43	43
30 Day 2 Year Low Flow	263	ft^3/s	38	38
7 Day 10 Year Low Flow	124	ft^3/s	54	54
30 Day 10 Year Low Flow	150	ft^3/s	49	49
90 Day 10 Year Low Flow	206	ft^3/s	41	41

Low-Flow Statistics Citations

Stuckey, M.H.,2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5130, 84 p. (http://pubs.usgs.gov/sir/2006/5130/)

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.

USGS Product Names Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Application Version: 4.8.1

StreamStats Services Version: 1.2.22

Attachment #2 - WQM 7.0 Warm Period Evaluation Annual Average Design Flow 0.2 MGD

Input Data WQM 7.0

	SWP Basin			Stre	eam Name		RMI		vation (ft)	Drainage Area (sq mi)		Wit	PWS hdrawal mgd)	Apply FC
	18C	438	32 CONE	MAUGH	RIVER		0.56	60	828.00	1370.0	0.0	0000	0.00	~
					St	ream Dat	a							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	Tributary p p	н	Stre Temp	am pH	
oona.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C)		
Q7-10 Q1-10 Q30-10	0.090	0.00 0.00 0.00	0.00	0.000 0.000 0.000	0.000 0.000 0.000	0.0	0.00	0.0	00 2	5.00	7.00	0.00	0.00	
					Di	scharge	Data							
			Name	Per	mit Number	Disc	Permitto Disc Flow (mgd)	Dis Flo	ic Res w Fa	erve T ctor	Disc Temp (°C)	Disc pH		
		Salts	burg STP	PAG	0254606	0.200	0.000	0.0	0000	0.000	15.00	7.00)	
					Pa	arameter	Data							
				Paramete	r Name	_		Trib Conc	Stream Conc	Fate Coef				
						(nr	ıg/L) (r	ng/L)	(mg/L)	(1/days)				
			CBOD5				25.00	2.00	0.00	1.50)			
			Dissolved	Oxygen			3.00	8.24	0.00	0.00)			
			NH3-N				25.00	0.00	0.00	0.70)			

Input Data WQM 7.0

	SWP Basin			Stre	eam Name		RMI		ation t)	Drainage Area (sq mi)	Slope (ft/ft)	PW Withd (mg	rawal	Apply FC
	18C	438	32 CONE	MAUGH	RIVER		0.01	10	826.00	1670.00	0.00000		0.00	v
					St	ream Dat	a							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	<u>Tributary</u> p pH	Ten	<u>Stream</u> np	n pH	
cona.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C))	(°C	()		
Q7-10 Q1-10 Q30-10	0.090	0.00 0.00 0.00	0.00	0.000 0.000 0.000	0.000 0.000 0.000	0.0	0.00	0.00	25	5.00 7.	00	0.00	0.00	
					Di	scharge l	Data						1	
			Name	Per	rmit Number	Disc	Permitte Disc Flow (mgd)	Disc Flow	Res	Dis erve Ten ctor	np p	isc pH		
						0.000	0.000	0.00	00 (0.000 2	25.00	7.00		
					Pa	rameter l	Data							
				Paramete	r Name				tream Conc	Fate Coef				
				aramete	reame	(m	g/L) (n	ng/L) (mg/L)	(1/days)				
			CBOD5				25.00	2.00	0.00	1.50				
			Dissolved	Oxygen			3.00	8.24	0.00	0.00				
			NH3-N				25.00	0.00	0.00	0.70				

WQM 7.0 Hydrodynamic Outputs

	SW	P Basin	Strea	m Code				Stream	<u>Name</u>			
		18C	4	3832			CO	NEMAU	SH RIVER	t		
RMI	Stream Flow	PWS With	Net Stream Flow	Flow		Depth	Width	W/D Ratio	Velocity	Trav Time	Analysis Temp	Analysis pH
	(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	(°C)	
Q7-1	0 Flow											
0.560	123.98	0.00	123.98	.3094	0.00069	1.149	199.56	173.72	0.54	0.062	24.98	7.00
Q1-1	0 Flow											
0.560	79.35	0.00	79.35	.3094	0.00069	NA	NA	NA	0.42	0.080	24.96	7.00
Q30-	10 Flow	,										
0.560	168.62	0.00	168.62	.3094	0.00069	NA	NA	NA	0.64	0.052	24.98	7.00

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	~
WLA Method	EMPR	Use Inputted W/D Ratio	✓
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	✓
Q30-10/Q7-10 Ratio	1.36	Temperature Adjust Kr	
D.O. Saturation	90.00%	Use Balanced Technology	~
D.O. Goal	5		

WQM 7.0 Wasteload Allocations

		Stream Code					am Nan	_			
	18C	43832			co	NEM	AUGH F	RIVER	<u> </u>		
NH3-N	Acute Allocat	tions									
RMI	Discharge Na	Baseline ame Criterior (mg/L)			Multiple Criterio (mg/L)	n	Multiple WLA (mg/L		Critical Reach	Percent Reductio	
0.56	0 Saltsburg STP	11.1	11	50	11.	11		50	0	0	_
NH3-N	Chronic Alloc										
RMI	Discharge Nan	Baseline ne Criterion (mg/L)	Baseline WLA (mg/L)		Multiple Criterion (mg/L)		Multiple WLA (mg/L)		Critical Reach	Percent Reduction	
0.56	0 Saltsburg STP	1.3	37	25	1.	37		25	0	0	_
Dissolv	ed Oxygen Al	locations									_
RMI	Discharge		<u>CBOD5</u> eline Multip g/L) (mg/l		<u>NH3</u> Baseline (mg/L)		ple Ba		Multiple (mg/L)	Critical	Percent Reduction

WQM 7.0 D.O.Simulation

SWP Basin St	ream Code			Stream Name	
18C	43832		CC	NEMAUGH RIVER	R
<u>RMI</u>	Total Discharge	Flow (mgd	i) Ana	lysis Temperature ((°C) Analysis pH
0.560	0.20	0		24.975	7.000
Reach Width (ft)	Reach De	pth (ft)		Reach WDRatio	Reach Velocity (fps)
199.555	1.14	9		173.724	0.542
Reach CBOD5 (mg/L)	Reach Kc (1/days)	R	each NH3-N (mg/L	 Reach Kn (1/days)
2.06	0.04	_		0.06	1.027
Reach DO (mg/L)	Reach Kr (Kr Equation	Reach DO Goal (mg/L)
8.230	1.74	2		Tsivoglou	5
Reach Travel Time (days)		Subreach	Results		
0.062	TravTime		NH3-N	D.O.	
	(days)	(mg/L)	(mg/L)	(mg/L)	
	0.006	2.06	0.06	7.54	
	0.012	2.06	0.06	7.54	
	0.019	2.06	0.06	7.54	
	0.025	2.05	0.06	7.54	
	0.031	2.05	0.06	7.54	
	0.037	2.05	0.06	7.54	
	0.043	2.05	0.06	7.54	
	0.050	2.05	0.06	7.54	
	0.056	2.05	0.06	7.54	
	0.062	2.05	0.06	7.54	

Tuesday, May 17, 2022 Version 1.1 Page 1 of 1

WQM 7.0 Effluent Limits

		<u>m Code</u> 3832		Stream Name CONEMAUGH R	-		
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
0.560	Saltsburg STP	PA0254606	0.200	CBOD5	25		
				NH3-N	25	50	
				Dissolved Oxygen			3

Attachment #3 - TMS Analysis, Annual Average Design Flow 0.2 MGD

Toxics Management Spreadsheet Version 1.3, March 2021

Discharge Information

Instructions	Disch	harge Stream		
Facility:	Saltsb	urg STP	NPDES Permit No.: PA0254606	Outfall No.: 001
Evaluation T	ype:	Major Sewage / Industrial Waste	Wastewater Description: Sewage Effluent	

			Discharge	Characterist	tics			
Design Flow	Handanes (ma/l)t	-U (CIN	F	artial Mix Fa	actors (PMF	5)	Complete Mi:	x Times (min)
(MGD)*	Hardness (mg/l)*	pH (SU)*	AFC	CFC	THH	CRL	Q ₇₋₁₀	Qh
0.2	100	7						

					-	O If le	eft blank	0.5 If le	eft blank	0) if left blan	k	1 If lef	t blank
	Discharge Pollutant	Units	Ma	x Discharge Conc		rib onc	Stream Conc	Daily CV	Hourly CV	Strea m CV	Fate Coeff	FOS		Chem Transl
	Total Dissolved Solids (PWS)	mg/L		714	+	\vdash								
1	Chloride (PWS)	mg/L		337	H	П								
Group	Bromide	mg/L		0.183	Į	П								
ອົ	Sulfate (PWS)	mg/L		51.2	+	\square								
	Fluoride (PWS)	mg/L				H								
	Total Aluminum	μg/L		37										
	Total Antimony	μg/L			Į.	П								
	Total Arsenic	μg/L												
	Total Barium	μg/L			П	П								
	Total Beryllium	μg/L			Ţ	П								
	Total Boron	μg/L			\blacksquare	\square								
	Total Cadmium	μg/L			\blacksquare	H								
	Total Chromium (III)	μg/L												
	Hexavalent Chromium	μg/L			1	П								
	Total Cobalt	μg/L			H	H								
	Total Copper	μg/L		7		Ħ								
2	Free Cyanide	μg/L			\Box	П								
Group	Total Cyanide	μg/L			\blacksquare	H								
5	Dissolved Iron	μg/L			H	П								
	Total Iron	μg/L		88		П								
	Total Lead	μg/L	<	2	-	\square								
	Total Manganese	μg/L		30	\top	H								
	Total Mercury	μg/L												
	Total Nickel	μg/L			T.	П								
	Total Phenols (Phenolics) (PWS)	μg/L												
	Total Selenium	μg/L				H								
	Total Silver	μg/L			II.	П								
	Total Thallium	μg/L			\Box	\square								
	Total Zinc	μg/L		27		H								
	Total Molybdenum	μg/L				П								
	Acrolein	μg/L	<		H	H								
	Acrylamide	μg/L	<											
	Acrylonitrile	μg/L	<			Ħ								
	Benzene	μg/L	<			П								
	Bromoform	μg/L	<											

ı	Carbon Tetrachloride	ua/l	<	-						
		μg/L	_	+					₩	\dashv
	Chlorobenzene	μg/L	_	+					H	\dashv
	Chlorodibromomethane	μg/L	<	+					H	\Rightarrow
	Chloroethane	μg/L	<	I					П	\Box
	2-Chloroethyl Vinyl Ether	μg/L	<	4					Щ	$\perp \downarrow \downarrow$
	Chloroform	μg/L	<	4					Н	\dashv
	Dichlorobromomethane	μg/L	<	\pm					\vdash	\rightarrow
	1,1-Dichloroethane	μg/L	<	Ť					П	$\neg \neg$
m	1,2-Dichloroethane	μg/L	<							
	1,1-Dichloroethylene	µg/L	<	#					Ħ	\Rightarrow
Group	1,2-Dichloropropane	μg/L	<	+					H	
Θ	1,3-Dichloropropylene	µg/L	<	Ť					Ħ	##
	1,4-Dioxane	µg/L	<	$^{+}$					H	
	Ethylbenzene		<	#						$\exists \exists$
	•	μg/L	<	+					H	+
	Methyl Bromide	μg/L	_	+					Н	++
	Methyl Chloride	μg/L	<	+					H	$\Rightarrow \Rightarrow$
	Methylene Chloride	μg/L	<	#					\Box	\Rightarrow
1	1,1,2,2-Tetrachloroethane	µg/L	<	I						\Box
1	Tetrachloroethylene	μg/L	<						Ш	
	Toluene	μg/L	<	+						+
1	1,2-trans-Dichloroethylene	μg/L	<							
1	1,1,1-Trichloroethane	μg/L	<	I						
1	1,1,2-Trichloroethane	μg/L	<	Ţ					П	П
1	Trichloroethylene	μg/L	<	+					Ħ	\Rightarrow
1	Vinyl Chloride	µg/L	<	Ť					Ħ	##
\vdash	2-Chlorophenol	μg/L	<	†					Ħ	\rightarrow
	2,4-Dichlorophenol	μg/L	<	Ĭ						
1	2,4-Dimethylphenol	µg/L	<	+					H	#
	4,6-Dinitro-o-Cresol	µg/L	<	+					H	\Rightarrow
4	2,4-Dinitrophenol	µg/L	<	+					H	\rightarrow
Group	2-Nitrophenol		<	Ť					Ħ	\rightarrow
2	4-Nitrophenol	μg/L	<	Ŧ					П	\rightarrow
ဖ		μg/L	<	+					Н	++
	p-Chloro-m-Cresol	μg/L	_	÷					H	\Rightarrow
	Pentachlorophenol	μg/L	<	Ť					\exists	$\exists\exists$
	Phenol	μg/L	<	4					Щ	
<u> </u>	2,4,8-Trichlorophenol	μg/L	<	+	-				H	$\dashv \vdash$
1	Acenaphthene	μg/L	<	+	-				H	\Rightarrow
1	Acenaphthylene	μg/L	<	1						
	Anthracene	μg/L	<	1					Ш	\perp
	Benzidine	μg/L	<	\downarrow					H	$\dashv \dashv$
	Benzo(a)Anthracene	μg/L	<	+						\Rightarrow
1	Benzo(a)Pyrene	μg/L	<	Ì					П	
1	3,4-Benzofluoranthene	μg/L	<	1					Ш	$\perp \downarrow \downarrow$
1	Benzo(ghi)Perylene	μg/L	<	7					\square	\dashv
	Benzo(k)Fluoranthene	μg/L	<	Ŧ					Н	\blacksquare
1	Bis(2-Chloroethoxy)Methane	μg/L	<	Ť					Ħ	$\neg \neg$
1	Bis(2-Chloroethyl)Ether	μg/L	<	I						
1	Bis(2-Chloroisopropyl)Ether	μg/L	<	7					H	\Rightarrow
	Bis(2-Ethylhexyl)Phthalate	μg/L	<	Ť					Ħ	#
	4-Bromophenyl Phenyl Ether	μg/L	<	Ť					Ħ	$\dashv \dashv$
1	Butyl Benzyl Phthalate	μg/L	<	Ţ						\blacksquare
	2-Chloronaphthalene	μg/L	<	+					H	#
1	4-Chlorophenyl Phenyl Ether	µg/L	<	+						++
1	Chrysene	µg/L	<	Ť					₩	$\dashv \dashv$
	Dibenzo(a,h)Anthrancene	μg/L μg/L	<							
			_	+						\Rightarrow
1	1,2-Dichlorobenzene	µg/L	<	+						+
	1,3-Dichlorobenzene	μg/L	<	+						-
	1,4-Dichlorobenzene	μg/L	<							
ğ	3,3-Dichlorobenzidine	μg/L	<	Ţ					Щ	Щ
Group	Diethyl Phthalate	μg/L	<	+						+
	Dimethyl Phthalate	μg/L	<	+						\Rightarrow
1	Di-n-Butyl Phthalate	μg/L	<							
	2,4-Dinitrotoluene	μg/L	<						Ш	
								_		

	2,6-Dinitrotoluene		<	_							
	•	µg/L	<	+	₩	Н				₩	+
	Di-n-Octyl Phthalate 1,2-Diphenylhydrazine	µg/L	<	+	+	Н				H	+
		μg/L	_								#
	Fluoranthene	μg/L	<	4	\perp	Ц				Щ	4
	Fluorene	μg/L	<	4	Н	Н				Щ	+
	Hexachlorobenzene	μg/L	<	+	+	Н				H	+
	Hexachlorobutadiene	μg/L	<	\Rightarrow							\pm
	Hexachlorocyclopentadiene	μg/L	<								
	Hexachloroethane	μg/L	<	#							
	Indeno(1,2,3-cd)Pyrene	μg/L	<	7		Π				\square	-
	Isophorone	μg/L	<	7		Η				H	-
	Naphthalene	μg/L	<	\mp		Ħ				Ħ	7
	Nitrobenzene	µg/L	<	\top	т					П	_
	n-Nitrosodimethylamine	µg/L	<	#							#
	n-Nitrosodi-n-Propylamine		<	+	+	H				H	+
		µg/L	_	+	+	Н				Н	+
	n-Nitrosodiphenylamine	µg/L	<	+	+	H					-
	Phenanthrene	μg/L	<	\Rightarrow	\Box	Η					\Rightarrow
	Pyrene	μg/L	<	1							
	1,2,4-Trichlorobenzene	μg/L	<	Д							
	Aldrin	μg/L	<	4		Н				H	-
	alpha-BHC	μg/L	<		H	H				H	
	beta-BHC	μg/L	<	Ŧ	\top	Ħ				Ħ	7
	gamma-BHC	µg/L	<								
	delta BHC	µg/L	<	#							#
	Chlordane	µg/L	<	+	+	H				H	+
	4.4-DDT		<	+	+	Н				\vdash	+
	4,4-DDE	µg/L	_	+	+	H				H	+
		μg/L	<	\Rightarrow	\Box	H					-
	4,4-DDD	μg/L	<								
	Dieldrin	μg/L	<	4	Щ	Ц				Щ	
	alpha-Endosulfan	μg/L	<	4		Н				Н	_
	beta-Endosulfan	μg/L	<	+	+	Н				Н	-
9	Endosulfan Sulfate	μg/L	٧	T	T					m	7
Group	Endrin	μg/L	<								
Ĕ	Endrin Aldehyde	μg/L	<	#						П	-
	Heptachlor	μg/L	<	+	\forall	Ħ				H	-
	Heptachlor Epoxide	µg/L	<	+	+	Н				\vdash	_
	PCB-1016	µg/L	<	Ť	Ħ	Ħ				H	_
	PCB-1010		<			8					#
	PCB-1232	µg/L	<	+	+	H				H	+
		μg/L	-	+	+	Н				Н	+
	PCB-1242	μg/L	<	+	+	Н				H	+
	PCB-1248	μg/L	<	\pm		Н					#
	PCB-1254	μg/L	<								
	PCB-1260	μg/L	<	Щ	Щ					Щ	
	PCBs, Total	μg/L	<	7	\blacksquare	Н				\square	-
	Toxaphene	μg/L	<	7		Η				H	
	2,3,7,8-TCDD	ng/L	<	\mp	\top	Ħ				Ħ	\neg
_	Gross Alpha	pCi/L		Ť	П					\Box	
	Total Beta	pCi/L	<	#							
	Radium 228/228	pCi/L	<	+	\pm	Ħ				H	+
	Total Strontium	µg/L	<	+	+	Н				\vdash	_
ອັ	Total Uranium		<	+	+	H				H	-
		μg/L	`	\mp							\equiv
_	Osmotic Pressure	mOs/kg	_	4	Щ.	Д					
				_		4					
				-							
					-						
				+							
				-							

Toxics Management Spreadsheet Version 1.3, March 2021

Stream / Surface Water Information

Saltsburg STP, NPDES Permit No. PA0254606, Outfall 001

Instructions Disch	arge Str	eam													
Receiving Surface W	ater Name:						No. Rea	iches to M	odel:	1	_	tewide Criteri at Lakes Crit			
Location	Stream Cod	de' RMI	Elevation (ft)*	DA (mi	²)* SI	lope (ft/ft)		Withdrawa MGD)	Apply F Criteri		O OR	SANCO Crite	ria		
Point of Discharge	043832	0.56	828	1370	(0.00069			Yes						
End of Reach 1	043832	0.01	826	1670	(0.00069			Yes	i					
Q ₇₋₁₀									rraver						
Location	RMI	LFY	Flow		W/D		Depth	Velocit	Time	Tributa		Stream		Analys	
		(cfs/mi ²)*	Stream	Tributary	Ratio	(ft)	(ft)	y (fps)	(days)	Hardness	pН	Hardness*	pH*	Hardness	pН
Point of Discharge	0.56	0.0905						0.54				100	7		
End of Reach 1	0.01	0.0905										-			
Qh															
Location	RMI	LFY	Flow	(cfs)	W/D	Width	Depth	Velocit	Time	Tributa	ary	Stream	m	Analys	sis
Location	PAVII	(cfs/mi ²)	Stream	Tributary	Ratio	(ft)	(ft)	y (fps)	(days)	Hardness	pН	Hardness	pН	Hardness	pН
Point of Discharge	0.56														
End of Reach 1	0.01														

Toxics Management Spreadsheet Version 1.3, March 2021

Model Results

Saltsburg STP, NPDES Permit No. PA0254606, Outfall 001

	dynamics												
7-10	Stream	PWS With	drawal	Net Stream	Dischar	rge Analysis		5	1817 111 /51	W/D Ratio	Velocity	mavei	Complete Mix Time
RMI	Flow (cfs)	(cfs)		Flow (cfs)		ow (cfs)	Slope (ft/ft)	Depth (ft)	Width (ft)	W/D Ratio	(fps)	Time (days)	(min)
0.56	123.99			123.99	(0.309	0.00069	1.149	199.541	173.717	0.54	0.062	1679.259
0.01	151.14			151.135									
h													
RMI	Stream Flow (cfs)	PWS With (cfs)		Net Stream Flow (cfs)		rge Analysis ow (cfs)	Slope (ft/ft)	Depth (ft)	Width (ft)	W/D Ratio	Velocity (fps)	Time (days)	Complete Mix Time (min)
0.56	501.87			501.87	- (0.309	0.00069	2.123	199.541	93.977	1.18	0.028	670.682
0.01	596.697			596.70									
	eload Allocatio		E (min):	15	DME-	0.005	Analysis	- Hardness ((ma/l):	100	Analysis nU:	7.00	
Waste ✓ Ai	FC		Γ (min):	15	PMF:	0.095		s Hardness (100	Analysis pH:	7.00	
✓ Ai	FC Pollutants	cci	` '	Stream 1	PMF: Trib Conc (µg/L)	Fate Coef (WQC W	VQ Obj (µg/L)	LA (µg/L)	100		7.00	
✓ A	FC Pollutants Dissolved Solid	cct	Conc (vg/l)	Stream 1 CV	Trib Conc	Fate Coef (WQC V µg/L)	VQ Obj (µg/L) N/A	LA (µg/L)	100			
✓ A	Pollutants Dissolved Solid Chloride (PWS	cci is (PWS)	Conc (up/l) 0	Stream 7 CV 0	Trib Conc	Fate Coef (WQC V µg/L) N/A N/A	VQ Obj (µg/L) N/A N/A	LA (µg/L) N/A N/A	100			
✓ AI	Pollutants Dissolved Solid Chloride (PWS Sulfate (PWS	is (PWS)	Conc (vall) 0	Stream 1 CV 0	Trib Conc	Fate 1 (0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	NQC V µg/L) / N/A N/A N/A	VQ Obj (µg/L) WI N/A N/A N/A	LA (µg/L) N/A N/A N/A	100			
✓ AI	Pollutants Dissolved Solid Chloride (PWS	Is (PWS)	Conc (up/l) 0	Stream 7 CV 0	Trib Conc	Fate 10 (Coef (WQC V µg/L) N/A N/A	VQ Obj (µg/L) WI N/A N/A N/A	LA (µg/L) N/A N/A	100		comments	applied
✓ AI	Pollutants Dissolved Solid Chloride (PWS Sulfate (PWS Total Aluminu	Is (PWS)	Conc (vall) 0 0 0	Stream CV 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Trib Conc	Fate 10 (Coef (Coe	NQC V µg/L) N/A N/A N/A N/A 750	VQ Obj (μg/L) WI N/A N/A N/A 750	LA (μg/L) N/A N/A N/A N/A 29,155	100	С	comments	applied
✓ All	Pollutants Dissolved Solid Chloride (PWS Sulfate (PWS Total Aluminu Total Copper Total Iron Total Lead	is (PWS) S) m	Onc (100) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Stream CV 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Trib Conc	Fate (Coef (NQC V µg/L) N/A N/A N/A N/A 750 3.439 N/A 4.581	VQ Obj (μg/L) WI N/A N/A N/A 750 14.0 N/A 81.6	N/A N/A N/A 29,155 544 N/A 3,174	100	С	iomments	
✓ All	Pollutants Dissolved Solid Chloride (PWS Sulfate (PWS Total Aluminu Total Copper Total Iron Total Lead	is (PWS) S) m	Onc	Stream CV 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Trib Conc	Fate 1 Coef (0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	NQC V µg/L) N/A N/A N/A N/A 750 3.439 N/A 4.581 N/A	VQ Obj (μg/L) N/A N/A N/A 750 14.0 N/A 81.6 N/A	N/A	100	Chem Transi	islator of 0.98	applied
✓ All	Pollutants Dissolved Solid Chloride (PWS Sulfate (PWS Total Aluminu Total Copper Total Iron Total Lead	is (PWS) S) m	Onc (100) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Stream CV 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Trib Conc	Fate 1 Coef (0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	NQC V µg/L) N/A N/A N/A N/A 750 3.439 N/A 4.581	VQ Obj (μg/L) WI N/A N/A N/A 750 14.0 N/A 81.6	N/A N/A N/A 29,155 544 N/A 3,174	100	Chem Trans	islator of 0.98	applied
Total D	Pollutants Dissolved Solid Chloride (PWS Sulfate (PWS Total Aluminu Total Copper Total Iron Total Lead	ls (PWS) S) m r	Stream Conc (1981) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Stream CV 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Trib Conc	Fate 1 Coef (0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	NQC W pg/L) N/A N/A N/A N/A 750 3.439 N/A 4.581 N/A 17.180	VQ Obj (μg/L) N/A N/A N/A 750 14.0 N/A 81.6 N/A	N/A N/A N/A N/A N/A N/A N/A N/A 29,155 544 N/A 3,174 N/A 4,658	100	Chem Transi	islator of 0.98	applied

1 Ullutarits	(ug/L)	CV	(µg/L)	Coef	(µg/L)	(µg/L)	WEN (PS/E)	Comments
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A	
Chloride (PWS)	0	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
Total Aluminum	0	0		0	N/A	N/A	N/A	
Total Copper	0	0		0	8.956	9.33	2,457	Chem Translator of 0.96 applied
Total Iron	0	0		0	1,500	1,500	602,591	WQC = 30 day average; PMF = 1
Total Lead	0	0		0	2.517	3.18	838	Chem Translator of 0.791 applied
Total Manganese	0	0		0	N/A	N/A	N/A	
Total Zinc	0	0		0	118.139	120	31,559	Chem Translator of 0.986 applied
☑ THH C	CCT (min): 7	20	PMF:	0.655	Ana	lysis Hardne	ss (mg/l):	N/A Analysis pH: N/A

Pollutants	Conc (ug/L)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	500,000	500,000	N/A	
Chloride (PWS)	0	0		0	250,000	250,000	N/A	
Sulfate (PWS)	0	0		0	250,000	250,000	N/A	
Total Aluminum	0	0		0	N/A	N/A	N/A	
Total Copper	0	0		0	N/A	N/A	N/A	
Total Iron	0	0		0	N/A	N/A	N/A	
Total Lead	0	0		0	N/A	N/A	N/A	
Total Manganese	0	0		0	1,000	1,000	263,395	
Total Zinc	0	0		0	N/A	N/A	N/A	

☑ GRL	CC1 (min): ######	PMF: 1	Analysis Hardness (mg/l):	N/A Analysis pH:	N/A
	Stream	Trib Conc Fate	WOC WO Obi		

Pollutants	Conc		Trib Conc	Fate	WQC	WQ Obj	WLA (µg/L)	Comments
1 Olidiants	(ug/L)	CV	(µg/L)	Coef	(µg/L)	(µg/L)	VIEN (pg/E)	Comments
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A	
Chloride (PWS)	0	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
Total Aluminum	0	0		0	N/A	N/A	N/A	
Total Copper	0	0		0	N/A	N/A	N/A	
Total Iron	0	0		0	N/A	N/A	N/A	
Total Lead	0	0		0	N/A	N/A	N/A	
Total Manganese	0	0		0	N/A	N/A	N/A	
Total Zinc	0	0		0	N/A	N/A	N/A	

☑ Recommended WQBELs & Monitoring Requirements

No. Samples/Month: 4

	Mass	Limits		Concentra	tion Limits				
Pollutante	AML	MDL	ΔМΙ	MDI	IMAY	Unite	Governing	WQBEL	Comments

Model Results 5/17/2022 Page 6

1 Ollutarits	(lbs/day)	(lbs/day)	AMIL	WIDE	IIVIAA	Onics	WQBEL	Basis	Collineits

☑ Other Pollutants without Limits or Monitoring

The following pollutants do not require effluent limits or monitoring based on water quality because reasonable potential to exceed water quality criteria was not determined and the discharge concentration was less than thresholds for monitoring, or the pollutant was not detected and a sufficiently sensitive analytical method was used (e.g., <= Target QL).

Pollutants	Governing WQBEL	Units	Comments
Total Dissolved Solids (PWS)	N/A	N/A	PWS Not Applicable
Chloride (PWS)	N/A	N/A	PWS Not Applicable
Bromide	N/A	N/A	No WQS
Sulfate (PWS)	N/A	N/A	PWS Not Applicable
Total Aluminum	18,687	μg/L	Discharge Conc ≤ 10% WQBEL
Total Copper	349	μg/L	Discharge Conc ≤ 10% WQBEL
Total Iron	602,591	μg/L	Discharge Conc ≤ 10% WQBEL
Total Lead	838	μg/L	Discharge Conc ≤ 10% WQBEL
Total Manganese	263,395	μg/L	Discharge Conc ≤ 10% WQBEL
Total Zinc	2,985	μg/L	Discharge Conc ≤ 10% WQBEL

Model Results 5/17/2022 Page 7

Attachment #4 - CAP Progress Report

Latrobe Corporate Office

1004 Ligonier Street, PO Box 853 Latrobe, PA 15650 Phone: **724-539-8562**

File 1905

Fax: 724-539-3697 www.gibson-thomas.com

April 29, 2022

Pennsylvania Department of Environmental Protection Clean Water Program Northwest Regional Office

230 Chestnut Street Meadville, Pennsylvania 16335

Attention: Mrs. Susan E. Black, Water Quality Specialist Supervisor

RE: Saltsburg Borough

Corrective Action Plan Progress Report

Cycle Period 12 - January 2022 through March 2022

NPDES Permit PA0254606

Dear Mrs. Black:

We are respectfully submitting for your review and consideration a copy of the Saltsburg Borough's written Progress Report in compliance with their Corrective Action Plan approval as requested in a PADEP letter dated, April 3, 2019.

During the Twelfth Progress Report Period (January 1, 2022 through March 31, 2022), the Saltsburg Borough has commenced with the following activities in compliance with the approved Corrective Action Plan (CAP) document:

- During this twelfth report cycle (January 1, 2022 through March 31, 2022) the weather throughout this report period was uneventful. Very limited overflows were noticed but those that where were immediately reported to Mr. Brian Tollini, DEP Water Quality Specialist and also reported electronically by Saltsburg with their e-filing of DMR reports.
- For this twelfth report cycle (January 1, 2022 through March 31, 2022), PennVEST Application –
 This was put on hold due to potential CFA Grant opportunity. Timeline to be adjusted if CFA
 Grant is not awarded to Saltsburg.
- House Sale/General Lateral Inspection Ordinance Saltsburg Borough approved Ordinance #290 on December 6, 2021 at their regularly scheduled Public Meeting. Due to an earlier inspection during the eleventh cycle period updates to the Ordinance are being considered. An amended copy of the ordinance will be provided in a future reporting period when approved.

ESTABLISHED 1916

2

- During the twelfth cycle period, Saltsburg performed two (2) house lateral inspections for illegal connections. No illegal connections were found.
 - > High Street
 - > Pine Street
- Saltsburg Borough had the Indiana Council of Governments in during this twelfth cycle period to clean some main sewer lines.
- During this twelfth cycle period, Saltsburg Borough Public Works has started to plan for more smaller sections of separation, however weather and supply related issues did not allow physical construction to commence. Once they begin this will be reported on future progress reports.
- 7. Saltsburg Borough Public Works also replaced batteries and calibrated their CSO flow monitors.
- 8. On March 14th Saltsburg Borough submitted a grant application to the Commonwealth Financing Authority under their Local Share Account Statewide Grant Program for combined sewer separation. If awarded the grant, in an amount of \$999,180.00 Saltsburg Borough would be able to eliminate 90% of their CSO System. Attached is a copy of the grant application and signed letters of support from State Representatives.

If you have any questions, please feel free to call.

Very truly yours,

Gibson - Thomas Engineering

Vincent L. Seyko, Project Manager

cc: Saltsburg Borough Council

Don Kelly, Saltsburg Borough WWTP Operator/Public Works Director, email only

Krystin Kelly, Saltsburg Borough Secretary/Treasurer, email only

Brian Tollini, DEP Water Quality Specialist, email only

Z:\Clients\1905 Saltburg Borough\2022 SALTSBURG BOROUGH\2022 Saltsburg Borough\CAP Progress Report Cycle 12