

Application Type
Facility Type
Major / Minor

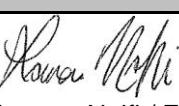
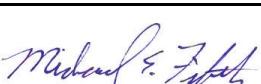
Renewal
Industrial
Major

**NPDES PERMIT FACT SHEET
INDIVIDUAL INDUSTRIAL WASTE (IW)
AND IW STORMWATER**

Application No. **PA0255092**
APS ID **1060444**
Authorization ID **1391160**

Applicant and Facility Information

Applicant Name	<u>Hill Top Energy Center, LLC</u>	Facility Name	<u>Hill Top Energy Center, LLC</u>
Applicant Address	<u>278 Thomas Road</u>	Facility Address	<u>278 Thomas Road</u>
	<u>Carmichaels, PA 15320-1660</u>		<u>Carmichaels, PA 15320-1660</u>
Applicant Contact	<u>James Ryan</u>	Facility Contact	<u>Erin Schmitz</u>
Applicant Phone	<u>(518) 428-5929</u>	Facility Phone	<u>(724) 600-2096</u>
Client ID	<u>323093</u>	Site ID	<u>811291</u>
SIC Code	<u>4911</u>	Municipality	<u>Cumberland Township</u>
SIC Description	<u>Trans. & Utilities - Electric Services</u>	County	<u>Greene</u>
Date Application Received	<u>March 31, 2022</u>	EPA Waived?	<u>No</u>
Date Application Accepted	<u>April 7, 2022</u>	If No, Reason	<u>Major Power Plant > 500 MW</u>
Purpose of Application	Renewal of major NPDES permit for the existing discharge of treated industrial wastewater and stormwater from the natural gas-fired combine cycle electric generating station.		



Summary of Review

Background

Hill Top Energy Center (HTEC) submitted an application on March 31, 2022 to renew NPDES permit coverage of their natural gas-fired, combined cycle electric generating station in Cumberland Township of Greene County. The facility operates under SIC Code 4911 (Transportation & Utilities – Electric Services). The current NPDES permit was issued as a new permit on September 22, 2017 and expired on September 30, 2022. Permit amendments were issued on June 27, 2018, November 15, 2019, and January 12, 2022. Water Quality Management (WQM) permit 3018200 was approved on June 27, 2018 for the construction of a sodium bisulfite feed tank, to be used to consume free chlorine residual in cooling tower blowdown, and an oil/water separator (OWS).

The HTEC Plant was originally planned to be constructed in two phases, with each phase operating as a standalone 536 MW Unit. The initial permit application reflected the proposed plan to construct two power generating units at the project location. Only one generating unit (Unit 1) has been constructed thus far and there are no plans to construct the second unit. The facility has requested to maintain Unit 2 Internal Monitoring Points (IMPs) in the NPDES permit, in the event that construction commences.

HTEC began discharging process wastewaters to Outfall 001 in November 2020, prior to the completion and start-up of the facility, and began partial generation operations in late April 2021. Unit 1 IMPs 101, 201, and 301 began reporting operations in September 2021. Sampling and analysis for Group 1-5 parameters and the river water intake was conducted in September 2021.

Approve	Deny	Signatures	Date
X		 Lauren Nolfi / Environmental Engineering Specialist	March 17, 2025
X		 Michael E. Fifth, P.E. / Environmental Engineer Manager	March 31, 2025

Summary of Review

Property and Operations

Hill Top Energy Center (HTEC) operates as a 620-megawatt (MW) combined-cycle energy facility with a single gas turbine and a single steam turbine with a cooling tower. The facility is located on a 41.7-acre portion of the historic LTV Steel Nemacolin Coal Mine, purchased from Wellington. The generating unit is fueled by natural gas. Unit 1 uses a closed-cycle cooling system with make-up water withdrawn from and blowdown discharged to the Monongahela River. The river water intake is located upstream of the discharge by 0.27 miles. Locations of the intake structure and wastewater discharge are shown in Attachment A.

Internal wastewater streams including boiler water/ steam blowdowns, clarified water, service water, evaporative cooler blowdown, and reverse osmosis reject water are routed to the HRSG Blowdown Sump (IMP 101) and then recycled to the cooling tower basin for incorporation into the recirculation system. The cooling tower blowdown (IMP 301) flows into the Central Wastewater Collection Sump (CWCS) for periodic sampling, testing and dechlorination, as needed. The CSCS can also be recirculated back into the cooling tower basin or released to the Monongahela River. Sodium bisulfite is added for dechlorination as needed. Smaller volumes of plant containment sumps, plant drains and service waters are directed to an OWS. The OWS outlet (IMP 201) combines with the cooling tower blowdown at the CWCS before discharging continuously to the Monongahela River via Outfall 001. The facility's Site Plan is shown in Attachment B and the facility's Process Flow Diagram is shown in Attachment C.

Discharges from HTEC are regulated under the Steam Electric Power Generating Point Source Category. Applicable ELGs are the new source performance standards (NSPS) published in 40 CFR Part 423. 40 CFR Part 423 for the Steam Electric Power Generating Point Source Category does not include production-based effluent limitations.

Outfalls

The facility has two outfalls, Outfall 001 and Outfall 002, which discharge to the Monongahela River, designated in 25 PA Code Chapter 93 as a Warm Water Fishery (WWF). Outfall 001 discharges wastewater from Unit 1 operations at a design flow of 1.3 MGD and an average discharge flow of 0.46 MGD. Unit 1 wastewater consists of cooling tower blowdown from IMP 301 and low volume wastewater from IMPs 101 and 201. Only one generating unit has been constructed thus far and there are no plans to construct the second unit. The facility has requested to maintain Unit 2 IMPs (IMPs 401, 501, 601) in the NPDES permit, in the event that construction commences. Unit 2 wastewater would consist of cooling tower blowdown from IMP 601 and low volume wastewater from IMPs 401 and 501.

Outfall 002 receives stormwater from approximately a 31.4-acre 18% impervious area consisting of paved access roads. Catch basins direct stormwater from the facility's paved rectangular pad to a retention basin prior to discharging to the Monongahela River. The retention basin also receives any water generated due to the surface mining operation. HTEC's Stormwater Plan is shown in Attachment D. HTEC has not reported any discharges at Outfall 002 since the facility began operations in 2021. The facility has maintained an SPCC/ PPC/ SPR Plan since May 2021.

Permit Amendments

Permit amendment PA0255092 A-1 was issued on June 27, 2018 was issued as a minor amendment to reroute the intermittent discharge from the OWS so that it does not discharge into the cooling tower basin. The amendment resulted in the following changes to the permit:

- Addition of IMP 201 and 301;
- IMP 301 added to the cooling tower blowdown for compliance with ELGs under 40 CFR 423.15(b)(1) & (b)(10);
- Chromium and zinc effluent limits replaced with monitoring to ensure that water quality criteria is protected;
- ELG for free available chlorine applied at IMP 301 instead of Outfall 001;
- TRC limits applied at Outfall 001;
- Impingement sampling requirement removed based on use of wedge-wire screens for CWIS technology and Part C language modified to include sampling alternative and modify entrainment sampling language;
- DEP agreed to remove Groups 3, 4, 5 parameters from monitoring if the effluent concentrations of the parameters are not detectable after the initial 60 days of sampling after the commencement of discharge.

Permit amendment PA0255092 A-2 was issued on November 15, 2019 as a DEP-initiated minor amendment to move the Outfall 001 location further upstream of the potable water intake. The change was proposed to allow for safer outfall access for operations and maintenance and did not result in any changes to water quality modeling or limits.

Summary of Review

Permit amendment PA0255092 A-3 was issued on January 12, 2022 as a major amendment to remove pH limits from all current and future internal monitoring points. The amendment removed pH limits from IMPs 101, 201, 301, 401, 501, and 601.

Cooling Water Intake Structure

On August 15, 2014, EPA promulgated Clean Water Act Section 316(b) regulations applicable to cooling water intake structures. The regulations established best technology available ("BTA") standards to reduce impingement mortality and entrainment of all life stages of fish and shellfish at existing power generating and manufacturing facilities. The Final Rule took effect on October 14, 2014. Regulations implementing the 2014 Final Rule (and the previously promulgated Phase I Rule) are provided in 40 CFR Part 125, Subparts I and J for new facilities and existing facilities, respectively. Associated NPDES permit application requirements for facilities with cooling water intake structures are provided in 40 CFR Part 122, Subpart B – Permit Application and Special NPDES Program Requirements (§ 122.21(r)).

HTEC is a "new facility" as defined in 40 CFR § 125.83. As a new facility, the site is subject to 40 CFR Part 125, Subpart I – Requirements Applicable to Cooling Water Intake Structures for New Facilities Under Section 316(b) of the Clean Water Act (§§ 125.80 – 125.89) if the facility meets the rule's applicability criteria. Pursuant to the applicability criteria given by § 125.81(a), HTEC is subject to the requirements of §§ 125.84 – 125.89 if:

- (1) The facility is a point source that uses or proposes to use a cooling water intake structure;
- (2) The facility has at least one cooling water intake structure that uses at least 25 percent of the water it withdraws for cooling purposes. The threshold requirement that at least 25 percent of water withdrawn be used for cooling purposes must be measured on an average monthly basis. A new facility meets the 25 percent cooling water threshold if, based on the new facility's design, any monthly average over a year for the percentage of cooling water withdrawn is expected to equal to exceed 25 percent of the total water withdrawn.
- (3) The facility has a design intake flow (DIF) greater than two (2) million gallons per day (MGD).

HTEC is a point source as defined in 40 CFR § 122.2. The site uses more than 25% of the water it withdraws for cooling purposes (>90%) and uses a cooling water intake structure with a Design Intake Flow greater than 2 MGD (5.04 MGD). Therefore, the site is subject to the requirements of §§ 125.84 – 125.89. HTEC was designed and built to comply with the Federal Phase I Rule for BTA for CWIS as the facility construction began after January 17, 2002. HTEC has chosen to comply with the Track I requirements in §§ 125.84(c).

HTEC withdraws cooling tower makeup water and process water from the Monongahela River through a cooling water intake structure (CWIS) at river mile 76.6. Since the generation facility operates as a baseload plant, the CWIS operates continuously except during periodic scheduled outages. Daily and seasonal changes in flow rate may occur depending on demand for electricity. HTEC's original design for the CWIS was for 9.35 MGD (6500 gpm) to support two electric generating units. Only one generating unit has been constructed thus far and there are no plans to construct the second unit. The capacity of the CWIS was reduced to a design intake flow (DIF) of 5.04 MGD (3500 gpm) to meet the requirements of Unit 1.

The near-shore CWIS withdraws river water through three submerged cylindrical wedge-wire passive intake screens. The intake screens are designed to include sufficient open area to pass a through-screen design intake velocity of less than 0.5 ft/s while allowing for 15% blockage from silt or debris build-up on the screen surface. Each screen has a diameter of 14 inches, length of 22.5 inches, and a slot width of 0.125 inches. The resulting surface area is 26.32 ft². The slots have a width of 5mm and will result in an open area of 63.78%. The through-screen velocity at the DIF is 0.30 ft/s. Accounting for up to 15% blockage from silt or debris on the screen surface between air bursts results in a final effective velocity of 0.35 ft/s.

An air-burst system is used once per 12-hour shift to ensure the screens remain clear below 15% blockage. The impingement control is achieved through a passive intake and entrainment is controlled by the closed-cycle recirculating cooling system. The evaporative cooling tower is normally operated at an average of 7-10 cycles of concentration to reduce make-up water demand to its practical limit while maintaining acceptable effluent water quality. By using closed-cycle cooling, the site meets the requirements under 40 CFR 125.84(b)(1).

HTEC has met the requirements in 40 CFR 125.84(b)(6) by submitting the required application information from 40 CFR 125.122.21(r) and §§ 125.86(b); Source Waterbody Physical Data Study, Cooling Water Intake Structure Data Study, Source Waterbody Baseline Biological Characterization Study, Track I Application Requirements and Biological Monitoring. To meet

Summary of Review

the requirements in 40 CFR 125.84(b)(7) and (8), the NPDES permit will include the requirements to implement monitoring requirements specified in §§ 125.87 and record-keeping requirements specified in §§ 125.88.

In the permit amendment PA0255092 A-1, the permit's impingement sampling requirement was removed based on HTEC's use of wedge-wire screens for CWIS technology. Part C.III.C.1 impingement language of the permit was modified to allow HTEC to utilize an air burst cleaning system to maintain the CWIS's through-screen velocity below 0.5 ft/s and to allow HTEC to rely on remote weekly inspections to verify that the screens are operated as designed. Part C.III.C.3 entrainment language of the permit was also modified to allow HTEC to monitor entrainment rates on a bimonthly, rather than biweekly, basis.

HTEC completed the first year of entrainment monitoring and submitted a report to DEP in November 2021. The results of the monitoring indicate low entrainment rates attributed to the location, design, and capacity of the CWIS. HTEC has requested the elimination of further entrainment monitoring requirements in the NPDES permit renewal for the facility.

HTEC Requests for Permit Changes

1. HTEC requests that the sampling frequency for oil and grease (O&G) for Outfall 001 be reduced from daily to weekly. Daily monitoring since the onset of the facility operation has indicated that 100% sampling results for this outfall have been below detection limits. Weekly sampling should be sufficient to demonstrate the compliance with O&G discharge requirements and daily sampling is overly burdensome.

DEP Response:

O&G sampling frequency was previously set to daily per the minimum sample frequency for process wastewater listed in Table 6.4 of the *Technical Guidance for the Development and Specification of Effluent Limitations and Other Permit Conditions in NPDES Permits* (Document No. 362-0400-001, 10/97).

Effluent data obtained since HTEC began operations in 2021 may be used to support monitoring frequency reductions pursuant to EPA's *Interim Guidance for Performance-Based Reduction of NPDES Permit Monitoring Frequencies* (April 1996). HTEC has not reported any non-compliance with oil and grease effluent limitations at Outfall 001 since HTEC began operations.

The two most recent years of monthly average effluent data representative of current operating conditions for O&G were used to calculate the long-term average discharge rate for use in Tables 1 and 2 of the EPA's guidance document. The baseline monitoring frequency of 7/wk is consistent with the existing monitoring frequency for HTEC's Outfall 001. A long-term average discharge rate of <5.04 mg/L and ratio long-term average to monthly average limit of 33.6% were calculated for Outfall 001. However, since all but one of HTEC's reported monthly average effluent data in the most recent two years was "not detectable", the ratio long-term average to monthly average limit can be assumed to be <25%. Based on Tables 1 and 2 of EPA's guidance document, this ratio would recommend a reduction in permit monitoring frequency to 1/week for Outfall 001.

2. HTEC requests that the monitoring requirement be eliminated for this parameter. Monitoring since the facility has been in operation, 94% of the samples have less than detectable concentrations of thallium. The facility does not contribute to the metal in the discharge and there is no reasonable potential to cause or contribute to exceedances of water quality standards for thallium.

DEP Response:

Thallium monitoring requirements have been removed from Outfall 001's effluent limitations and monitoring requirements, based on the application sample and reasonable potential analysis included below in this Fact Sheet.

3. HTEC requests that the monitoring requirements for the Group 3-5 parameters in the permit be eliminated. Monitoring since the facility has been in operation has indicated that 100% of the analyses to date are less than detectable levels. The facility does not contribute any of these parameters to the discharge and there is no reasonable potential to cause or contribute to exceedances of water quality standards for thallium.

DEP Response:

Monitoring requirements for all Group 3-5 parameters, with the exception of acrylamide and hexachlorobutadiene, have been removed from Outfall 001's effluent limitations and monitoring requirements, based on the application sample and reasonable potential analysis included below in this Fact Sheet.

Summary of Review

4. HTEC requests that the sampling frequency for TSS and O&G for IMPs 101 and 201 be reduced from daily to weekly. Monitoring since the facility has been in operation has indicated that 89% of TSS sampling results and 100% of sampling results O&G has been below detection limits. Weekly sampling should be sufficient to demonstrate the compliance with O&G discharge requirements and daily sampling is overburdensome. The IMP 101 process wastewater is pumped to the Cooling Tower basin and blowdown streams (IMP 301) before being discharged through Outfall 001. The IMP 201 process wastewater is pumped to the CWCS where it combines with the cooling tower blowdown before being discharged through Outfall 001. TSS and O&G are also monitored at Outfall 001.

DEP Response:

The daily sampling frequency for IMPs 101 and 201 was previously based on the federal ELG's most stringent requirement that the monthly average is a measurement of the "average of daily values for 30 consecutive days".

Effluent data obtained since HTEC began operations in 2021 may be used to support monitoring frequency reductions pursuant to EPA's *Interim Guidance for Performance-Based Reduction of NPDES Permit Monitoring Frequencies* (April 1996). HTEC exceeded their effluent limitations for oil and grease at IMP 101 and IMP 201 on October 31, 2024. HTEC reported a daily maximum of 73.8 mg/L at IMP 101 and a daily maximum of 27.6 mg/L at IMP 201. The violations were a result of an operator over-greasing a bearing using food-grade grease. HTEC has reportedly made corrections to ensure this does not occur again.

The two most recent years of monthly average effluent data representative of current operating conditions for O&G were used to calculate the long-term average discharge rate for use in Tables 1 and 2 of the EPA's guidance document. The baseline monitoring frequency of 7/wk is consistent with the existing monitoring frequency for HTEC's IMP 101 and IMP 201. A long-term average discharge rate of <5.12 mg/L and ratio long-term average to monthly average limit of 34.1% were calculated for IMP 101. A long-term average discharge rate of <5.08 mg/L and ratio long-term average to monthly average limit of 33.9% were calculated for IMP 201. However, since all of HTEC's reported monthly average effluent data in the most recent two years was "not detectable", the ratio long-term average to monthly average limit can be assumed to be <25%. Based on Tables 1 and 2 of EPA's guidance document, this ratio would recommend a reduction in permit monitoring frequency to 1/week for oil and grease at IMPs 101 and 201.

The same analysis was completed with respect to TSS for IMPs 101 and 201. HTEC has not reported any non-compliance with TSS effluent limitations at IMPs 101 and 201 since HTEC began operations. A long-term average discharge rate of <4.04 mg/L and ratio long-term average to monthly average limit of 13.5% were calculated for IMP 101. A long-term average discharge rate of <6.73 mg/L and ratio long-term average to monthly average limit of 22.4% were calculated for IMP 101. All of HTEC's reported monthly average effluent data at IMP 101 and all but one of HTEC's reported monthly average effluent data at IMP 201 for TSS was "not detectable". Based on Tables 1 and 2 of EPA's guidance document, this ratio would recommend a reduction in permit monitoring frequency to 1/week for TSS at IMPs 101 and 201.

5. HTEC states that Item 1.a of the Biological Monitoring section states "Remote monitoring of the screens using video cameras should be conducted weekly, at a minimum, to ensure that intake structure technologies are maintained and operated to ensure that they will continue to function as designed". In an email communication from the PADEP Aquatic Biologist dated December 19, 2019, it was agreed that a diver for the annual inspection of the structural integrity of the submerged wedge-wire screens once a year would be an acceptable alternative to video monitoring. HTEC requests that this section in the permit be edited to reflect this agreement.

DEP Response:

DEP agrees that a diver for the annual inspection of the structural integrity of the submerged wedge-wire screens is an acceptable alternative to weekly video monitoring. CWIS language in Part C.III.C. of the NPDES permit has been edited to reflect this agreement.

6. HTEC states that Item 1.b of the Biological Monitoring section requires entrainment monitoring twice monthly for the months of April through September. HTEC has completed the first year of monitoring and submitted a report to the PADEP. A copy is included in Attachment 5. The results of the monitoring indicate very low entrainment rates attributed to the location, design, and capacity of the Cooling Water Intake Structure (CWIS). The facility employs a combined cycle generation technology which increases efficiency and reduces cooling water demand. The closed cycle recirculating cooling water system withdraws only about 0.1% of the mean annual flow of the source waterbody. Those design features, along with the incorporation of 0.125 inch slot-width wedge-wire screens that are

Summary of Review

positioned in the deeper part of the river away from the river bank, minimize impingement mortality and entrainment of fish, eggs, and larvae at the facility. HTEC believes that the design and operation of the CWIS exceeds the Best Technology Available requirements of the Clean Water Act 316(b) rule. Therefore, HTEC requests the elimination of further entrainment monitoring requirements in the new NPDES permit for the facility.

DEP Response:

Based on the results of the entrainment study, DEP aquatic biologists concluded that 316(b) monitoring requirements are waived for this permit cycle because the facility meets the Best Technology Available requirements of the Clean Water Act 316(b) rule. No entrainment monitoring is necessary in this permit cycle, but additional monitoring may still be required in future permit cycles, based on 40 CFR 125.87. Section §125.87(a) allows for less frequent monitoring following the initial study period, but states that subsequent monitoring should be sufficient "for the detection of any seasonal or daily variations". CWIS language in Part C.III.C. of the NPDES permit has been edited to reflect this waived monitoring requirement.

7. HTEC occasionally has the need to perform maintenance activities such as fire hydrant flushing and external building washdowns. HTEC requests that a list of allowable non-stormwater discharges to the facility's stormwater system, similar to the list included in the PAG-03 General Permit for Discharges of Stormwater Associated with Industrial Activity, be added to the NPDES permit. HTEC requests the following allowable non-stormwater discharges:

- Discharges from emergency/unplanned fire-fighting activities;
- Potable water – including water line flushings, fire suppression system flushings, and fire hydrant flushings – that does not contain measurable concentrations of Total Residual Chlorine (TRC), and where appropriate control measures are implemented to minimize discharges of mobilized solids and other pollutants (e.g., filtration, detention, settlement);
- Uncontaminated condensate from air conditioners, coolers/chillers, and other compressors (if treatment through an oil/water separator is provided) and from the outside storage of refrigerated gases or liquids;
- Irrigation drainage;
- Landscape water if such water does not contain pesticides, herbicides or fertilizers;
- Pavement wash waters, other than wash waters used on newly sealed pavement, where: no detergents or hazardous cleaning products are used; the wash waters do not come into contact with oil and grease deposits, sources of pollutants associated with industrial activities, or any other toxic or hazardous materials; and appropriate control measures are implemented to minimize discharges of mobilized solids and other pollutants (e.g., filtration, detention, settlement);
- Routine external building washdown / power wash water that does not contain detergents or hazardous cleaning products (e.g., those containing bleach, hydrofluoric acid, muriatic acid, sodium hydroxide, nonylphenols) and where appropriate control measures are implemented to minimize discharges of mobilized solids and other pollutants (e.g., filtration, detention, settlement);
- Uncontaminated ground water or spring water;
- Foundation or footing drains where flows are not contaminated with process materials; and
- Incidental windblown mist from cooling towers that collects on rooftops or adjacent portions of a facility, but not intentional discharges from the cooling tower.

DEP Response:

DEP has added the PAG-03 General Permit's list of allowable non-stormwater discharges to Part C. IV.B. Requirements Applicable to Stormwater Outfalls of the NPDES Permit.

8. HTEC notified the Department on March 21, 2025 that a proposed project was in discussion to add a line from their Clarified Water Tank to the HRSG Blowdown Sump during times of need. The Service/Fire Water Tank currently used for the cooling efforts of the HRSG Blowdown Sump is considered insufficient. The existing service water line is 8" at about 100 psi and steps down to 6". The new line is 4" at 30 psi. HTEC reported that the lines would only be run in tandem with the service water line to the HRSG Blowdown Tank and the new line to the HRSG Blowdown Sump. The combined line is 4" from IMP 101 into the cooling tower. This new line would not result in any increases in flow.

Summary of Review

DEP Response:

DEP requests that HTEC notify the Department when the proposed project is planned to occur and update the facility's process flow diagram accordingly. Any changes to the quantity and quality of the discharge to IMP 101 or Outfall 001 will require a permit amendment.

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Conclusion

Draft permit issuance is recommended.

Discharge, Receiving Waters and Water Supply Information			
Outfall No.	001	Design Flow (MGD)	1.3
Latitude	39° 53' 6.84"	Longitude	-79° 55' 6.49"
Quad Name	Carmichaels	Quad Code	1906
Wastewater Description:	Cooling tower blowdown (IMP 301) and low volume waste (IMP 101, IMP 201)		
Receiving Waters	Monongahela River (WWF)	Stream Code	37185
NHD Com ID	99415440	RMI	76.85
Drainage Area	4550 mi ²	Yield (cfs/mi ²)	0.116
Q ₇₋₁₀ Flow (cfs)	530	Q ₇₋₁₀ Basis	U.S. Army Corps Engineers Grays Landing Lock & Dam
Elevation (ft)	765	Slope (ft/ft)	0.0001
Watershed No.	19-B	Chapter 93 Class.	WWF
Existing Use		Existing Use Qualifier	
Exceptions to Use		Exceptions to Criteria	
Assessment Status	Attaining Use(s)		
Cause(s) of Impairment			
Source(s) of Impairment			
TMDL Status	Final	Name	Monongahela River TMDL
Background/Ambient Data			
pH (SU)	7.0-7.5	Data Source	Ambient Sampling of Monongahela River
Temperature (°F)	33.4-81.0		Ambient Sampling of Monongahela River
Hardness (mg/L)	97.7		Ambient Sampling of Monongahela River
Other:			
Nearest Downstream Public Water Supply Intake			
PWS Waters	Monongahela River	Municipal Authority	Borough of Carmichaels
PWS RMI	75.53	Flow at Intake (cfs)	1.55
		Distance from Outfall (mi)	1.32

Changes Since Last Permit Issuance:

Outfall 001 discharges wastewater from Unit 1 operations, consisting of cooling tower blowdown from IMP 301 and low volume wastewater from IMPs 101 and 201. Only one generating unit has been constructed thus far and there are no plans to construct the second unit.

Other Comments:

The USGS Stream Stats Data for the drainage area is displayed in Attachment F.

Discharge, Receiving Waters and Water Supply Information			
Outfall No.	002	Design Flow (MGD)	0
Latitude	39° 53' 40.17"	Longitude	-79° 55' 38.33"
Quad Name	Carmichaels	Quad Code	1906
Wastewater Description:	Stormwater		
Receiving Waters	Monongahela River (WWF)	Stream Code	37185
NHD Com ID	99415314	RMI	76.11
Drainage Area	4560 mi ²	Yield (cfs/mi ²)	0.116
Q ₇₋₁₀ Flow (cfs)	530	Q ₇₋₁₀ Basis	U.S. Army Corps Engineers Grays Landing Lock & Dam
Elevation (ft)	765	Slope (ft/ft)	0.0001
Watershed No.	19-B	Chapter 93 Class.	WWF
Existing Use		Existing Use Qualifier	
Exceptions to Use		Exceptions to Criteria	
Assessment Status	Attaining Use(s)		
Cause(s) of Impairment			
Source(s) of Impairment			
TMDL Status	Final	Name	Monongahela River TMDL
Background/Ambient Data		Data Source	
pH (SU)	7.0-7.5	Ambient Sampling of Monongahela River	
Temperature (°F)	41.6-77.1	Ambient Sampling of Monongahela River	
Hardness (mg/L)	96.5	Ambient Sampling of Monongahela River	
Other:			
Nearest Downstream Public Water Supply Intake		Municipal Authority Borough of Carmichaels	
PWS Waters	Monongahela River	Flow at Intake (cfs)	1.55
PWS RMI	75.53	Distance from Outfall (mi)	0.58

Changes Since Last Permit Issuance:

HTEC has not reported any discharges at Outfall 002 since the facility began operations in 2021.

Other Comments:

The USGS Stream Stats Data for the drainage area is displayed in Attachment G.

Treatment Facility Summary				
Treatment Facility Name: HTEC Energy Center LLC				
WQM Permit No.	Issuance Date			
3018200	6/27/18			
Waste Type	Degree of Treatment	Process Type	Disinfection	Avg Annual Flow (MGD)
Industrial	Water Chemistry Adjustment	pH adjustment, dechlorination	N/A	0.62
Hydraulic Capacity (MGD)	Organic Capacity (lbs/day)	Load Status	Biosolids Treatment	Biosolids Use/Disposal
1.08	N/A	N/A	N/A	N/A

Changes Since Last Permit Issuance: None

Other Comments: Internal wastewater streams including boiler water/ steam blowdowns, clarified water, service water, evaporative cooler blowdown, and reverse osmosis reject water are routed to the HRSG Blowdown Sump (IMP 101) and then recycled to the cooling tower basin for incorporation into the recirculation system. The cooling tower blowdown (IMP 301) flows into the Central Wastewater Collection Sump (CWCS) for periodic sampling, testing and dechlorination, as needed. The CSCS can also be recirculated back into the cooling tower basin or released to the Monongahela River. Sodium bisulfite is added for dechlorination if needed.

Compliance History

DMR Data for Outfall 001 (from February 1, 2024 to January 31, 2025)

Parameter	JAN-25	DEC-24	NOV-24	OCT-24	SEP-24	AUG-24	JUL-24	JUN-24	MAY-24	APR-24	MAR-24	FEB-24
Flow (MGD) Average Monthly	0.36	0.39	0.42	0.35	0.573	0.66	0.67	0.53	0.46	0.38	0.34	0.35
Flow (MGD) Daily Maximum	0.42	0.55	0.33	0.68	0.687	0.85	0.79	0.71	0.68	0.59	0.41	0.4
pH (S.U.) Daily Minimum	7.3	6.91	7.16	7.29	6.83	7.43	7.29	7.0	6.9	7.0	7.1	7.0
pH (S.U.) Instantaneous Maximum	7.8	7.83	8.13	8.28	8.22	8.2	8.2	8.4	8.3	8.5	8.8	7.6
TRC (mg/L) Average Monthly	< 0.02	< 0.02	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06
TRC (mg/L) Instantaneous Maximum	< 0.02	< 0.02	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06
Temperature (°F) Average Monthly	64.8	64.5	69.2	75.21	79.14	82.04	77.5	82	78	71	69	65
Temperature (°F) Instantaneous Maximum	72.5	73.9	79.6	88.53	84.6	86.99	82.2	89	84	79	74	74
TSS (mg/L) Average Monthly	40	10.0	13	16	10	7	< 8	< 8	14	54	28	16
TSS (mg/L) Daily Maximum	87	19.0	14	26	13	8	11	10	17	125	41	21
Total Dissolved Solids (mg/L) Average Monthly	1037	898.0	1813	1072	1970	1913	2072	1680	1788	1158	1228	1233
Total Dissolved Solids (mg/L) Daily Maximum	1220	1220.0	2000	1580	2070	2150	2250	2010	1860	1970	1250	1380
Oil and Grease (mg/L) Average Monthly	< 5.0	< 5.0	< 5.0	5.4	< 5.0	< 5.1	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.1
Oil and Grease (mg/L) Instantaneous Maximum	< 5.0	< 5.3	< 5.0	15.6	< 5.3	< 5.4	< 5.2	5.2	< 5.1	< 5.2	< 5.3	< 5.3
Total Aluminum (mg/L) Average Monthly	2.07	1.86	2.32	1823	1582	1218	1.2	1.03	1.2	3.43	4.0	3.1

NPDES Permit Fact Sheet
Hill Top Energy Center, LLC

NPDES Permit No. PA0255092

Total Aluminum (mg/L) Daily Maximum	3.01	2.61	3.1	2900	1780	1340	1.5	1.20	1.3	6.4	4.9	3.6
Dissolved Iron (mg/L) Average Monthly	< 0.05	< 0.057	< 0.05	0.0531	< 0.05	< 0.05	< 0.05	< 0.07	< 0.05	0.053	0.12	0.19
Dissolved Iron (mg/L) Instantaneous Maximum	< 0.1	0.0843	< 0.05	0.0598	< 0.05	< 0.05	< 0.05	< 0.07	< 0.05	0.064	0.16	0.38
Sulfate (mg/L) Average Monthly	480	373	1046	759	1260	1265	1292	1074	1065	593	621	622
Sulfate (mg/L) Daily Maximum	563	583	1250	969	1360	1390	1390	1250	1120	1090	636	716
Total Thallium (ug/L) Average Monthly	< 0.0002	< 0.0002	< 0.0002	< 0.002	< 0.0002	< 0.20	< 0.20	< 0.002	< 0.20	< 0.20	< 0.20	< 0.20
Total Thallium (ug/L) Daily Maximum	< 0.0002	< 0.0002	< 0.0002	< 0.002	< 0.0002	< 0.20	< 0.20	< 0.002	< 0.20	< 0.20	< 0.20	< 0.20
3,3-Dichloro-benzidine (ug/L) Average Monthly	< 0.003	< 0.001	< 0.003	< 0.001	< 0.001	< 1.0	< 1	< 0.001	< 1	< 1	< 1	< 3
3,3-Dichloro-benzidine (ug/L) Daily Maximum	< 0.01	< 0.001	< 0.01	< 0.001	< 0.001	< 1.0	< 1	< 0.001	< 1	< 1	< 1	< 10
Pentachloro-phenol (ug/L) Average Monthly	< 0.01	< 0.003	< 0.003	< 0.003	< 0.003	< 3.0	< 3	< 0.003	< 3	< 3	< 3	< 8
Pentachloro-phenol (ug/L) Daily Maximum	< 0.03	< 0.003	< 0.003	< 0.003	< 0.003	< 3.0	< 3	< 0.003	< 3	< 3	< 3	< 24
Acrolein (ug/L) Average Monthly	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 10.0	< 4	< 4	< 4	< 4	< 4	< 4
Acrolein (ug/L) Daily Maximum	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 10.0	< 4	< 4	< 4	< 4	< 4	< 4
Acrylamide (ug/L) Average Monthly	< 10.0	< 10.0	< 10.0	< 10	< 10	< 10000	< 10000	< 10000	< 10000	< 10000	< 10000	< 10000
Acrylamide (ug/L) Daily Maximum	< 10.0	< 10.0	< 10.0	< 10	< 10	< 10000	< 10000	< 10000	< 10000	< 10000	< 10000	< 10000
Acrylonitrile (ug/L) Average Monthly	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 4.0	< 4	< 4	< 4	< 4	< 4	< 4
Acrylonitrile (ug/L) Daily Maximum	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 4.0	< 4	< 4	< 4	< 4	< 4	< 4
Hexachloro-benzene (ug/L) Average Monthly	< 0.003	< 0.001	< 0.003	< 0.001	< 0.001	< 1.0	< 1	< 1	< 1	< 1	< 1	< 3

NPDES Permit Fact Sheet
Hill Top Energy Center, LLC

NPDES Permit No. PA0255092

Hexachloro-benzene (ug/L) Daily Maximum	< 0.01	< 0.001	< 0.01	< 0.001	< 0.001	< 1.0	< 1	< 1	< 1	< 1	< 1	< 10
Benzo(a)-Anthracene (ug/L) Average Monthly	< 0.003	< 0.001	< 0.003	< 0.001	< 0.001	< 1.0	< 1	< 1	< 1	< 1	< 1	< 3
Benzo(a)-Anthracene (ug/L) Daily Maximum	< 0.01	< 0.001	< 0.01	< 0.001	< 0.001	< 1.0	< 1	< 1	< 1	< 1	< 1	< 10
Benzo(a)Pyrene (ug/L) Average Monthly	< 0.003	< 0.001	< 0.003	< 0.001	< 0.001	< 1.0	< 1	< 1	< 1	< 1	< 1	< 3
Benzo(a)Pyrene (ug/L) Daily Maximum	< 0.01	< 0.001	< 0.01	< 0.001	< 0.001	< 1.0	< 1	< 1	< 1	< 1	< 1	< 10
Benzo(k)Fluoranthene (ug/L) Average Monthly	< 0.003	< 0.001	< 0.003	< 0.001	< 0.001	< 1.0	< 1	< 1	< 1	< 1	< 1	3
Benzo(k)Fluoranthene (ug/L) Daily Maximum	< 0.01	< 0.001	< 0.01	< 0.001	< 0.001	< 1.0	< 1	< 1	< 1	< 1	< 1	< 10
3,4-Benzo-fluoranthene (ug/L) Average Monthly	< 0.003	< 0.001	< 0.003	< 0.001	< 0.001	< 1.0	< 1	< 1	< 1	< 1	< 1	< 3
3,4-Benzo-fluoranthene (ug/L) Daily Maximum	< 0.01	< 0.001	< 0.01	< 0.001	< 0.001	< 1.0	< 1	< 1	< 1	< 1	< 1	< 10
Chloride (mg/L) Average Monthly	151	148	214	225.6	360	359	426	240	< 134	91.7	171	221
Chloride (mg/L) Daily Maximum	192	199	269	384	531	459	549	283	315	162	240	336
Bromide (mg/L) Average Monthly	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.5
Bromide (mg/L) Daily Maximum	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2-Diphenylhydrazine (ug/L) Average Monthly	< 0.003	< 0.001	< 0.003	< 0.001	< 0.001	< 1.0	< 1	< 1	< 1	< 1	< 1	< 3
1,2-Diphenylhydrazine (ug/L) Daily Maximum	< 0.01	< 0.001	< 0.01	< 0.001	< 0.001	< 1.0	< 1	< 1	< 1	< 1	< 1	< 10
Bis(2-Chloroethyl)Ether (ug/L) Average Monthly	< 0.003	< 0.001	< 0.003	< 0.001	< 0.001	< 1.0	< 1	< 1	< 1	< 1	< 1	< 3

NPDES Permit Fact Sheet
Hill Top Energy Center, LLC

NPDES Permit No. PA0255092

Bis(2-Chloro-ethyl)Ether (ug/L) Daily Maximum	< 0.01	< 0.001	< 0.01	< 0.001	< 0.001	< 1.0	< 1	< 1	< 1	< 1	< 1	< 10
Chrysene (ug/L) Average Monthly	< 0.003	< 0.001	< 0.003	< 0.001	< 0.001	< 1.0	< 1	< 1	< 1	< 1	< 1	< 3
Chrysene (ug/L) Daily Maximum	< 0.01	< 0.001	< 0.01	< 0.001	< 0.001	< 1.0	< 1	< 1	< 1	< 1	< 1	< 10
Dibenzo(a,h)-Anthracene (ug/L) Average Monthly	< 0.003	< 0.001	< 0.003	< 0.001	< 0.001	< 1.0	< 1	< 1	< 1	< 1	< 1	3
Dibenzo(a,h)-Anthracene (ug/L) Daily Maximum	< 0.01	< 0.001	< 0.01	< 0.001	< 0.001	< 1.0	< 1	< 1	< 1	< 1	< 1	< 10
Hexachloro-cyclopentadiene (ug/L) Average Monthly	< 0.003	< 0.001	< 0.003	< 0.001	< 0.001	< 1.0	< 1	< 1	< 1	< 1	< 1	< 3
Hexachloro-cyclopentadiene (ug/L) Daily Maximum	< 0.01	< 0.001	< 0.01	< 0.001	< 0.001	< 1.0	1	< 1	< 1	< 1	< 1	< 10
Indeno(1,2,3-cd)Pyrene (ug/L) Average Monthly	< 0.003	< 0.001	< 0.003	< 0.001	< 0.001	< 1.0	< 1	< 1	< 1	< 1	< 1	< 3
Indeno(1,2,3-cd)Pyrene (ug/L) Daily Maximum	< 0.01	< 0.001	< 0.01	< 0.001	< 0.001	< 1.0	< 1	< 1	< 1	< 1	< 1	< 10
N-Nitroso-dimethylamine (ug/L) Average Monthly	< 0.003	< 0.001	< 0.003	< 0.001	< 0.001	< 1.0	< 1	< 1	< 1	< 1	< 1	< 3
N-Nitroso-dimethylamine (ug/L) Daily Maximum	< 0.01	< 0.001	< 0.01	< 0.001	< 0.001	< 1.0	< 1	< 1	< 1	< 1	< 1	< 10
N-Nitrosodi-N-Propylamine (ug/L) Average Monthly	< 0.003	< 0.001	< 0.003	< 0.001	< 0.001	< 1.0	< 1	< 1	< 1	< 1	< 1	< 3
N-Nitrosodi-N-Propylamine (ug/L) Daily Maximum	< 0.01	< 0.001	< 0.01	< 0.001	< 0.001	< 1.0	< 1	< 1	< 1	< 1	< 1	< 10
Phenanthrene (ug/L) Average Monthly	< 0.003	< 0.001	< 0.003	< 0.001	< 0.001	< 1.0	< 1	< 1	< 1	< 1	< 1	< 3
Phenanthrene (ug/L) Daily Maximum	< 0.01	< 0.001	< 0.01	< 0.001	< 0.001	< 1.0	< 1	< 1	< 1	< 1	< 1	< 10
Vinyl Chloride (ug/L) Average Monthly	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 1.0	< 1	< 1	< 1	< 1	< 1	< 1

NPDES Permit Fact Sheet
Hill Top Energy Center, LLC

NPDES Permit No. PA0255092

Vinyl Chloride (ug/L) Daily Maximum	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 1.0	< 1	< 1	< 1	< 1	< 1	< 1
--	---------	---------	---------	---------	---------	-------	-----	-----	-----	-----	-----	-----

DMR Data for Outfall 101 (from February 1, 2024 to January 31, 2025)

Parameter	JAN-25	DEC-24	NOV-24	OCT-24	SEP-24	AUG-24	JUL-24	JUN-24	MAY-24	APR-24	MAR-24	FEB-24
Flow (MGD) Internal Monitoring Point Average Monthly	0.15	0.18	0.23	0.265	0.261	0.27	0.25	0.19	0.15	0.15	0.09	0.08
Flow (MGD) Internal Monitoring Point Daily Maximum	0.40	0.54	0.64	0.528	0.385	0.30	0.34	0.44	0.21	0.45	0.12	0.13
TSS (mg/L) Internal Monitoring Point Average Monthly	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0	< 5.0
TSS (mg/L) Internal Monitoring Point Daily Maximum	5.0	4.0	4.0	4.0	< 4.0	4.0	13.0	< 4.0	4.0	15	5.0	15.0
Oil and Grease (mg/L) Internal Monitoring Point Average Monthly	< 5.0	< 5.0	< 5.0	< 7.7	< 5.0	< 5.1	< 5.1	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Oil and Grease (mg/L) Internal Monitoring Point Daily Maximum	< 5.2	< 5.4	< 5.0	73.8	< 5.0	< 5.4	< 5.3	5.3	< 5.2	< 5.2	< 5.2	< 5.2

DMR Data for Outfall 201 (from February 1, 2024 to January 31, 2025)

Parameter	JAN-25	DEC-24	NOV-24	OCT-24	SEP-24	AUG-24	JUL-24	JUN-24	MAY-24	APR-24	MAR-24	FEB-24
Flow (MGD) Internal Monitoring Point Average Monthly	0.038	0.035	0.036	0.0299	0.027	0.04	0.023	0.02	0.02	0.03	0.03	0.03

NPDES Permit Fact Sheet
Hill Top Energy Center, LLC

NPDES Permit No. PA0255092

Flow (MGD) Internal Monitoring Point Daily Maximum	0.059	0.043	0.04	0.0468	0.0388	0.06	0.038	0.03	0.03	0.05	0.03	0.09
TSS (mg/L) Internal Monitoring Point Average Monthly	< 7.0	< 5.0	< 5.0	< 6.0	< 5.0	< 6.0	< 5.0	< 5.0	< 8.0	< 18.0	11.0	< 10.0
TSS (mg/L) Internal Monitoring Point Daily Maximum	18.0	11.0	9.0	25.0	10.0	12.0	13.0	12.0	29.0	42.0	37.0	22.0
Oil and Grease (mg/L) Internal Monitoring Point Average Monthly	< 5.0	< 5.0	< 5.0	< 6.4	< 5.0	< 5.1	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.1
Oil and Grease (mg/L) Internal Monitoring Point Daily Maximum	< 5.6	< 5.3	< 5.0	27.6	< 5.3	< 5.4	< 5.2	5.1	< 5.1	< 5.2	< 5.3	< 5.4

DMR Data for Outfall 301 (from February 1, 2024 to January 31, 2025)

Parameter	JAN-25	DEC-24	NOV-24	OCT-24	SEP-24	AUG-24	JUL-24	JUN-24	MAY-24	APR-24	MAR-24	FEB-24
Flow (MGD) Internal Monitoring Point Average Monthly	0.32	0.35	0.38	0.31	0.54	0.61	0.64	0.51	0.43	0.36	0.31	0.31
Flow (MGD) Internal Monitoring Point Daily Maximum	0.37	0.52	0.52	0.647	0.649	0.73	0.73	0.68	0.66	0.57	0.38	0.33
Free Available Chlorine (mg/L) Internal Monitoring Point Average Monthly	< 0.02	< 0.020	< 0.05	< 0.05	< 0.06	< 0.05	< 0.05	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06
Free Available Chlorine (mg/L) Internal Monitoring Point Daily Maximum	< 0.02	< 0.02	< 0.05	< 0.05	0.21	< 0.05	< 0.05	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06

NPDES Permit Fact Sheet
Hill Top Energy Center, LLC

NPDES Permit No. PA0255092

Total Chromium (mg/L) Internal Monitoring Point	< 0.0025	< 0.0025	< 0.0025	< 0.0025	< 0.003	< 0.003	< 0.003	< 0.003	< 0.004	< 0.004	< 0.003	< 0.003
Total Chromium (mg/L) Internal Monitoring Point	< 0.0025	< 0.0025	< 0.0025	< 0.0025	< 0.003	< 0.003	0.003	< 0.003	< 0.005	0.005	0.004	0.003
Total Zinc (mg/L) Internal Monitoring Point	0.0246	0.0219	0.016	0.0173	0.0151	< 0.02	0.016	0.018	0.025	0.049	0.045	0.051
Total Zinc (mg/L) Internal Monitoring Point	0.0275	0.0279	0.02	0.0207	0.0163	< 0.03	0.02	0.021	0.031	0.09	0.054	0.055

Compliance History

Effluent Violations for Outfall 101, from: March 1, 2024 To: January 31, 2025

Parameter	Date	SBC	DMR Value	Units	Limit Value	Units
Oil and Grease	10/31/24	Daily Max	73.8	mg/L	20.0	mg/L

Effluent Violations for Outfall 201, from: March 1, 2024 To: January 31, 2025

Parameter	Date	SBC	DMR Value	Units	Limit Value	Units
Oil and Grease	10/31/24	Daily Max	27.6	mg/L	20.0	mg/L

Summary of Inspections: Hill Top Energy Center was most recently inspected on July 25, 2023 as a compliance evaluation. No violations were noted. The client has no open violations.

Other Comments: Hill Top Energy Center was issued a violation on September 9, 2021 for an effluent violation of pH of 9.2. The violation was immediately corrected and did not meet the EPA screening criteria of a 40% exceedance for a conventional parameter that would count as a violation to be counted towards SNC.

Hill Top Energy Center exceeded their effluent limitations for oil and grease at IMP 101 and IMP 201 on October 31, 2024. HTEC reported a daily maximum of 73.8 mg/L at IMP 101 and a daily maximum of 27.6 mg/L at IMP 201. The violations were a result of an operator over-greasing a bearing using food-grade grease. HTEC has reportedly made corrections to ensure this does not occur again.

Development of Effluent Limitations			
Outfall No.	001	Design Flow (MGD)	1.3
Latitude	39° 53' 6.84"	Longitude	-79° 55' 6.49"
Wastewater Description:	Cooling tower blowdown (IMP 301) and low volume waste (IMP 101, IMP 201)		

Outfall 001 discharges wastewater from Unit 1 operations. Pending construction of Unit 2, Outfall 001 will also discharge wastewater from Unit 2 operations. Outfall 001's wastewater discharge currently consists of cooling tower blowdown from IMP 301 and low volume wastewater from IMPs 101 and 201. The maximum discharge flow for Unit 1 is 1.3 MGD; the average discharge flow is 0.46 MGD.

Technology-Based Limitations

Discharges from Outfall 001 are regulated under the Steam Electric Power Generating Point Source Category. Applicable ELGs are the new source performance standards (NSPS) published in 40 CFR Part 423. In the permit's A-1 minor amendment, issued on June 27, 2018, IMP 301 was added to the cooling tower blowdown for compliance with the ELGs under 40 CFR 423.15(b)(1) & (b)(10). The ELG for free available chlorine was applied at IMP 301 instead of at Outfall 001. Total Residual Chlorine (TRC) limits were imposed at Outfall 001 in the A-1 amendment. Technology-based federal effluent limits from the 40 CFR Part 423 ELG for the cooling tower blowdown are imposed at IMP 301 and at IMP 601, pending construction of Unit 2.

Flow

The cooling tower blowdown discharge is expected to be continuous and of a consistent quality. Flow will be metered continuously pursuant to 25 Pa. Code § 92a.61(d)(1) and Table 6-4 of the DEP Technical Guidance for the Development and Specification of Effluent Limitations and Other Permit Conditions in NPDES Permit (October 1997) Guidance Document.

pH

Per 40 CFR Part 423.15(b)(1), cooling tower blowdown is identified as a categorical waste. For all categorical waste streams, the pH must be maintained between 6.0 and 9.0 S.U. at all times.

Free Available Chlorine and Total Residual Chlorine (TRC)

The federal ELG for free available chlorine is applied at IMPs 301 at IMP 601, pending construction of Unit 2.

Pennsylvania regulations at 25 Pa. Code § 92a.48(b) require the imposition of technology-based TRC limits for facilities that use chlorination and that are not already subject to TRC limits based on applicable federal ELGs or a facility-specific BPJ evaluation. Effluent limitation/monitoring requirements for TRC will be applied at Outfall 001. The average monthly limitation of 0.5 mg/L for TRC under § 92a.48, and an IMAX limit of 1.6 mg/L (normally is BPJ) will be applied

Oil and Grease

Reclaimed water from the oil/water separator will be directed to cooling tower basin and is identified as a low volume waste. The federal ELGs will be addressed in the internal monitoring points. An oil and grease limit of 15.0 mg/L monthly average and 30.0 mg/L instantaneous maximum will be applied to Outfall 001 to ensure the 25 Pa. Code § 95.2(2)(ii) standard is not violated at the final discharge.

O&G sampling frequency was previously set to daily per the minimum sample frequency for process wastewater listed in Table 6.4 of the *Technical Guidance for the Development and Specification of Effluent Limitations and Other Permit Conditions in NPDES Permits* (Document No. 362-0400-001, 10/97).

Effluent data obtained since HTEC began operations in 2021 may be used to support monitoring frequency reductions pursuant to EPA's *Interim Guidance for Performance-Based Reduction of NPDES Permit Monitoring Frequencies* (April 1996). HTEC has not reported any non-compliance with oil and grease effluent limitations at Outfall 001 since HTEC began operations.

The two most recent years of monthly average effluent data representative of current operating conditions for O&G were used to calculate the long-term average discharge rate for use in Tables 1 and 2 of the EPA's guidance document. The baseline monitoring frequency of 7/wk is consistent with the existing monitoring frequency for HTEC's Outfall 001. A long-term average discharge rate of <5.04 mg/L and ratio long-term average to monthly average limit of 33.6% were calculated for Outfall 001. However, since all but one of HTEC's reported monthly average effluent data in the most recent two years was "not detectable", the ratio long-term average to monthly average limit can be assumed to be <25%. Based on Tables 1 and 2 of EPA's guidance document, this ratio would recommend a reduction in permit monitoring frequency to 1/week for Outfall 001.

Total Suspended Solids (TSS)

Technology-based federal ELG for TSS, related to low volume wastes as per 40 CFR § 423.15(c), is applied to internal monitoring points. Low volume waste is directed to cooling tower, and therefore, a reporting requirement for TSS will be applied in Outfall 001.

Table 1: Outfall 001 Technology-Based Limitations

Parameter	Monthly Average	Daily Maximum	IMAX	TBEL Basis
Flow (MGD)	Monitor & Report		-	25 Pa. Code § 92a.61(d)(1)
pH (S.U.)	Between 6.0 and 9.0			40 CFR Part 423.15(b)(1)
Total Residual Chlorine (mg/L)	0.5	-	1.6	Pa. Code § 92a.48(b)(2)
Oil and Grease (mg/L)	15.0		30.0	25 Pa. Code § 95.2(2)(ii)
Total Suspended Solids (mg/L)	Monitor & Report		-	40 CFR § 423.15(c)
Dissolved Iron (mg/L)	-	-	7.0	25 Pa. Code § 95.2(4)

Water Quality-Based Effluent Limitations (WQBELs)

Toxics Management Analysis

The Department's Toxics Management Spreadsheet (TMS) was utilized to facilitate calculations necessary for completing a reasonable potential analysis and determine Water Quality-Based Effluent Limitations (WQBELs) for discharges containing toxic pollutant concentrations. TMS combines the functionality of two (2) of the Department's analysis tools, Toxics Screening Analysis Spreadsheet and PENTOXSD water quality model.

DEP's procedures for evaluating reasonable potential are as follows:

1. For IW discharges, the design flow to use in modeling is the average flow during production or operation and may be taken from the permit application.
2. Perform a Toxics Screening Analysis to identify toxic pollutants of concern. All toxic pollutants, as reported in the permit application or on DMRs, are modeled by the TMS to determine the parameters of concern. [This includes pollutants reported as "Not Detectable" or as "<MDL" where the method detection limit for the analytical method used by the applicant is greater than the most stringent water quality criterion].
 - Establish limits in the draft permit where the maximum reported concentration equals or exceeds 50% of the WQBEL. Use the average monthly and maximum daily limits for the permit as recommended by TMS. Establish an IMAX limit at 2.5 times the average monthly limit.
 - For non-conservative pollutants, establish monitoring requirements where the maximum reported concentration is between 25% - 50% of the WQBEL.
 - For conservative pollutants, establish monitoring requirements where the maximum reported concentration is between 10% - 50% of the WQBEL.

A partial mix factor of 0.70 is used for the chronic fish criteria (CRC), threshold human health (THH) and cancer risk level (CRL) analyses in the TMS. DEP uses partial mix factors (PMFs) in the TMS to represent the fractional portion of the receiving stream that mixes with a discharge. A PMF of 0.70 provides the permittee with 70% of the receiving stream's Q7-10 flow for mixing and dilution. The PMF was manually input because the TMS, as a single discharge model, allocates high percentages of stream flow to individual discharges, which often results in those discharges being modeled with most or all of a stream's assimilative capacity. A higher PMF represents a higher percentage of discharge flow that has mixed with the stream flow. This would represent a significant dilution allowance on a large waterway like the Monongahela River and leave little or no assimilative capacity for other dischargers to the same receiving stream.

The Q7-10 flow of the Monongahela River is 530 cfs, which is the Q7-10 for the portion of the Allegheny River upstream of the Grays Landing Lock & Dam as identified in the U.S. Army Corp of Engineers Pittsburgh District Water Management.

Discharges from Outfall 001 are evaluated based on concentrations reported on the application and contained in the DMRs; data from those sources are used as inputs into the TMS. A summary of TMS Inputs is contained in Tables 2 and 3.

Output from the TMS mode runs is included in Attachment H. Based on the recommendations of the TMS and as shown below in Table 4, monitoring is to be imposed for the parameters aluminum and hexachlorobutadiene and effluent limits are to be imposed for the parameter acrylamide.

The maximum reported values for acrylamide and hexachlorobutadiene were reported as "non-detect" using quantitation limits (QL) that exceed the Department's Target QL. If HTEC collects additional samples for the parameters acrylamide and hexachlorobutadiene using the Department's Target QLs and the additional samples indicate that these parameters are not pollutants of concern, those effluent limits may be removed from the final permit.

Table 2: TMS Design Inputs	
Parameter	Value
Design Flow (MGD)	1.3
Hardness (mg/L)	463
pH (S.U.)	9.2
Partial Mix Factors (PMFs)	
AFC	calc.
CFC	0.7
THH	0.7
CRL	0.7
Complete Mix Times	
Q ₇₋₁₀ (min)	calc.
Q _h (min)	calc.

Table 3: TMS Stream Inputs	
Parameter	Value
Stream Code	37185
RMI	76.85
Elevation	765
Drainage Area (mi ²)	4560
Slope (ft/ft)	0.0001
PWS Withdrawal (MGD)	1.0
Apply Fish Criteria	Yes
Low Flow Yield (cfs/mi ²)	0.116
Stream Flow (cfs)	530
Tributary Flow (cfs)	N/A
Width (ft)	550
Stream Hardness (mg/L)	100
Stream pH (S.U.)	7

Table 4: Outfall 001 Water Quality Based Effluent Limits

Parameter	Monthly Average (µg/L)	Daily Maximum (µg/L)	WQBEL Basis
Aluminum, total	Report	Report	AFC
Acrylamide	43.6	68.0	CRL
Hexachlorobutadiene	Report	Report	CRL

TMDL

Monongahela River has a final TMDL for PCBs and Chlordane from Point Marion L/D to Gray's Landing L/D. HTEC and its outfalls are located between Gray's Landing L/D and Maxwell L/D, downstream of the TMDL reach. No specific TMDL is listed for the current reach of concern in Monongahela River.

WQM 7.0

Per *SOP – Establishing Effluent Limitations for Individual Industrial Permits*, analysis with the WQM 7.0 Model is needed if the maximum BOD₅/CBOD₅ concentration exceeds 30/25 mg/L. The projected maximum BOD₅ concentration in the effluent is below 20 mg/L, and therefore, WQM 7.0 Model analysis is not required.

Total Residual Chlorine

To determine if WQBELs are required for discharges containing total residual chlorine (TRC), a discharge evaluation is performed using a DEP program called TRC_CALC created with Microsoft Excel for Windows. TRC_CALC calculates

TRC Waste Load Allocations (WLAs) through the application of a mass balance model which considers TRC losses due to stream and discharge chlorine demands and first-order chlorine decay. Input values for the program include flow rates and chlorine demands for the receiving stream and the discharge, the number of samples taken per month, coefficients of TRC variability, partial mix factors, and an optional factor of safety. The mass balance model calculates WLAs for acute and chronic criteria that are then converted to long term averages using calculated multipliers. The multipliers are functions of the number of samples taken per month and the TRC variability coefficients (normally kept at default values unless site specific information is available). The most stringent limitation between the acute and chronic long-term averages is converted to an average monthly limit for comparison to the BAT average monthly limit of 0.5 mg/L from 25 Pa. Code § 92a.48(b)(2). The more stringent of these average monthly TRC limitations is imposed in the permit.

The stream flow and discharge flow entered in the TRC_CALC spreadsheet are 530 CFS and 1.3 MGD, respectively. A PMF of 0.16 is input for the acute criteria based on the TMS analysis of Outfall 001 and a PMF of 0.7 is input for the chronic criteria. The results of the analysis, included in Attachment J, indicate that no WQBELs are required for TRC and that BAT is the most stringent criteria for TRC at an average monthly limit of 0.5 mg/L.

Temperature

HTEC withdraws water for cooling purposes from and discharges non-contact cooling wastewater to the Monongahela River via Outfall 001. Based upon maximum pump withdrawal rates, HTEC is capable of withdrawing up to 5.04 MGD of river water for use in its industrial processes. HTEC reported, in the application's Module 5, that only one generating unit was constructed and there are no plans to construct a second unit. The total projected discharge volume from Outfall 001 (as provided in the NPDES permit application) is 1.3 MGD. Based upon average withdrawal and discharge estimates, the consumptive water use is calculated to be approximately 3.74 MGD.

Outfall 001 has a small discharge rate in comparison to the stream flow so high discharge temperatures are theoretically allowable based on the mass balance calculation. However, for the protection of human health, the Department's temperature guidance states that thermal discharges may not exceed 110°F at any point accessible to the general public.

The Department used the Thermal Discharge Limit Calculation Spreadsheet to evaluate the thermal impact of this discharge to the Monongahela River. The spreadsheet is designed to calculate the appropriate thermal discharge limits for a facility discharging effluent above ambient temperature, assuming complete-mix between the discharge flow and the receiving stream flow. The design stream flow for temperature analysis is based on the Q₇₋₁₀ flow of the receiving stream, adjusted for each monthly or semimonthly time period.

An instantaneous maximum effluent limit of 110°F will be applied to Outfall 001 at 1.3 MGD. The results of the thermal analysis are included in Attachment I of this report. Daily temperature monitoring, as was previously imposed in the permit, will be maintained.

Total Dissolved Solids (TDS) and Major Constituents Monitoring

TDS and its major constituents, including sulfate, chloride, and bromide, were previously monitored per the Environmental Quality Board's monitoring initiative applied to DEP's NPDES program. Data collection for TDS and its major constituents is no longer in effect so special parameter monitoring requirements for TDS, bromide, chloride, sulfate and 1,4-dioxane requirements no longer apply. The water quality analysis above did not recommend any TDS limits or monitoring requirements at the downstream public water supply.

Integral to the implementation of 25 Pa. Code § 95.10 is the principle that existing, authorized mass loadings of TDS are exempt from any treatment requirements under these provisions. Existing mass loadings of TDS up to and including the maximum daily discharge loading for any existing discharge, provided that the loading was authorized prior to August 21, 2010, are exempt. Discharge loadings of TDS authorized by the Department are typically exempt from the treatment requirements of Chapter 95.10 until the net TDS loading is increased, an existing discharge proposes a hydraulic expansion or a change in the waste stream. If there are existing mass or production-based TDS effluent limits, then these are used as the basis for the existing mass loading.

New and expanding discharge loadings of TDS equal to or less than 5,000 pounds per day, measured as the annual average daily load, are not considered new and expanding mass loadings of TDS and are exempt from the treatment requirements of 25 Pa. Code § 95.10. HTEC is defined as a new and not expanding facility, with a maximum TDS

concentration of 1,830 mg/L and an annual average daily load of 19,841 lbs/day. The 25 Pa. Code § 95.10(c) requirement of discharges may not contain more than 2,000 mg/L as a monthly average and 4,000 mg/L as maximum daily limit, is applicable to the HTEC facility.

Per- and Polyfluoroalkyl Substances (PFAS)

In February 2024, DEP implemented a new monitoring initiative for PFAS consistent with an EPA memorandum that provides guidance to states for addressing PFAS discharges. PFAS are a family of thousands of synthetic organic chemicals that contain a chain of strong, carbon-fluorine bonds. Many PFAS are highly stable, water- and oil-resistant, and exhibit other properties that make them useful in a variety of consumer products and industrial processes. PFAS are resistant to biodegradation, photooxidation, direct photolysis, and hydrolysis and do not readily degrade naturally; thus, many PFAS accumulate over time. According to the United States Department of Health and Human Services, Agency for Toxic Substances and Disease Registry (ATSDR), the environmental persistence and mobility of some PFAS, combined with decades of widespread use, have resulted in their presence in surface water, groundwater, drinking water, rainwater, soil, sediment, ice caps, outdoor and indoor air, plants, animal tissue, and human blood serum across the globe. ATSDR also reported that exposure to certain PFAS can lead to adverse human health impacts. Due to their durability, toxicity, persistence, and pervasiveness, PFAS have emerged as potentially significant pollutants of concern.

In accordance with Section II.I of DEP's "Standard Operating Procedure (SOP) for Clean Water Program – Establishing Effluent Limitations for Individual Industrial Permits" [SOP No. BCW-PMT-032] and under the authority of 25 Pa. Code § 92a.61(b), DEP has determined that monitoring for a subset of common/well-studied PFAS including Perfluorooctanoic acid (PFOA), Perfluorooctanesulfonic acid (PFOS), Perfluorobutanesulfonic acid (PFBS), and Hexafluoropropylene oxide dimer acid (HFPO-DA) is necessary to help understand the extent of environmental contamination by PFAS in the Commonwealth and the extent to which point source dischargers are contributors. SOP BCW-PMT-032 directs permit writers to consider special monitoring requirements for PFOA, PFOS, PFBS, and HFPO-DA in the following instances:

- a. If sampling that is completed as part of the permit renewal application reveals a detection of PFOA, PFOS, HFPO-DA or PFBS (any of these compounds), the application manager will establish a quarterly monitoring requirement for PFOA, PFOS, HFPO-DA and PFBS (all of these compounds) in the permit.
- b. If sampling that is completed as part of the permit renewal application demonstrates non-detect values at or below the Target QLs for PFOA, PFOS, HFPO-DA and PFBS (all of these compounds in a minimum of 3 samples), the application manager will establish an annual monitoring requirement for PFOA, PFOS, HFPO-DA and PFBS in the permit.
- c. In all cases the application manager will include a condition in the permit that the permittee may cease monitoring for PFOA, PFOS, HFPO-DA and PFBS when the permittee reports non-detect values at or below the Target QL for four consecutive monitoring periods for each PFAS parameter that is analyzed. Use the following language: The permittee may discontinue monitoring for PFOA, PFOS, HFPO-DA, and PFBS if the results in 4 consecutive monitoring periods indicate non-detects at or below Quantitation Limits of 4.0 ng/L for PFOA, 3.7 ng/L for PFOS, 3.5 ng/L for PFBS and 6.4 ng/L for HFPO-DA. When monitoring is discontinued, permittees should enter a No Discharge Indicator (NODI) Code of "GG" on DMRs.

HTEC's application was submitted before the NPDES permit application forms were updated to require sampling for PFOA, PFOS, PFBS, and HFPO-DA. Also, according to EPA's guidance, HTEC does not operate in one of the industries EPA expects to be a source for PFAS. Therefore, annual reporting of PFOA, PFOS, PFBS, and HFPO-DA will be required consistent with Section II.I.b of SOP BCW-PMT-032. Even though HTEC did not report results for PFOA, PFOS, PFBS, and HFPO-DA on the permit application, as a facility operating in a suspected non-source industry, it is reasonable to conclude that if HTEC did report results for PFOA, PFOS, PFBS, and HFPO-DA on the application, the results may have been non-detect values, which would subject HTEC to the annual monitoring requirements described in Section II.I.b of the SOP. As stated in Section II.I.c of the SOP, if non-detect values at or below DEP's Target QLs are reported for four consecutive monitoring periods (i.e., four consecutive annual results in HTEC's case), then the monitoring may be discontinued.

Anti-Backsliding

The effluent limitations and monitoring requirements in Table 5 below are from the current permit, issued on January 12, 2022. Previous effluent limits and monitoring requirements can be used pursuant to EPA's anti-backsliding regulation, 40 CFR 122.44(l). Effluent limitations and monitoring requirements for dissolved iron (shown below in Table 5) have been removed from the permit because there is no reasonable potential for discharges from Outfall 001 to exceed 1 mg/L total iron. Furthermore, the instantaneous maximum limitation of 7 mg/L exceeds the Department's water quality criterion of 3 mg/L for dissolved iron.

Table 5: Current Permit Effluent Limitations – Outfall 001 (Unit 1 and 2)

Parameter	Daily Minimum	Average Monthly	Maximum Daily	Instantaneous Maximum	Units	Monitoring Frequency	Sample Type
Flow	-	Report	Report	-	MGD	Continuous	Metered
pH	6.0	-	-	9.0	S.U.	1/day	Grab
Total Residual Chlorine	-	0.5	-	1.6	mg/L	1/day	Grab
Temperature		Report	-	110*	°F	1/day	I-S
Oil and Grease	-	15.0	-	30.0	mg/L	1/day	Grab
Total Suspended Solids	-	Report	Report	-	mg/L	1/week	24-Hr Composite
Dissolved Iron	-	Report	-	7.0	mg/L	1/week	24-Hr Composite
Total Dissolved Solids	-	Report	Report	-	mg/L	1/week	24-Hr Composite
Chloride	-	Report	Report	-	mg/L	1/week	24-Hr Composite
Bromide	-	Report	Report	-	mg/L	1/week	24-Hr Composite
Sulfate, total	-	Report	Report	-	mg/L	1/week	24-Hr Composite
Aluminum, total	-	12.4	19.4	31.0	mg/L	1/week	24-Hr Composite
Mercury, total	-	Report	Report	-	mg/L	1/week	24-Hr Composite
Thallium, total	-	26.3	41.0	65.8	µg/L	1/week	24-Hr Composite
Acrolein	-	Report	Report	-	µg/L	1/week	Grab Composite**
Acrylamide	-	Report	Report	-	µg/L	1/week	Grab Composite**
Acrylonitrile	-	Report	Report	-	µg/L	1/week	Grab Composite**
Vinyl Chloride	-	Report	Report	-	µg/L	1/week	Grab Composite**
Pentachlorophenol	-	Report	Report	-	µg/L	1/week	24-Hr Composite
Benzo(a)Anthracene	-	Report	Report	-	µg/L	1/week	24-Hr Composite
Benzo(a)Pyrene	-	Report	Report	-	µg/L	1/week	24-Hr Composite
3,4-Benzofluoranthene	-	Report	Report	-	µg/L	1/week	24-Hr Composite
Benzo(k)Fluoranthene	-	Report	Report	-	µg/L	1/week	24-Hr Composite
Bis(2-Chloroethyl)Ether	-	Report	Report	-	µg/L	1/week	24-Hr Composite
Chrysene	-	Report	Report	-	µg/L	1/week	24-Hr Composite
Dibenzo(a,h)Anthracene	-	Report	Report	-	µg/L	1/week	24-Hr Composite

3,3-Dichlorobenzidine	-	Report	Report	-	µg/L	1/week	24-Hr Composite
1,2-Diphenylhydrazine	-	Report	Report	-	µg/L	1/week	24-Hr Composite
Hexachlorobenzene	-	Report	Report	-	µg/L	1/week	24-Hr Composite
Hexachlorobutadiene	-	Report	Report	-	µg/L	1/week	24-Hr Composite
Hexachlorocyclopentadiene	-	Report	Report	-	µg/L	1/week	24-Hr Composite
Indeno(1,2,3-cd)Pyrene	-	Report	Report	-	µg/L	1/week	24-Hr Composite
n-Nitrosodimethylamine	-	Report	Report	-	µg/L	1/week	24-Hr Composite
n-Nitrosodi-n-Propylamine	-	Report	Report	-	µg/L	1/week	24-Hr Composite
Phenanthrene	-	Report	Report	-	µg/L	1/week	24-Hr Composite

* The temperature is associated with the maximum design flow 2.33 MGD. The temperature must be kept at or below 110°F at all time.

Effluent Limitations and Monitoring Requirements – Outfall 001

Effluent limitations and monitoring requirements applicable at Outfall 001 are the most stringent of TBELs, WQBELs, and regulatory effluent standards and monitoring requirements, as summarized below in Table 6.

Table 6: Outfall 001 Effluent Limitations and Monitoring Requirements							
Parameter	Daily Minimum	Average Monthly	Maximum Daily	Instantaneous Maximum	Units	Monitoring Frequency	Sample Type
Flow	-	Report	Report	-	MGD	Continuous	Metered
pH	6.0	-	-	9.0	S.U.	1/day	Grab
Total Residual Chlorine	-	0.5	-	1.6	mg/L	1/day	Grab
Temperature		Report	-	110 ⁽¹⁾	°F	1/day	I-S
Oil and Grease	-	15.0	-	30.0	mg/L	1/week	Grab
Total Suspended Solids		Report	Report		mg/L	1/week	24-Hr Composite
Total Dissolved Solids	-	2000	4000	-	mg/L	1/week	24-Hr Composite
Aluminum	-	Report	Report	-	mg/L	1/week	24-Hr Composite
Acrylamide	-	43.6	68.0	-	µg/L	1/week	Grab Composite ⁽²⁾
Hexachlorobutadiene	-	Report	Report	-	µg/L	1/week	24-Hr Composite
PFOA ⁽³⁾	-	-	Report	-	ng/L	1/year	Grab
PFOS ⁽³⁾	-	-	Report	-	ng/L	1/year	Grab
PFBS ⁽³⁾	-	-	Report	-	ng/L	1/year	Grab
HFPO-DA ⁽³⁾	-	-	Report	-	ng/L	1/year	Grab

(1) The temperature is associated with the maximum design flow 1.3 MGD. The temperature must be kept at or below 110°F at all time.

(2) Four grab samples should be collected during actual hours of discharge over a 24-hour period and need not be flow proportioned.

The four samples will be combined at the immediately before analysis. Only one analysis is required, not four.

(3) The permittee may discontinue monitoring for PFOA, PFOS, HFPO-DA, and PFBS if the results in 4 consecutive monitoring periods indicate non-detects at or below Quantitation Limits of 4.0 ng/L for PFOA, 3.7 ng/L for PFOS, 3.5 ng/L for PFBS and 6.4 ng/L for HFPO-DA.

Development of Effluent Limitations			
IMP No.	101	Design Flow (MGD)	0.9
Latitude	39° 53' 33"	Longitude	-79° 55' 27"
Wastewater Description: Low volume waste (Heat Recovery Steam Generator Sump), Unit 1			
IMP No.	201	Design Flow (MGD)	0.2
Latitude	39° 53' 33"	Longitude	-79° 55' 27"
Wastewater Description: Low volume waste (Oil/ Water Separator), Unit 1			

IMP 101 consists of low volume wastewater from Unit 1's Heat Recovery Steam Generator Sump (HRSG). The IMP discharges to Outfall 001 continuously with a design flow of 0.9 MGD and average flow of 0.35 MGD.

IMP 201 consists of low volume wastewater from Unit 1's oil/ water separator. The IMP discharges to Outfall 001 continuously with a design flow of 0.2 MGD and an average flow of 0.08 MGD.

In the permit's A-1 minor amendment, issued on June 27, 2018, IMP 201 was rerouted so that it does not discharge into the cooling tower basin and added to the permit. In the permit's A-3 major amendment, issued on January 12, 2022, pH limits were removed from IMP 101 and IMP 201. IMPs 101 and 201 began reporting operations in September 2021 with monitoring and reporting.

Technology-Based Limitations

Flow monitoring is required pursuant to 25 Pa. Code § 92a.61(d)(1).

Federal Effluent Limitation Guidelines (ELGs)

Discharges from IMP 101 and IMP 201 are regulated under the Steam Electric Power Generating Point Source Category. Applicable ELGs are the new source performance standards (NSPS) published in 40 CFR Part 423. The technology-based federal effluent limits from the 40 CFR Part 423 ELG for low volume wastes are listed below in Table 7 and will be imposed at IMP 101 and IMP 201. Because this is a new source, the requirements at 40 CFR 423.15(a)(3) for new source performance standards (NSPSs) apply.

Table 7: 40 CFR Part 423 ELGs for Low Volume Waste Steam Electric Power Generating Point Source Category*

Pollutant or pollutant property	NSPS effluent limitations	
	Maximum for any 1 day (mg/L)	Average of daily values for 30 consecutive days shall not exceed (mg/L)
Total suspended solids	100.0	30.0
Oil and grease	20.0	15.0

*NSPS - 40 CFR 423 Subpart: 15(a)(3)

Monitoring Frequencies for IMPs 101 and 201

The daily sampling frequency for IMPs 101 and 201 was previously based on the federal ELG's most stringent requirement that the monthly average is a measurement of the "average of daily values for 30 consecutive days".

Effluent data obtained since HTEC began operations in 2021 may be used to support monitoring frequency reductions pursuant to EPA's *Interim Guidance for Performance-Based Reduction of NPDES Permit Monitoring Frequencies* (April 1996). The two most recent years of monthly average effluent data representative of current operating conditions for O&G were used to calculate the long-term average discharge rate for use in Tables 1 and 2 of the EPA's guidance document. The baseline monitoring frequency of 7/wk is consistent with the existing monitoring frequency for HTEC's IMP 101 and IMP 201. A long-term average discharge rate of <5.12 mg/L and ratio long-term average to monthly average limit of

34.1% were calculated for IMP 101. A long-term average discharge rate of <5.08 mg/L and ratio long-term average to monthly average limit of 33.9% were calculated for IMP 201. However, since all of HTEC's reported monthly average effluent data in the most recent two years was "not detectable", the ratio long-term average to monthly average limit can be assumed to be <25%. Based on Tables 1 and 2 of EPA's guidance document, this ratio would recommend a reduction in permit monitoring frequency to 1/week for oil and grease at IMPs 101 and 201.

The same analysis was completed with respect to TSS for IMPs 101 and 201. HTEC has not reported any non-compliance with TSS effluent limitations at IMPs 101 and 201 since HTEC began operations. A long-term average discharge rate of <4.04 mg/L and ratio long-term average to monthly average limit of 13.5% were calculated for IMP 101. A long-term average discharge rate of <6.73 mg/L and ratio long-term average to monthly average limit of 22.4% were calculated for IMP 101. All of HTEC's reported monthly average effluent data at IMP 101 and all but one of HTEC's reported monthly average effluent data at IMP 201 for TSS was "not detectable". Based on Tables 1 and 2 of EPA's guidance document, this ratio would recommend a reduction in permit monitoring frequency to 1/week for TSS at IMPs 101 and 201.

Water Quality-Based Limitations

Water quality limitations will not be placed on these internal monitoring points as this point is not a final discharge to surface waters of the Commonwealth. Water quality limitations will be placed on the final discharge point, Outfall 001.

Anti-Backsliding

The effluent limitations and monitoring requirements in Table 8 below are from the current permit, issued on January 12, 2022. Previous effluent limits and monitoring requirements can be used pursuant to EPA's anti-backsliding regulation, 40 CFR 122.44(l).

Table 8: Current Permit Effluent Limitations – IMPs 101 and 102

Parameters	Average Monthly	Daily Maximum	IMAX	Units	Monitoring Requirements	
					Monitoring Frequency	Sample Type
Flow	Monitor & Report		-	MGD	Continuous	Metered
Total Suspended Solids	30.0	100.0	-	mg/L	1/day	Grab
Oil and Grease	15.0	20.0	-	mg/L	1/day	Grab

Effluent Limitations and Monitoring Requirements – IMPs 101 and 102

Effluent limitations and monitoring requirements applicable at IMPs 101 and 102 are the most stringent of TBELs and regulatory effluent standards and monitoring requirements, as summarized below in Table 9.

Table 9: Effluent Limits and Monitoring Requirements – IMPs 101 and 102

Parameters	Average Monthly	Daily Maximum	IMAX	Units	Monitoring Requirements	
					Monitoring Frequency	Sample Type
Flow	Monitor & Report		-	MGD	Continuous	Measured
Total Suspended Solids	30.0	100.0	-	mg/L	1/week	Grab
Oil and Grease	15.0	20.0	-	mg/L	1/week	Grab

Development of Effluent Limitations			
Outfall No.	301	Design Flow (MGD)	0.9
Latitude	39° 53' 32.55"	Longitude	-79° 55' 45.34"
Wastewater Description: Cooling tower blowdown, Unit 1			

IMP 301 consists of cooling tower blowdown from Unit 1. The IMP discharges to Outfall 001 continuously with a design flow of 0.9 MGD and average flow of 0.36 MGD.

In the permit's A-1 minor amendment, issued on June 27, 2018, IMP 301 was added to the cooling tower blowdown for compliance with the ELGs under 40 CFR 423.15(b)(1) & (b)(10). The ELG for free available chlorine was applied at IMP 301 instead of at Outfall 001. In the permit's A-3 major amendment, issued on January 12, 2022, pH limits were removed from IMP 301. IMP 301 began reporting operations in September 2021 with monitoring and reporting.

Technology-Based Limitations

Flow monitoring is required pursuant to 25 Pa. Code § 92a.61(d)(1).

Federal Effluent Limitation Guidelines (ELGs)

Discharges from IMP 301 are regulated under the Steam Electric Power Generating Point Source Category. Applicable ELGs are the new source performance standards (NSPS) published in 40 CFR Part 423. The technology-based federal effluent limits from the 40 CFR Part 423 ELG for the cooling tower blowdown are listed below in Table 10 and will be imposed at IMP 301. Because this is a new source, the requirements at 40 CFR 423.15(b)(10) for new source performance standards (NSPSs) apply.

**Table 10: 40 CFR Part 423 ELGs for Cooling Tower Blowdown
Steam Electric Power Generating Point Source Category***

Pollutant or pollutant property	NSPS effluent limitations	
	Maximum Concentration (mg/L)	Average of daily values for 30 consecutive days shall not exceed (mg/L)
Free Available Chlorine	0.5	0.2
Pollutant or pollutant property	Maximum for any 1 day (mg/L)	Average of daily values for 30 consecutive days shall not exceed (mg/L)
The 126 priority pollutants (Appendix A) contained in chemicals added for cooling tower maintenance, except:	(1)	(1)
Chromium, total	0.2	0.2
Zinc, total	1.0	1.0

¹No detectable amount.

*NSPS - 40 CFR 423 Subpart: 15(b)(10)

Free Available Chlorine and Total Residual Chlorine (TRC)

Per 25 PA Code § 92a.48(b) "For facilities or activities using chlorination, the following apply: (1) If the EPA adopts a National categorical ELG promulgating limits for Total Residual Chlorine (TRC) or free available chlorine for a specific industry or activity under section 301 or 304(b) of the Federal Act (33 U.S.C.A §§ 1311 and 1314(b)), that ELG constitutes BAT for the industry or activity. If the EPA has not promulgated a National ELG for TRC or free available chlorine for an industry or activity, the Department may develop a facility-specific BAT effluent limitation for TRC." Per the *SOP – Establishing Effluent Limitations for Individual Industrial Permits*, "If chlorination is used, the average monthly limitation of 0.5 mg/L for TRC is applicable under § 92a.48, and an IMAX limit of 1.6 mg/L normally is BPJ. If the federal ELG addresses chlorination or TRC,

apply the federal ELG. If a facility-specific BAT limit has been developed by DEP as per § 92a.48(b)(1), then apply the facility-specific BAT limit.”. Based on 40 CFR Part 423.15(b)(10), an NSPS ELG limit for Free Available Chlorine will be applied to the cooling tower blowdown. The maximum daily limit (MDL) and the average monthly limit (AML) will be set to 0.5 mg/L and 0.2 mg/L, respectively.

The power plant will perform final pH adjustment and dechlorination on the final combined effluent. Total Residual Chlorine (TRC) is monitored at Outfall 001. Part C will also contain the 423.15(b)(10) statement regarding chlorine discharge time.

Chromium and Zinc

40 CFR Part 423 ELG places a limit of no detectable amount of the 126 priority pollutants (listed in Appendix A of the ELG) contained in chemicals added for cooling tower maintenance, except for chromium and zinc. If chromium and zinc are contained in the cooling tower maintenance chemicals, the maximum concentrations of the pollutants allowed are 0.2 mg/L and 1.0 mg/L, respectively. Permit Amendment A-1 states that “the ELG limits for chromium and zinc apply only to the contribution from the cooling tower maintenance chemicals, following EPA guidance and recent correspondence.”

Additionally, Permit Amendment A-1 states that since “HTEC recirculates cooling water and will concentrate chromium and zinc that are present in the intake water and since the cooling water intake and blowdown discharge involve the same body of water, the elevated concentrations of chromium and zinc in the blowdown discharge may violate the water quality standards downstream in the future, per Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry (Doc No. 362-2183-004 12/97).” DEP determined to permit the use of engineering calculations for compliance with 40 CFR 423 effluent limitations but maintained a monitor and report requirement to collect data for evaluation to ensure that water quality criteria is protected. The enforcement of ELG limits for chromium and zinc is contingent upon data monitoring reports (DMRs), the selection and approval of chemical additives, and HTEC’s engineering calculations.

Water Quality-Based Limitations

Water quality limitations will not be placed on this internal monitoring point as this point is not a final discharge to surface waters of the Commonwealth. Water quality limitations will be placed on the final discharge point, Outfall 001.

Anti-Backsliding

The effluent limitations and monitoring requirements in Table 11 below are from the current permit, issued on January 12, 2022. Previous effluent limits and monitoring requirements can be used pursuant to EPA’s anti-backsliding regulation, 40 CFR 122.44(l).

Table 11: Current Permit Effluent Limitations – IMP 301

Parameters	Average Monthly	Daily Maximum	IMAX	Units	Monitoring Requirements	
					Monitoring Frequency	Sample Type
Flow	Report	Report	-	MGD	Continuous	Metered
Free Available Chlorine	0.2	0.5	0.5	mg/L	1/day	Grab
Chromium	Report	Report	-	mg/L	1/week	Grab Composite ⁽¹⁾
Zinc	Report	Report	-	mg/L	1/week	Grab Composite ⁽¹⁾

(1) Four grab samples should be collected during actual hours of discharge over a 24-hour period and need not be flow proportioned. The four samples will be combined at the immediately before analysis. Only one analysis is required, not four.

Effluent Limitations and Monitoring Requirements – IMP 301

Effluent limitations and monitoring requirements applicable at IMP 301 are the most stringent of TBELs and regulatory effluent standards and monitoring requirements, as summarized below in Table 12.

Table 12: Effluent Limits and Monitoring Requirements – IMP 301						
Parameter	Average Monthly	Maximum Daily	IMAX	Units	Monitoring Frequency	Sampling Type
Flow		Monitor & Report	-	MGD	Continuous	Metered
Free Available Chlorine	0.2	0.5	0.5	mg/L	1/day	Grab
Chromium	Report	Report	-	mg/L	1/week	Grab Composite ⁽¹⁾
Zinc	Report	Report	-	mg/L	1/week	Grab Composite ⁽¹⁾

(1) Four grab samples should be collected during actual hours of discharge over a 24-hour period and need not be flow proportioned. The four samples will be combined at the immediately before analysis. Only one analysis is required, not four.

Development of Effluent Limitations

IMP No.	401	Design Flow (MGD)	0.9
Latitude	39° 53' 37.5"	Longitude	-79° 55' 47.57"
Wastewater Description: Low volume waste (Heat Recovery Steam Generator Sump), Unit 2			
IMP No.	501	Design Flow (MGD)	0.2
Latitude	39° 53' 39.31"	Longitude	-79° 55' 51.73"
Wastewater Description: Low volume waste (Oil/ Water Separator), Unit 2			
IMP No.	601	Design Flow (MGD)	0.9
Latitude	39° 53' 37.92"	Longitude	-79° 55' 48.6"
Wastewater Description: Cooling tower blowdown, Unit 2			

In the permit's A-3 major amendment, issued on January 12, 2022, HTEC requested the addition of future IMPs 401, 501, and 601. IMPs 401, 501, and 601 will discharge to Outfall 001 following the construction of Unit 2. HTEC stated that there are currently no plans to construct Phase 2 of the facility, but requested to keep IMPs 401, 501, and 601 in the permit in an inactive state.

IMP 401 consists of low volume wastewater from Unit 2's Heat Recovery Steam Generator Sump (HRSG). The IMP will discharge to Outfall 001 continuously with a design flow of 0.9 MGD and average flow of 0.35 MGD. IMP 501 consists of low volume wastewater from Unit 2's oil/ water separator. The IMP will discharge to Outfall 001 continuously with a design flow of 0.2 MGD and an average flow of 0.08 MGD. IMP 601 consists of cooling tower blowdown from Unit 2. The IMP will discharge to Outfall 001 continuously with a design flow of 0.9 MGD and average flow of 0.36 MGD.

Technology-Based Limitations

Flow monitoring is required pursuant to 25 Pa. Code § 92a.61(d)(1).

Federal Effluent Limitation Guidelines (ELGs)

Discharges from IMP 401 and IMP 501 are regulated under the Steam Electric Power Generating Point Source Category. Applicable ELGs are the new source performance standards (NSPS) published in 40 CFR Part 423. The technology-based federal effluent limits from the 40 CFR Part 423 ELG for low volume wastes are listed below in Table 13 and will be imposed at IMP 401 and IMP 501. Because this is a new source, the requirements at 40 CFR 423.15(a)(3) for new source performance standards (NSPSs) apply.

Table 13: 40 CFR Part 423 ELGs for Low Volume Waste Steam Electric Power Generating Point Source Category*

Pollutant or pollutant property	NSPS effluent limitations	
	Maximum for any 1 day (mg/L)	Average of daily values for 30 consecutive days shall not exceed (mg/L)
Total suspended solids	100.0	30.0
Oil and grease	20.0	15.0

*NSPS - 40 CFR 423 Subpart: 15(a)(3)

Discharges from IMP 601 are regulated under the Steam Electric Power Generating Point Source Category. Applicable ELGs are the new source performance standards (NSPS) published in 40 CFR Part 423. The technology-based federal effluent limits from the 40 CFR Part 423 ELG for the cooling tower blowdown are listed below in Table 14 and will be imposed at the IMP 601. Because this is a new source, the requirements at 40 CFR 423.15(b)(10) for new source performance standards (NSPS) apply.

**Table 14: 40 CFR Part 423 ELGs for Cooling Tower Blowdown
Steam Electric Power Generating Point Source Category***

Pollutant or pollutant property	NSPS effluent limitations	
	Maximum Concentration (mg/L)	Average of daily values for 30 consecutive days shall not exceed (mg/L)
Free Available Chlorine	0.5	0.2
Pollutant or pollutant property	Maximum for any 1 day (mg/L)	Average of daily values for 30 consecutive days shall not exceed (mg/L)
The 126 priority pollutants (Appendix A) contained in chemicals added for cooling tower maintenance, except:	(1)	(1)
Chromium, total	0.2	0.2
Zinc, total	1.0	1.0

¹No detectable amount.

*NSPS - 40 CFR 423 Subpart: 15(b)(10)

Free Available Chlorine and Total Residual Chlorine (TRC)

Per 25 PA Code § 92a.48(b) "For facilities or activities using chlorination, the following apply: (1) If the EPA adopts a National categorical ELG promulgating limits for Total Residual Chlorine (TRC) or free available chlorine for a specific industry or activity under section 301 or 304(b) of the Federal Act (33 U.S.C.A §§ 1311 and 1314(b)), that ELG constitutes BAT for the industry or activity. If the EPA has not promulgated a National ELG for TRC or free available chlorine for an industry or activity, the Department may develop a facility-specific BAT effluent limitation for TRC." Per the *SOP – Establishing Effluent Limitations for Individual Industrial Permits*, "If chlorination is used, the average monthly limitation of 0.5 mg/L for TRC is applicable under § 92a.48, and an IMAX limit of 1.6 mg/L normally is BPJ. If the federal ELG addresses chlorination or TRC, apply the federal ELG. If a facility-specific BAT limit has been developed by DEP as per § 92a.48(b)(1), then apply the facility-specific BAT limit.". Based on 40 CFR Part 423.15(b)(10), an NSPS ELG limit for Free Available Chlorine will be applied to the cooling tower blowdown. The maximum daily limit (MDL) and the average monthly limit (AML) will be set to 0.5 mg/L and 0.2 mg/L, respectively.

The power plant will perform final pH adjustment and dechlorination on the final combined effluent. Total Residual Chlorine (TRC) is monitored at Outfall 001. Part C will also contain the 423.15(b)(10) statement regarding chlorine discharge time.

Chromium and Zinc

40 CFR Part 423 ELG places a limit of no detectable amount of the 126 priority pollutants (listed in Appendix A of the ELG) contained in chemicals added for cooling tower maintenance, except for chromium and zinc. If chromium and zinc are contained in the cooling tower maintenance chemicals, the maximum concentrations of the pollutants allowed are 0.2 mg/L and 1.0 mg/L, respectively. Permit Amendment A-1 states that "the ELG limits for chromium and zinc apply only to the contribution from the cooling tower maintenance chemicals, following EPA guidance and recent correspondence."

Additionally, Permit Amendment A-1 states that since "HTEC recirculates cooling water and will concentrate chromium and zinc that are present in the intake water and since the cooling water intake and blowdown discharge involve the same body of water, the elevated concentrations of chromium and zinc in the blowdown discharge may violate the water quality standards downstream in the future, per Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry (Doc No. 362-2183-004 12/97)." DEP determined to permit the use of engineering calculations for compliance with 40 CFR 423 effluent limitations but maintained a monitor and report requirement to collect data for evaluation to ensure that water quality criteria is protected. The enforcement of ELG limits for chromium and zinc is contingent upon data monitoring reports (DMRs), the selection and approval of chemical additives, and HTEC's engineering calculations.

Monitoring Frequencies for IMPs 401 and 501

The daily sampling frequency for IMPs 401 and 501 was previously based on the federal ELG's most stringent requirement that the monthly average is a measurement of the "average of daily values for 30 consecutive days". Proposed sampling frequencies for TSS and O&G are reduced to 1/week in accordance with IMPs 101 and 201.

Water Quality-Based Limitations

Water quality limitations will not be placed on these internal monitoring points as this point is not a final discharge to surface waters of the Commonwealth. Water quality limitations will be placed on the final discharge point, Outfall 001.

Anti-Backsliding

The effluent limitations and monitoring requirements in Tables 15 and 16 below are from the current permit, issued on January 12, 2022. Previous effluent limits and monitoring requirements can be used pursuant to EPA's anti-backsliding regulation, 40 CFR 122.44(l).

Table 15: Current Permit Effluent Limitations – IMP 401 and 501

Parameters	Average Monthly	Daily Maximum	IMAX	Units	Monitoring Requirements	
					Monitoring Frequency	Sample Type
Flow	Report	Report	-	MGD	Continuous	Metered
Total Suspended Solids	30.0	100.0	-	mg/L	1/day	Grab
Oil and Grease	15.0	20.0	-	mg/L	1/day	Grab

Table 16: Current Permit Effluent Limitations – IMP 601

Parameters	Average Monthly	Daily Maximum	IMAX	Units	Monitoring Requirements	
					Monitoring Frequency	Sample Type
Flow	Report	Report	-	MGD	Continuous	Metered
Free Available Chlorine	0.2	0.5	0.5	mg/L	1/day	Grab
Chromium	Report	Report	-	mg/L	1/week	Grab Composite ⁽¹⁾
Zinc	Report	Report	-	mg/L	1/week	Grab Composite ⁽¹⁾

(1) Four grab samples should be collected during actual hours of discharge over a 24-hour period and need not be flow proportioned. The four samples will be combined at the immediately before analysis. Only one analysis is required, not four.

Effluent Limitations and Monitoring Requirements – IMPs 401, 501 and 601

Effluent limitations and monitoring requirements applicable at IMPs 401, 501 and 601 are the most stringent of TBELs and regulatory effluent standards and monitoring requirements, as summarized below in Tables 17 and 18.

Table 17: Effluent Limits and Monitoring Requirements – IMPs 401 and 501

Parameter	Average Monthly	Maximum Daily	IMAX	Units	Monitoring Frequency	Sampling Type
Flow	Monitor & Report		-	MGD	Continuous	Metered
Total Suspended Solids	30.0	100.0	-	mg/L	1/week	Grab
Oil and Grease	15.0	20.0	-	mg/L	1/week	Grab

Table 18: Effluent Limits and Monitoring Requirements – IMP 601						
Parameters	Average Monthly	Daily Maximum	IMAX	Units	Monitoring Requirements	
					Monitoring Frequency	Sample Type
Flow	Report	Report	-	MGD	Continuous	Metered
Free Available Chlorine	0.2	0.5	0.5	mg/L	1/day	Grab
Chromium	Report	Report	-	mg/L	1/week	Grab Composite ⁽¹⁾
Zinc	Report	Report	-	mg/L	1/week	Grab Composite ⁽¹⁾

(1) Four grab samples should be collected during actual hours of discharge over a 24-hour period and need not be flow proportioned. The four samples will be combined at the immediately before analysis. Only one analysis is required, not four.

Development of Effluent Limitations

Outfall No. 002
Latitude 39° 53' 34.8"
Wastewater Description: Stormwater (Units 1 & 2)

Design Flow (MGD) 0
Longitude -79° 55' 40.08"

Stormwater Drainage Overview

Outfall 002 receives stormwater from approximately a 31.4-acre 18% impervious area consisting of paved access roads. Catch basins direct stormwater from the facility's paved rectangular pad to a retention basin prior to discharging to the Monongahela River. The retention basin also receives any water generated due to the surface mining operation. HTEC's Stormwater Plan is shown in Attachment D. No chemicals or bulk materials are exposed to precipitation. BMPs conducted within the drainage area include proper vehicle maintenance, material storage, training, and procedures. HTEC has not reported any discharges at Outfall 002 since the facility began operations in 2021.

Technology-Based Limitations

Stormwater Technology Limits

Outfall 002 will be subject to PAG-03 General Stormwater Permit conditions as a minimum requirement because the outfall discharges stormwater. The SIC codes for the site is 4911 (Trans. & Utilities - Electric Services) and the corresponding appendix of the PAG-03 that would apply to the facility is Appendix H. The reporting requirements applicable to stormwater discharges are shown in Table 19 below. Along with the monitoring requirements, sector specific BMPs included in Appendix H (Steam Electric Generating Facilities) of the PAG-03 will also be included in Part C of the Draft Permit.

Table 19: PAG-03 Appendix H Monitoring Requirements

Parameters	Average Monthly (mg/L)	Daily Maximum (mg/L)	Benchmark Values (mg/L)	Monitoring Requirements	
				Monitoring Frequency	Sample Type
Nitrogen, total	-	Monitor & Report	-	1/6 Months	Calculation ⁽¹⁾
Phosphorus, total	-	Monitor & Report	-	1/6 Months	Grab
pH	-	Monitor & Report	9.0	1/6 Months	Grab
Total Suspended Solids	-	Monitor & Report	100	1/6 Months	Grab
Oil and Grease	-	Monitor & Report	30	1/6 Months	Grab
Iron, total	-	Monitor & Report	-	1/6 Months	Grab

1. Total Nitrogen is the sum of Total Kjeldahl-N (TKN) plus Nitrite-Nitrate as N (NO₂+NO₃-N), where TKN and NO₂+NO₃-N are measured in the same sample.

Water Quality-Based Limitations

Stormwater WQBELs

Water quality analyses are typically performed under low-flow (Q7-10) conditions. Stormwater discharges occur at variable rates and frequencies but not however during Q7-10 conditions. Since the discharges from Outfall 002 are composed entirely of stormwater, a formal water quality analysis cannot be accurately conducted. Accordingly, water quality-based effluent limitations based on water quality analyses are not proposed.

Anti-Backsliding

The monitoring requirements in Table 20 below are from the current permit, issued on January 12, 2022. Previous effluent limits and monitoring requirements can be used pursuant to EPA's anti-backsliding regulation, 40 CFR 122.44(l). No discharges have been reported at Outfall 002 since the facility began operations. Module 1 of the permit application

reported “no discharge” for Outfall 002’s stormwater sampling results. Flow and aluminum monitoring have been removed from Outfall 002, since they are not included in PAG-03 Appendix H reporting requirements.

Table 20: Current Permit Effluent Limitations – Outfall 002					
Parameters	Average Monthly	Maximum Daily	Units	Monitoring Requirements	
				Monitoring Frequency	Sample Type
Flow	-	Report	MGD	1/6 months	Estimated
pH	Not less than 6.0 nor greater than 9.0 at all times		S.U.	1/6 months	Grab
Total Suspended Solids	-	Report	mg/L	1/6 months	Grab
Oil and Grease	-	Report	mg/L	1/6 months	Grab
Iron, total	-	Report	mg/L	1/6 months	Grab
Aluminum, total	-	Report	mg/L	1/6 months	Grab

Proposed Effluent Limitations and Monitoring Requirements

Monitoring requirements applicable at Outfall 002 are the most stringent of Technology-Based Effluent Monitoring and Limitations and the current permit’s effluent monitoring and limitations. The proposed monitoring requirements are displayed below in Table 21.

A Part C condition is included in the Draft Permit requiring submission of a Corrective Action Plan when there are two consecutive exceedances of the benchmark values. The benchmark values are displayed below in Table 6 and included in the Part C condition. These values are from EPA’s 2021 Multisector General Permit document and are not effluent limitations. Exceedance of the benchmark values is not a violation. If there are two consecutive exceedances of the benchmark value, a Corrective Action Plan must be conducted to evaluate site stormwater controls and BMPs. Benchmark monitoring is a feedback tool, along with routine inspections and visual assessments, for assessing the effectiveness of stormwater controls and BMPs. An exceedance of the benchmark provides permittees with an indication that the facility’s controls may not be sufficiently controlling pollutants in stormwater.

Table 21: Proposed Effluent Monitoring Requirements – Outfall 002				
Parameters	Maximum Daily	Benchmark Values	Monitoring Requirements	
			Monitoring Frequency	Sample Type
pH (S.U.)	Monitor & Report	9.0	1/6 months	Grab
Total Suspended Solids (mg/L)	Monitor & Report	100	1/6 months	Grab
Oil and Grease (mg/L)	Monitor & Report	30	1/6 months	Grab
Iron, total (mg/L)	Monitor & Report	-	1/6 months	Grab
Nitrogen, total (mg/L)	Monitor & Report	-	1/6 months	Calculation ¹
Phosphorus, total (mg/L)	Monitor & Report	-	1/6 months	Grab

1. Total Nitrogen is the sum of Total Kjeldahl-N (TKN) plus Nitrite-Nitrate as N (NO₂+NO₃-N), where TKN and NO₂+NO₃-N are measured in the same sample.

Tools and References Used to Develop Permit	
<input type="checkbox"/>	WQM for Windows Model (see Attachment H)
<input checked="" type="checkbox"/>	Toxics Management Spreadsheet (see Attachment H)
<input checked="" type="checkbox"/>	TRC Model Spreadsheet (see Attachment J)
<input checked="" type="checkbox"/>	Temperature Model Spreadsheet (see Attachment I)
<input type="checkbox"/>	Water Quality Toxics Management Strategy, 361-0100-003, 4/06.
<input checked="" type="checkbox"/>	Technical Guidance for the Development and Specification of Effluent Limitations, 386-0400-001, 10/97.
<input type="checkbox"/>	Policy for Permitting Surface Water Diversions, 386-2000-019, 3/98.
<input type="checkbox"/>	Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 386-2000-018, 11/96.
<input type="checkbox"/>	Technology-Based Control Requirements for Water Treatment Plant Wastes, 386-2183-001, 10/97.
<input checked="" type="checkbox"/>	Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 386-2183-002, 12/97.
<input type="checkbox"/>	Pennsylvania CSO Policy, 386-2000-002, 9/08.
<input type="checkbox"/>	Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.
<input type="checkbox"/>	Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 386-2000-008, 4/97.
<input checked="" type="checkbox"/>	Determining Water Quality-Based Effluent Limits, 386-2000-004, 12/97.
<input type="checkbox"/>	Implementation Guidance Design Conditions, 386-2000-007, 9/97.
<input type="checkbox"/>	Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 386-2000-016, 6/2004.
<input type="checkbox"/>	Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 386-2000-012, 10/1997.
<input type="checkbox"/>	Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 386-2000-009, 3/99.
<input checked="" type="checkbox"/>	Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 386-2000-015, 5/2004.
<input type="checkbox"/>	Implementation Guidance for Section 93.7 Ammonia Criteria, 386-2000-022, 11/97.
<input type="checkbox"/>	Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 386-2000-013, 4/2008.
<input checked="" type="checkbox"/>	Implementation Guidance Total Residual Chlorine (TRC) Regulation, 386-2000-011, 11/1994.
<input checked="" type="checkbox"/>	Implementation Guidance for Temperature Criteria, 386-2000-001, 4/09.
<input type="checkbox"/>	Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 386-2000-021, 10/97.
<input type="checkbox"/>	Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 386-2000-020, 10/97.
<input type="checkbox"/>	Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 386-2000-005, 3/99.
<input type="checkbox"/>	Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 386-2000-010, 3/1999.
<input checked="" type="checkbox"/>	Design Stream Flows, 386-2000-003, 9/98.
<input type="checkbox"/>	Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 386-2000-006, 10/98.
<input type="checkbox"/>	Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 386-3200-001, 6/97.
<input type="checkbox"/>	Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.
<input checked="" type="checkbox"/>	SOP: Establishing Effluent Limitations for Individual Industrial Permits; Individual NPDES Permit Applications; General Water Quality Criteria Implementation
<input checked="" type="checkbox"/>	Other: EPA's Interim Guidance for Performance-Based Reduction of NPDES Permit Monitoring Frequencies

Attachments

Attachment A: Site Location

Attachment B: Site Plan

Attachment C: Process Flow Diagram

Attachment D: Stormwater Plan

Attachment E: Cooling Water Intake Structure Plan

Attachment F: Outfall 001 StreamStats Report

Attachment G: Outfall 002 StreamStats Report

Attachment H: Outfall 001 Toxics Management Spreadsheet Model Output

Attachment I: Outfall 001 Thermal Discharge Evaluation

Attachment J: TRC Evaluation

ATTACHMENT A:

Site Location

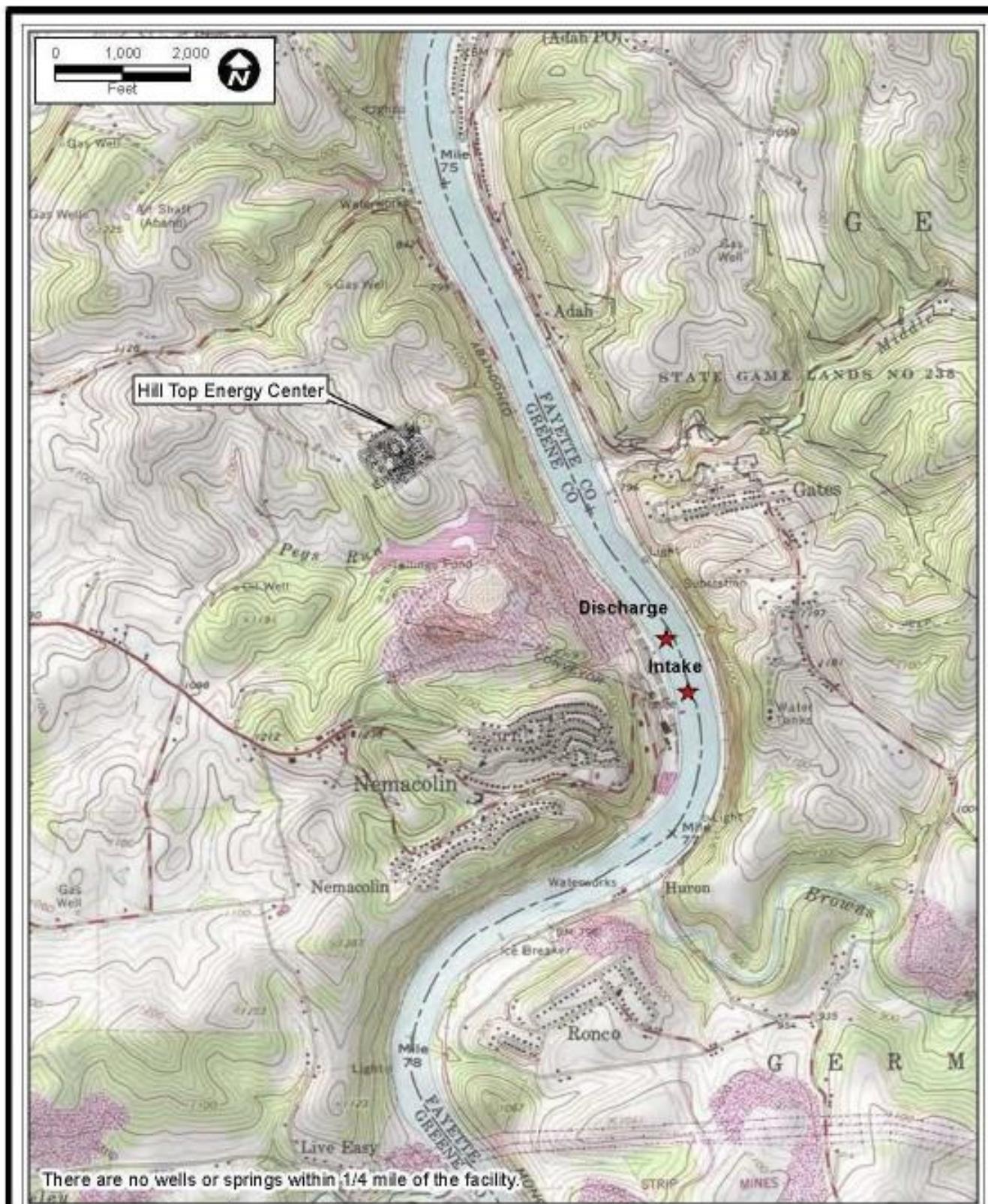
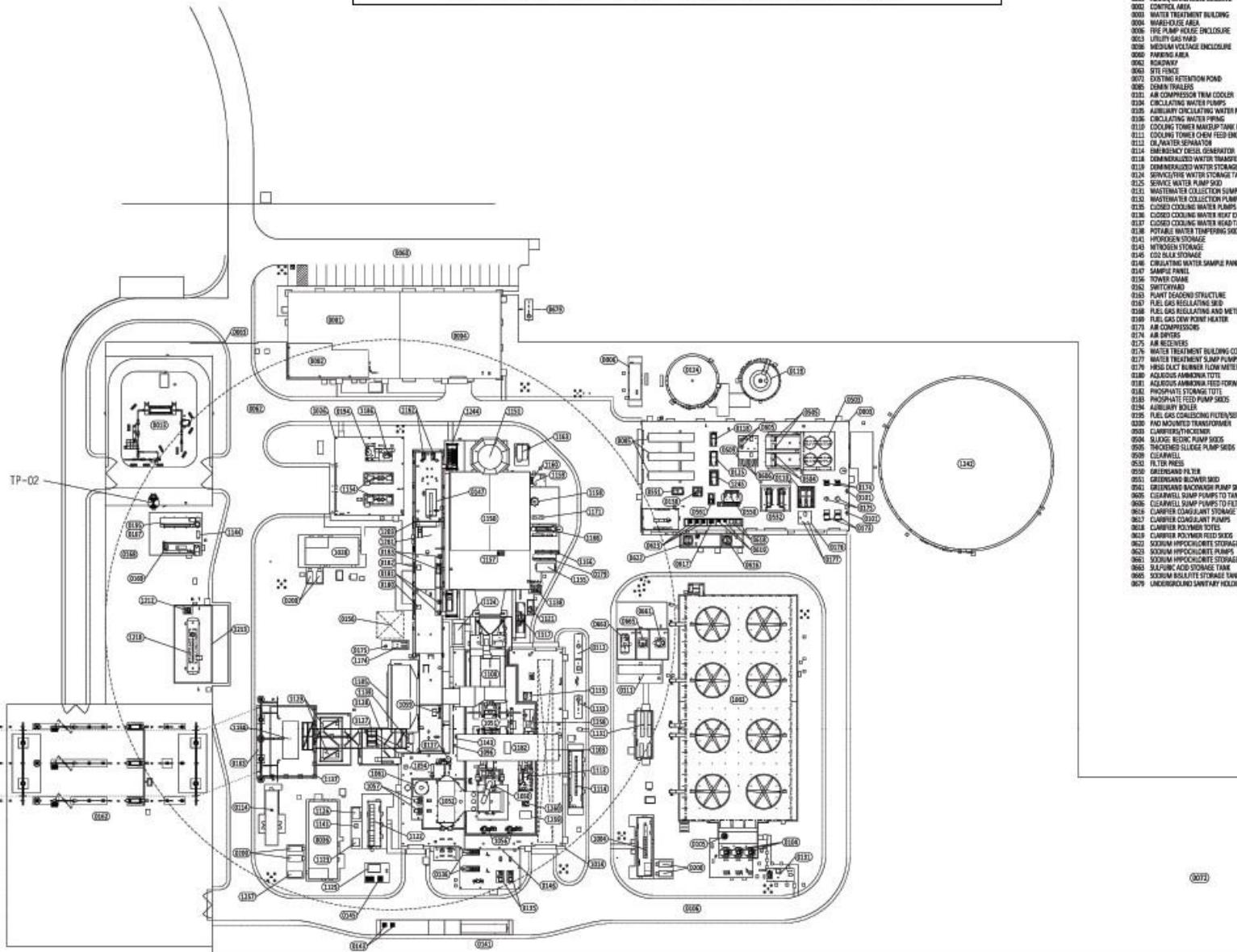
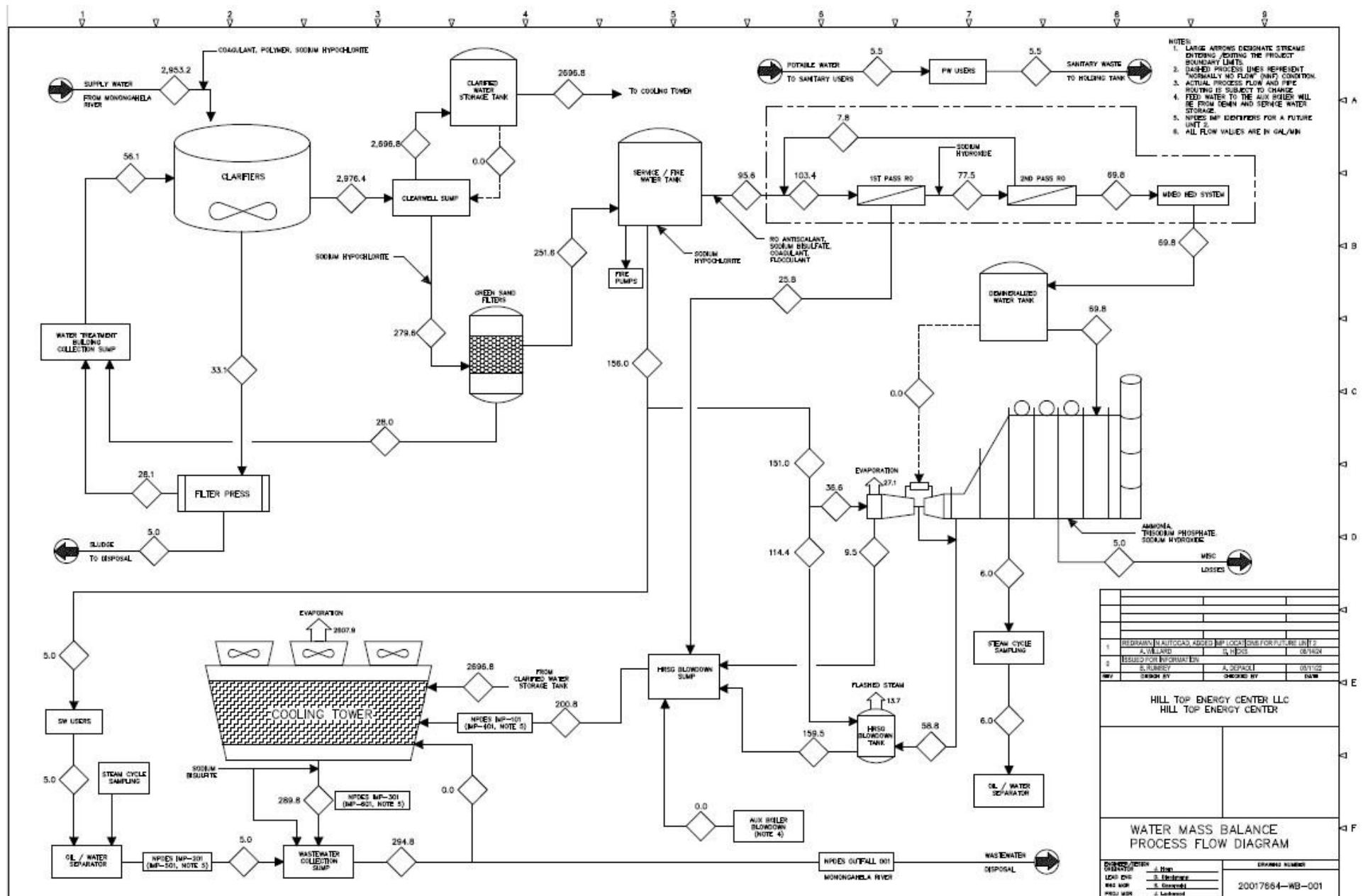


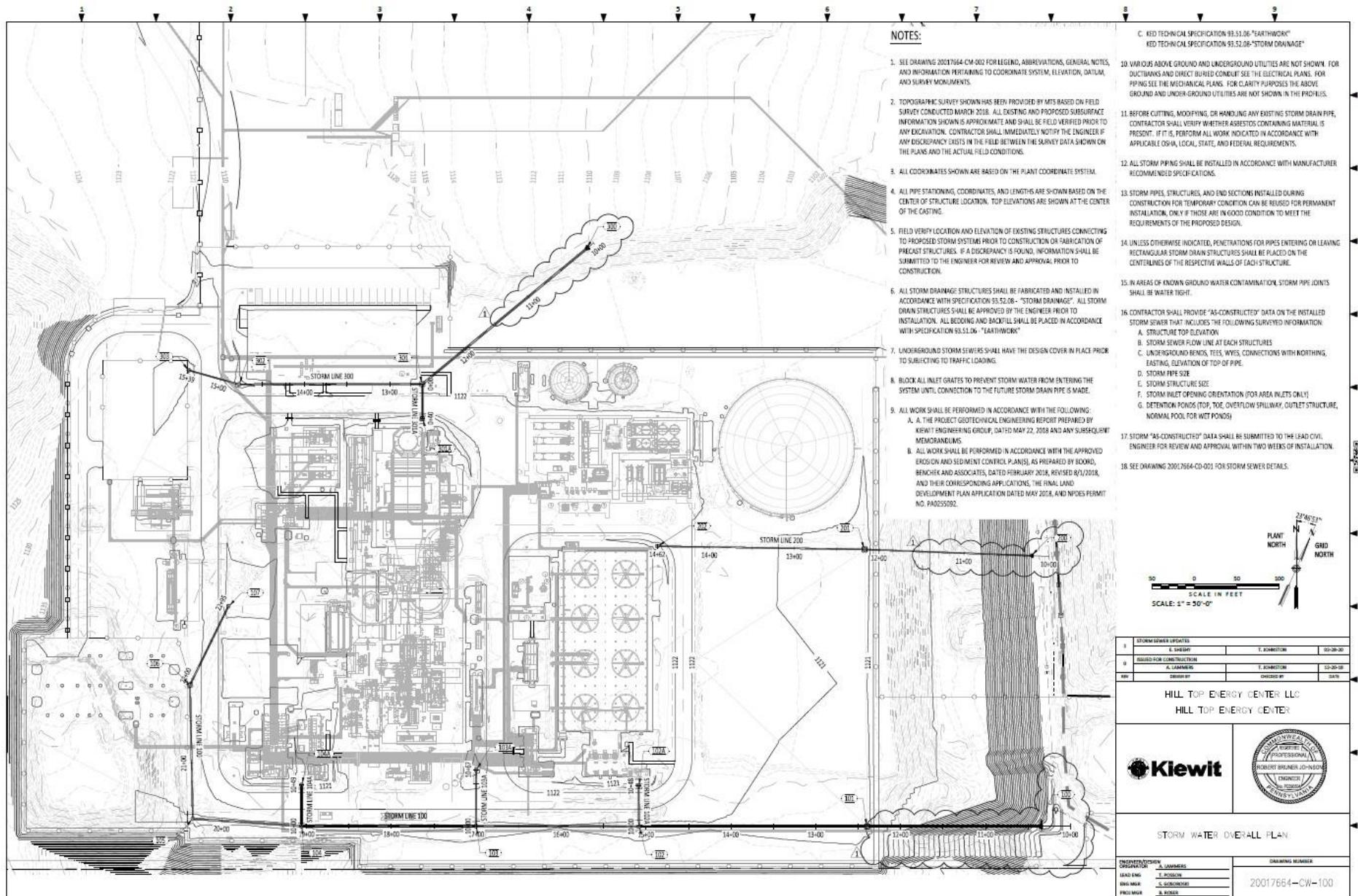
FIGURE 1.
SITE LOCATION
HILL TOP ENERGY CENTER
GREENE COUNTY, PA


Sources: Esri Basemap Imagery; Fluor, 2016; ECT, 2015.

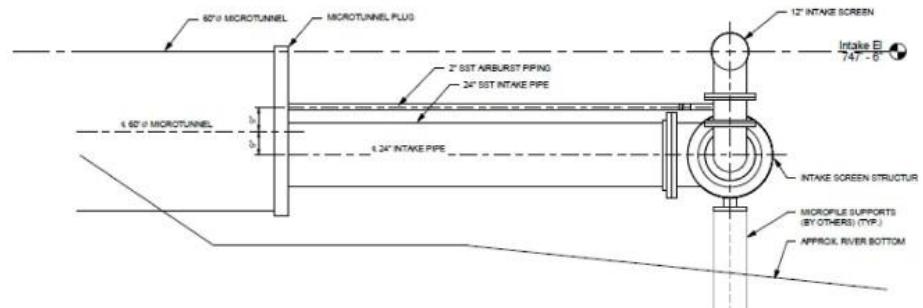
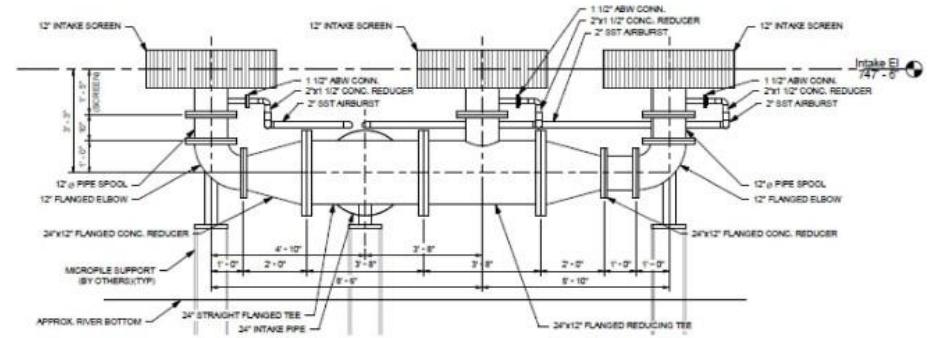
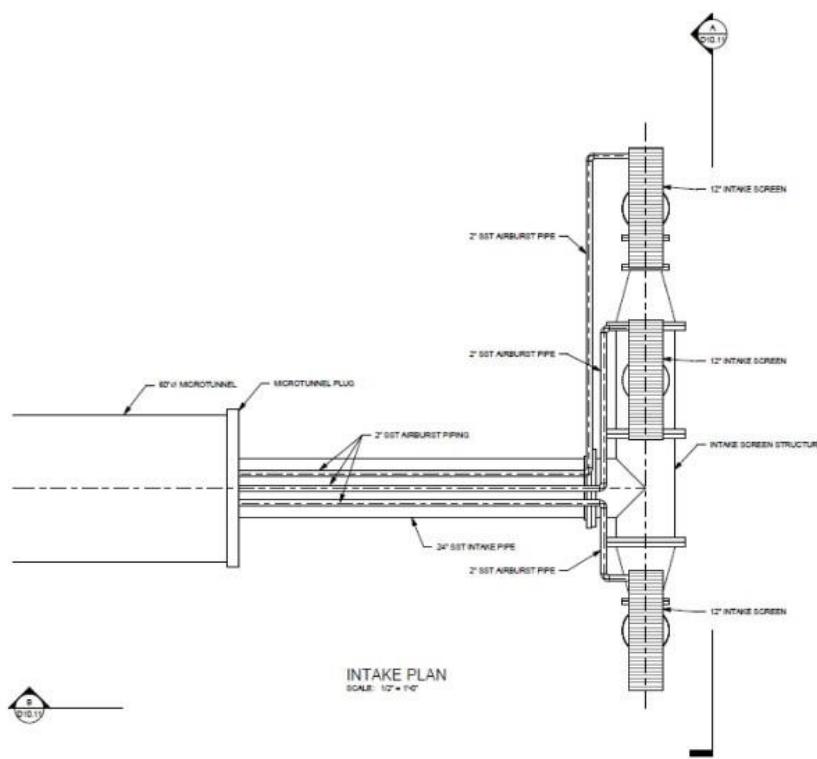
ECT Environmental
Consulting &
Technology, Inc.


ATTACHMENT B:

Site Plan


HILL TOP ENERGY CENTER SITE PLAN

ATTACHMENT C:
Process Flow Diagram




ATTACHMENT D:
Stormwater Plan

ATTACHMENT E:

Cooling Water Intake Structure Plan

Figure 1-2. Cooling Water Intake Structure Plan and Cross-section

Source: 2020 Garney Construction Raw Water Intake Header and Screens • Final

Note: Installed screens are 14-inch diameter with 49-inch overall cylinder length

ATTACHMENT F:

Outfall 001 StreamStats Report

StreamStats Report

Region ID: PA
Workspace ID: PA20240710124438520000
Clicked Point (Latitude, Longitude): 39.88542, -79.91816
Time: 2024-07-10 08:45:03 -0400

[Collapse All](#)

Basin Characteristics

Parameter Code	Parameter Description	Value	Unit
DRNAREA	Area that drains to a point on a stream	4550	square miles
ELEV	Mean Basin Elevation	1942	feet

Low-Flow Statistics

Low-Flow Statistics Parameters [Low Flow Region 4]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	4550	square miles	2.26	1400
ELEV	Mean Basin Elevation	1942	feet	1050	2580

Low-Flow Statistics Disclaimers [Low Flow Region 4]

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors.

Low-Flow Statistics Flow Report [Low Flow Region 4]

Statistic	Value	Unit
7 Day 2 Year Low Flow	617	ft^3/s
30 Day 2 Year Low Flow	827	ft^3/s
7 Day 10 Year Low Flow	350	ft^3/s

Statistic	Value	Unit
30 Day 10 Year Low Flow	416	ft ³ /s
90 Day 10 Year Low Flow	629	ft ³ /s

Low-Flow Statistics Citations

Stuckey, M.H., 2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5130, 84 p. (<http://pubs.usgs.gov/sir/2006/5130/>)

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.

USGS Product Names Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Application Version: 4.21.0

StreamStats Services Version: 1.2.22

NSS Services Version: 2.2.1

ATTACHMENT G:

Outfall 002 StreamStats Report

StreamStats Report

Region ID: PA
Workspace ID: PA20240710124859282000
Clicked Point (Latitude, Longitude): 39.89545, -79.92461
Time: 2024-07-10 08:49:25 -0400

[Collapse All](#)

Basin Characteristics

Parameter Code	Parameter Description	Value	Unit
DRNAREA	Area that drains to a point on a stream	4560	square miles
ELEV	Mean Basin Elevation	1941	feet

Low-Flow Statistics

Low-Flow Statistics Parameters [Low Flow Region 4]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	4560	square miles	2.26	1400
ELEV	Mean Basin Elevation	1941	feet	1050	2580

Low-Flow Statistics Disclaimers [Low Flow Region 4]

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors.

Low-Flow Statistics Flow Report [Low Flow Region 4]

Statistic	Value	Unit
7 Day 2 Year Low Flow	618	ft^3/s
30 Day 2 Year Low Flow	828	ft^3/s
7 Day 10 Year Low Flow	351	ft^3/s
30 Day 10 Year Low Flow	416	ft^3/s
90 Day 10 Year Low Flow	630	ft^3/s

Low-Flow Statistics Citations

Stuckey, M.H., 2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5130, 84 p. (<http://pubs.usgs.gov/sir/2006/5130/>)

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.

USGS Product Names Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Application Version: 4.21.0

StreamStats Services Version: 1.2.22

NSS Services Version: 2.2.1

ATTACHMENT H:

Outfall 001 Toxics Management Spreadsheet Model Output

Discharge Information

Instructions Discharge Stream

Facility: Hill Top Energy Center NPDES Permit No.: PA0255092 Outfall No.: 001

Evaluation Type: Major Sewage / Industrial Waste Wastewater Description: Cooling tower blowdown and low volume waste

Discharge Characteristics								
Design Flow (MGD)*	Hardness (mg/l)*	pH (SU)*	Partial Mix Factors (PMFs)			Complete Mix Times (min)		
			AFC	CFC	THH	CRL	Q ₇₋₁₀	Q _h
1.3	463	9.2		0.7	0.7	0.7		

	Discharge Pollutant	Units	Max Discharge Conc	0 if left blank		0.5 if left blank		0 if left blank		1 if left blank		
				Trib Conc	Stream Conc	Daily CV	Hourly CV	Stream CV	Fate Coeff	FOS	Criteri a Mod	Chem Transl
Group 1	Total Dissolved Solids (PWS)	mg/L	1830									
	Chloride (PWS)	mg/L	274									
	Bromide	mg/L	6.96									
	Sulfate (PWS)	mg/L	1080									
	Fluoride (PWS)	mg/L	0.477									
Group 2	Total Aluminum	µg/L	4900									
	Total Antimony	µg/L	8.9									
	Total Arsenic	µg/L	2									
	Total Barium	µg/L	185									
	Total Beryllium	µg/L	< 5									
	Total Boron	µg/L	371									
	Total Cadmium	µg/L	< 0.4									
	Total Chromium (III)	µg/L	< 5									
	Hexavalent Chromium	µg/L	< 10									
	Total Cobalt	µg/L	< 5									
	Total Copper	µg/L	6									
	Free Cyanide	µg/L										
	Total Cyanide	µg/L	14									
	Dissolved Iron	µg/L	197									
	Total Iron	µg/L	730									
	Total Lead	µg/L	0.2									
	Total Manganese	µg/L	99									
	Total Mercury	µg/L	< 0.2									
	Total Nickel	µg/L	8									
	Total Phenols (Phenolics) (PWS)	µg/L	< 7.8									
	Total Selenium	µg/L	3									
	Total Silver	µg/L	0.3									
	Total Thallium	µg/L	1									
	Total Zinc	µg/L	39									
	Total Molybdenum	µg/L	11									
	Acrolein	µg/L	< 4									
	Acrylamide	µg/L	< 10000									
	Acrylonitrile	µg/L	< 4									
	Benzene	µg/L	< 0.5									
	Bromoform	µg/L	< 0.5									

Group 3	Carbon Tetrachloride	µg/L	<	1								
	Chlorobenzene	µg/L	<	0.5								
	Chlorodibromomethane	µg/L		0.71								
	Chloroethane	µg/L	<	1								
	2-Chloroethyl Vinyl Ether	µg/L	<	5								
	Chloroform	µg/L		7.3								
	Dichlorobromomethane	µg/L		0.59								
	1,1-Dichloroethane	µg/L	<	0.5								
	1,2-Dichloroethane	µg/L	<	0.5								
	1,1-Dichloroethylene	µg/L	<	0.5								
	1,2-Dichloropropane	µg/L	<	0.5								
	1,3-Dichloropropylene	µg/L	<	1								
	1,4-Dioxane	µg/L	<	2.9								
	Ethylbenzene	µg/L	<	0.5								
	Methyl Bromide	µg/L	<	1								
	Methyl Chloride	µg/L	<	1								
	Methylene Chloride	µg/L	<	1								
	1,1,2,2-Tetrachloroethane	µg/L	<	0.5								
	Tetrachloroethylene	µg/L	<	0.5								
	Toluene	µg/L	<	0.5								
	1,2-trans-Dichloroethylene	µg/L	<	0.5								
	1,1,1-Trichloroethane	µg/L	<	0.5								
	1,1,2-Trichloroethane	µg/L	<	0.5								
	Trichloroethylene	µg/L	<	0.5								
	Vinyl Chloride	µg/L	<	1								
Group 4	2-Chlorophenol	µg/L	<	2.9								
	2,4-Dichlorophenol	µg/L	<	2.9								
	2,4-Dimethylphenol	µg/L	<	2.9								
	4,6-Dinitro-o-Cresol	µg/L	<	5.9								
	2,4-Dinitrophenol	µg/L	<	5.9								
	2-Nitrophenol	µg/L	<	2.9								
	4-Nitrophenol	µg/L	<	2.9								
	p-Chloro-m-Cresol	µg/L	<	1								
	Pentachlorophenol	µg/L	<	5.9								
	Phenol	µg/L	<	7.7								
	2,4,6-Trichlorophenol	µg/L	<	2.9								
Group 5	Acenaphthene	µg/L	<	1.5								
	Acenaphthylene	µg/L	<	1.5								
	Anthracene	µg/L	<	1.5								
	Benzidine	µg/L	<	3.9								
	Benzo(a)Anthracene	µg/L	<	1								
	Benzo(a)Pyrene	µg/L	<	1								
	3,4-Benzofluoranthene	µg/L	<	1								
	Benzo(ghi)Perylene	µg/L	<	1.5								
	Benzo(k)Fluoranthene	µg/L	<	1								
	Bis(2-Chloroethoxy)Methane	µg/L	<	2.9								
	Bis(2-Chloroethyl)Ether	µg/L	<	1								
	Bis(2-Chloroisopropyl)Ether	µg/L	<	2.9								
	Bis(2-Ethylhexyl)Phthalate	µg/L	<	2.9								
	4-Bromophenyl Phenyl Ether	µg/L	<	2.9								
	Butyl Benzyl Phthalate	µg/L	<	2.9								
	2-Chloronaphthalene	µg/L	<	2.9								
	4-Chlorophenyl Phenyl Ether	µg/L	<	2.9								
	Chrysene	µg/L	<	1								
	Dibenzo(a,h)Anthracene	µg/L	<	1								
	1,2-Dichlorobenzene	µg/L	<	1								
	1,3-Dichlorobenzene	µg/L	<	1								
	1,4-Dichlorobenzene	µg/L	<	1								
	3,3-Dichlorobenzidine	µg/L	<	1								
	Diethyl Phthalate	µg/L	<	2.9								
	Dimethyl Phthalate	µg/L	<	2.9								
	Di-n-Butyl Phthalate	µg/L	<	2.9								
	2,4-Dinitrotoluene	µg/L	<	2.9								

2,6-Dinitrotoluene	µg/L	<	2.9					
Di-n-Octyl Phthalate	µg/L	<	2.9					
1,2-Diphenylhydrazine	µg/L	<	1					
Fluoranthene	µg/L	<	15					
Fluorene	µg/L	<	1.5					
Hexachlorobenzene	µg/L	<	1					
Hexachlorobutadiene	µg/L	<	2.9					
Hexachlorocyclopentadiene	µg/L	<	1					
Hexachloroethane	µg/L	<	2.9					
Indeno(1,2,3-cd)Pyrene	µg/L	<	1					
Isophorone	µg/L	<	2.9					
Naphthalene	µg/L	<	1.5					
Nitrobenzene	µg/L	<	2.9					
n-Nitrosodimethylamine	µg/L	<	1					
n-Nitrosodi-n-Propylamine	µg/L	<	1					
n-Nitrosodiphenylamine	µg/L	<	1					
Phenanthrene	µg/L	<	2.9					
Pyrene	µg/L	<	1.5					
1,2,4-Trichlorobenzene	µg/L	<	2.9					
Group 6	Aldrin	µg/L	<					
	alpha-BHC	µg/L	<					
	beta-BHC	µg/L	<					
	gamma-BHC	µg/L	<					
	delta BHC	µg/L	<					
	Chlordane	µg/L	<					
	4,4-DDT	µg/L	<					
	4,4-DDE	µg/L	<					
	4,4-DDO	µg/L	<					
	Dieldrin	µg/L	<					
	alpha-Endosulfan	µg/L	<					
	beta-Endosulfan	µg/L	<					
	Endosulfan Sulfate	µg/L	<					
	Endrin	µg/L	<					
	Endrin Aldehyde	µg/L	<					
	Heptachlor	µg/L	<					
	Heptachlor Epoxide	µg/L	<					
	PCB-1016	µg/L	<					
	PCB-1221	µg/L	<					
	PCB-1232	µg/L	<					
	PCB-1242	µg/L	<					
	PCB-1248	µg/L	<					
	PCB-1254	µg/L	<					
	PCB-1260	µg/L	<					
	PCBs, Total	µg/L	<					
Group 7	Toxaphene	µg/L	<					
	2,3,7,8-TCDD	ng/L	<					
	Gross Alpha	pCi/L						
	Total Beta	pCi/L	<					
	Radium 226/228	pCi/L	<					
	Total Strontium	µg/L	<					
	Total Uranium	µg/L	<					
	Osmotic Pressure	mOs/kg						
	ChemChlor 160	µg/L	<	0.5				
	CWT-360	µg/L		59.74				
	Sodium Bisulfite	µg/L		71.41				
	Sulfuric Acid	µg/L		0.865				

Stream / Surface Water Information

Hill Top Energy Center, NPDES Permit No. PA0255092, Outfall 001

Instructions **Discharge** Stream

Receiving Surface Water Name: **Monongahela River**

No. Reaches to Model: **1**

Statewide Criteria
 Great Lakes Criteria
 ORSANCO Criteria

Location	Stream Code ¹	RMI ¹	Elevation (ft) ¹	DA (mi ²) ¹	Slope (ft/ft)	PWS Withdrawal (MGD)	Apply Fish Criteria ¹
Point of Discharge	037185	76.85	765	4560	0.0001		Yes
End of Reach 1	037185	75.53	764	4561	0.0001	1	Yes

Q₇₋₁₀

Location	RMI	LFY (cfs/mi ²) ¹	Flow (cfs)		W/D Ratio	Width (ft)	Depth (ft)	Velocity (fps)	Travel Time (days)	Tributary		Stream		Analysis	
			Stream	Tributary						Hardness	pH	Hardness*	pH*	Hardness	pH
Point of Discharge	76.85	0.116	530			550	17					100	7		
End of Reach 1	75.53	0.116	530												

Q_h

Location	RMI	LFY (cfs/mi ²) ¹	Flow (cfs)		W/D Ratio	Width (ft)	Depth (ft)	Velocity (fps)	Travel Time (days)	Tributary		Stream		Analysis	
			Stream	Tributary						Hardness	pH	Hardness*	pH*	Hardness	pH
Point of Discharge	76.85														
End of Reach 1	75.53														

Model Results

Hill Top Energy Center, NPDES Permit No. PA0255092, Outfall 001

Hydrodynamics

Wasteload Allocations

AFC

CCT (min):

PMF:

Analysis Hardness (mg/l):

Analysis pH:

Pollutants	Stream Conc (µg/L)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A	
Chloride (PWS)	0	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
Fluoride (PWS)	0	0		0	N/A	N/A	N/A	
Total Aluminum	0	0		0	750	750	32,344	
Total Antimony	0	0		0	1,100	1,100	47,438	
Total Arsenic	0	0		0	340	340	14,663	Chem Translator of 1 applied
Total Barium	0	0		0	21,000	21,000	905,631	
Total Boron	0	0		0	8,100	8,100	349,315	
Total Cadmium	0	0		0	2.178	2.32	99.9	Chem Translator of 0.941 applied
Total Chromium (III)	0	0		0	608.752	1,926	83,078	Chem Translator of 0.316 applied
Hexavalent Chromium	0	0		0	16	16.3	703	Chem Translator of 0.982 applied
Total Cobalt	0	0		0	95	95.0	4,087	
Total Copper	0	0		0	14.502	15.1	651	Chem Translator of 0.96 applied
Dissolved Iron	0	0		0	N/A	N/A	N/A	
Total Iron	0	0		0	N/A	N/A	N/A	
Total Lead	0	0		0	70.514	90.5	3,902	Chem Translator of 0.779 applied
Total Manganese	0	0		0	N/A	N/A	N/A	
Total Mercury	0	0		0	1.400	1.65	71.0	Chem Translator of 0.85 applied
Total Nickel	0	0		0	501.370	502	21,665	Chem Translator of 0.998 applied
Total Phenols (Phenolics) (PWS)	0	0		0	N/A	N/A	N/A	
Total Selenium	0	0		0	N/A	N/A	N/A	Chem Translator of 0.922 applied
Total Silver	0	0		0	3.696	4.35	188	Chem Translator of 0.85 applied
Total Thallium	0	0		0	65	65.0	2,803	
Total Zinc	0	0		0	125.486	128	5,533	Chem Translator of 0.978 applied
Acrolein	0	0		0	3	3.0	129	

Acrylamide	0	0		0	N/A	N/A	N/A
Acrylonitrile	0	0		0	650	650	28,031
Benzene	0	0		0	640	640	27,600
Bromoform	0	0		0	1,800	1,800	77,626
Carbon Tetrachloride	0	0		0	2,800	2,800	120,751
Chlorobenzene	0	0		0	1,200	1,200	51,750
Chlorodibromomethane	0	0		0	N/A	N/A	N/A
2-Chloroethyl Vinyl Ether	0	0		0	18,000	18,000	776,255
Chloroform	0	0		0	1,900	1,900	81,938
Dichlorobromomethane	0	0		0	N/A	N/A	N/A
1,2-Dichloroethane	0	0		0	15,000	15,000	646,879
1,1-Dichloroethylene	0	0		0	7,500	7,500	323,440
1,2-Dichloropropane	0	0		0	11,000	11,000	474,378
1,3-Dichloropropylene	0	0		0	310	310	13,369
Ethylbenzene	0	0		0	2,900	2,900	125,063
Methyl Bromide	0	0		0	550	550	23,719
Methyl Chloride	0	0		0	28,000	28,000	1,207,508
Methylene Chloride	0	0		0	12,000	12,000	517,503
1,1,2,2-Tetrachloroethane	0	0		0	1,000	1,000	43,125
Tetrachloroethylene	0	0		0	700	700	30,188
Toluene	0	0		0	1,700	1,700	73,313
1,2-trans-Dichloroethylene	0	0		0	6,800	6,800	293,252
1,1,1-Trichloroethane	0	0		0	3,000	3,000	129,376
1,1,2-Trichloroethane	0	0		0	3,400	3,400	146,626
Trichloroethylene	0	0		0	2,300	2,300	99,188
Vinyl Chloride	0	0		0	N/A	N/A	N/A
2-Chlorophenol	0	0		0	560	560	24,150
2,4-Dichlorophenol	0	0		0	1,700	1,700	73,313
2,4-Dimethylphenol	0	0		0	660	660	28,463
4,6-Dinitro-o-Cresol	0	0		0	80	80.0	3,450
2,4-Dinitrophenol	0	0		0	660	660	28,463
2-Nitrophenol	0	0		0	8,000	8,000	345,002
4-Nitrophenol	0	0		0	2,300	2,300	99,188
p-Chloro-m-Cresol	0	0		0	160	160	6,900
Pentachlorophenol	0	0		0	8.813	8.81	380
Phenol	0	0		0	N/A	N/A	N/A
2,4,6-Trichlorophenol	0	0		0	460	460	19,838
Acenaphthene	0	0		0	83	83.0	3,579
Anthracene	0	0		0	N/A	N/A	N/A
Benzidine	0	0		0	300	300	12,938
Benzo(a)Anthracene	0	0		0	0.5	0.5	21.6
Benzo(a)Pyrene	0	0		0	N/A	N/A	N/A
3,4-Benzofluoranthene	0	0		0	N/A	N/A	N/A
Benzo(k)Fluoranthene	0	0		0	N/A	N/A	N/A
Bis(2-Chloroethyl)Ether	0	0		0	30,000	30,000	1,293,759
Bis(2-Chloroisopropyl)Ether	0	0		0	N/A	N/A	N/A
Bis(2-Ethylhexyl)Phthalate	0	0		0	4,500	4,500	194,064
4-Bromophenyl Phenyl Ether	0	0		0	270	270	11,644

Butyl Benzyl Phthalate	0	0		0	140	140	6,038	
2-Chloronaphthalene	0	0		0	N/A	N/A	N/A	
Chrysene	0	0		0	N/A	N/A	N/A	
Dibenzo(a,h)Anthracene	0	0		0	N/A	N/A	N/A	
1,2-Dichlorobenzene	0	0		0	820	820	35,383	
1,3-Dichlorobenzene	0	0		0	350	350	15,094	
1,4-Dichlorobenzene	0	0		0	730	730	31,481	
3,3-Dichlorobenzidine	0	0		0	N/A	N/A	N/A	
Diethyl Phthalate	0	0		0	4,000	4,000	172,501	
Dimethyl Phthalate	0	0		0	2,500	2,500	107,813	
Di-n-Butyl Phthalate	0	0		0	110	110	4,744	
2,4-Dinitrotoluene	0	0		0	1,600	1,600	69,000	
2,6-Dinitrotoluene	0	0		0	990	990	42,694	
1,2-Diphenylhydrazine	0	0		0	15	15.0	647	
Fluoranthene	0	0		0	200	200	8,625	
Fluorene	0	0		0	N/A	N/A	N/A	
Hexachlorobenzene	0	0		0	N/A	N/A	N/A	
Hexachlorobutadiene	0	0		0	10	10.0	431	
Hexachlorocyclopentadiene	0	0		0	5	5.0	216	
Hexachloroethane	0	0		0	60	60.0	2,588	
Indeno(1,2,3-cd)Pyrene	0	0		0	N/A	N/A	N/A	
Isophorone	0	0		0	10,000	10,000	431,253	
Naphthalene	0	0		0	140	140	6,038	
Nitrobenzene	0	0		0	4,000	4,000	172,501	
n-Nitrosodimethylamine	0	0		0	17,000	17,000	733,130	
n-Nitrosodi-n-Propylamine	0	0		0	N/A	N/A	N/A	
n-Nitrosodiphenylamine	0	0		0	300	300	12,938	
Phenanthrene	0	0		0	5	5.0	216	
Pyrene	0	0		0	N/A	N/A	N/A	
1,2,4-Trichlorobenzene	0	0		0	130	130	5,606	
ChemChlor 160	0	0		0	23.1	23.1	996	
CWT-360	0	0		0	38,462	38,462	1,658,685	
Sodium Bisulfite	0	0		0	2716.9	2,717	117,167	
Sulfuric Acid	0	0		0	2,280	2,280	98,326	

CFC

CCT (min): #####

PMF: 0.700

Analysis Hardness (mg/l): 101.96

Analysis pH: 7.00

Pollutants	Stream Conc (µg/L)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A	
Chloride (PWS)	0	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
Fluoride (PWS)	0	0		0	N/A	N/A	N/A	
Total Aluminum	0	0		0	N/A	N/A	N/A	
Total Antimony	0	0		0	220	220	40,805	
Total Arsenic	0	0		0	150	150	27,821	Chem Translator of 1 applied
Total Barium	0	0		0	4,100	4,100	760,452	

Total Boron	0	0		0	1,600	1,600	296,762	
Total Cadmium	0	0		0	0.249	0.27	50.9	Chem Translator of 0.908 applied
Total Chromium (III)	0	0		0	75.300	87.6	16,240	Chem Translator of 0.86 applied
Hexavalent Chromium	0	0		0	10	10.4	1,928	Chem Translator of 0.962 applied
Total Cobalt	0	0		0	19	19.0	3,524	
Total Copper	0	0		0	9.105	9.48	1,759	Chem Translator of 0.96 applied
Dissolved Iron	0	0		0	N/A	N/A	N/A	
Total Iron	0	0		0	1,500	1,500	396,806	WQC = 30 day average; PMF = 1
Total Lead	0	0		0	2.570	3.26	605	Chem Translator of 0.788 applied
Total Manganese	0	0		0	N/A	N/A	N/A	
Total Mercury	0	0		0	0.770	0.91	168	Chem Translator of 0.85 applied
Total Nickel	0	0		0	52.866	53.0	9,835	Chem Translator of 0.997 applied
Total Phenols (Phenolics) (PWS)	0	0		0	N/A	N/A	N/A	
Total Selenium	0	0		0	4.600	4.99	925	Chem Translator of 0.922 applied
Total Silver	0	0		0	N/A	N/A	N/A	Chem Translator of 1 applied
Total Thallium	0	0		0	13	13.0	2,411	
Total Zinc	0	0		0	120.095	122	22,591	Chem Translator of 0.986 applied
Acrolein	0	0		0	3	3.0	556	
Acrylamide	0	0		0	N/A	N/A	N/A	
Acrylonitrile	0	0		0	130	130	24,112	
Benzene	0	0		0	130	130	24,112	
Bromoform	0	0		0	370	370	68,626	
Carbon Tetrachloride	0	0		0	560	560	103,867	
Chlorobenzene	0	0		0	240	240	44,514	
Chlorodibromomethane	0	0		0	N/A	N/A	N/A	
2-Chloroethyl Vinyl Ether	0	0		0	3,500	3,500	649,167	
Chloroform	0	0		0	390	390	72,336	
Dichlorobromomethane	0	0		0	N/A	N/A	N/A	
1,2-Dichloroethane	0	0		0	3,100	3,100	574,976	
1,1-Dichloroethylene	0	0		0	1,500	1,500	278,214	
1,2-Dichloropropane	0	0		0	2,200	2,200	408,048	
1,3-Dichloropropylene	0	0		0	61	61.0	11,314	
Ethylbenzene	0	0		0	580	580	107,578	
Methyl Bromide	0	0		0	110	110	20,402	
Methyl Chloride	0	0		0	5,500	5,500	1,020,119	
Methylene Chloride	0	0		0	2,400	2,400	445,143	
1,1,2,2-Tetrachloroethane	0	0		0	210	210	38,950	
Tetrachloroethylene	0	0		0	140	140	25,987	
Toluene	0	0		0	330	330	61,207	
1,2-trans-Dichloroethylene	0	0		0	1,400	1,400	259,667	
1,1,1-Trichloroethane	0	0		0	610	610	113,140	
1,1,2-Trichloroethane	0	0		0	680	680	126,124	
Trichloroethylene	0	0		0	450	450	83,464	
Vinyl Chloride	0	0		0	N/A	N/A	N/A	
2-Chlorophenol	0	0		0	110	110	20,402	

2,4-Dichlorophenol	0	0		0	340	340	63,062	
2,4-Dimethylphenol	0	0		0	130	130	24,112	
4,6-Dinitro-o-Cresol	0	0		0	16	16.0	2,968	
2,4-Dinitrophenol	0	0		0	130	130	24,112	
2-Nitrophenol	0	0		0	1,600	1,600	296,762	
4-Nitrophenol	0	0		0	470	470	87,174	
p-Chloro-m-Cresol	0	0		0	500	500	92,738	
Pentachlorophenol	0	0		0	6.761	6.76	1,254	
Phenol	0	0		0	N/A	N/A	N/A	
2,4,6-Trichlorophenol	0	0		0	91	91.0	16,878	
Acenaphthene	0	0		0	17	17.0	3,153	
Anthracene	0	0		0	N/A	N/A	N/A	
Benzidine	0	0		0	59	59.0	10,943	
Benzo(a)Anthracene	0	0		0	0.1	0.1	18.5	
Benzo(a)Pyrene	0	0		0	N/A	N/A	N/A	
3,4-Benzofluoranthene	0	0		0	N/A	N/A	N/A	
Benzo(k)Fluoranthene	0	0		0	N/A	N/A	N/A	
Bis(2-Chloroethyl)Ether	0	0		0	6,000	6,000	1,112,857	
Bis(2-Chloroisopropyl)Ether	0	0		0	N/A	N/A	N/A	
Bis(2-Ethylhexyl)Phthalate	0	0		0	910	910	168,783	
4-Bromophenyl Phenyl Ether	0	0		0	54	54.0	10,016	
Butyl Benzyl Phthalate	0	0		0	35	35.0	6,492	
2-Chloronaphthalene	0	0		0	N/A	N/A	N/A	
Chrysene	0	0		0	N/A	N/A	N/A	
Dibenzo(a,h)Anthracene	0	0		0	N/A	N/A	N/A	
1,2-Dichlorobenzene	0	0		0	160	160	29,676	
1,3-Dichlorobenzene	0	0		0	69	69.0	12,798	
1,4-Dichlorobenzene	0	0		0	150	150	27,821	
3,3-Dichlorobenzidine	0	0		0	N/A	N/A	N/A	
Diethyl Phthalate	0	0		0	800	800	148,381	
Dimethyl Phthalate	0	0		0	500	500	92,738	
Di-n-Butyl Phthalate	0	0		0	21	21.0	3,895	
2,4-Dinitrotoluene	0	0		0	320	320	59,352	
2,6-Dinitrotoluene	0	0		0	200	200	37,095	
1,2-Diphenylhydrazine	0	0		0	3	3.0	556	
Fluoranthene	0	0		0	40	40.0	7,419	
Fluorene	0	0		0	N/A	N/A	N/A	
Hexachlorobenzene	0	0		0	N/A	N/A	N/A	
Hexachlorobutadiene	0	0		0	2	2.0	371	
Hexachlorocyclopentadiene	0	0		0	1	1.0	185	
Hexachloroethane	0	0		0	12	12.0	2,226	
Indeno(1,2,3-cd)Pyrene	0	0		0	N/A	N/A	N/A	
Isophorone	0	0		0	2,100	2,100	389,500	
Naphthalene	0	0		0	43	43.0	7,975	
Nitrobenzene	0	0		0	810	810	150,236	

n-Nitrosodimethylamine	0	0		0	3,400	3,400	630,619	
n-Nitrosodi-n-Propylamine	0	0		0	N/A	N/A	N/A	
n-Nitrosodiphenylamine	0	0		0	59	59.0	10,943	
Phenanthrene	0	0		0	1	1.0	185	
Pyrene	0	0		0	N/A	N/A	N/A	
1,2,4-Trichlorobenzene	0	0		0	26	26.0	4,822	
ChemChlor 160	0	0		0	2.6	2.6	482	
CWT-360	0	0		0	4273.6	4,274	792,651	
Sodium Bisulfite	0	0		0	301.9	302	55,995	
Sulfuric Acid	0	0		0	250	250	46,369	

THH CCT (min): ##### THH PMF: 0.700 Analysis Hardness (mg/l): N/A Analysis pH: N/A PWS PMF: 0.7

Pollutants	Stream Conc (µg/L)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	500,000	500,000	92,738,079	WQC applied at RMI 75.53 with a design stream flow of 530 cfs
Chloride (PWS)	0	0		0	250,000	250,000	46,369,039	WQC applied at RMI 75.53 with a design stream flow of 530 cfs
Sulfate (PWS)	0	0		0	250,000	250,000	46,369,039	WQC applied at RMI 75.53 with a design stream flow of 530 cfs
Fluoride (PWS)	0	0		0	2,000	2,000	370,952	WQC applied at RMI 75.53 with a design stream flow of 530 cfs
Total Aluminum	0	0		0	N/A	N/A	N/A	
Total Antimony	0	0		0	5.6	5.6	1,481	
Total Arsenic	0	0		0	10	10.0	2,645	
Total Barium	0	0		0	2,400	2,400	634,890	
Total Boron	0	0		0	3,100	3,100	820,086	
Total Cadmium	0	0		0	N/A	N/A	N/A	
Total Chromium (III)	0	0		0	N/A	N/A	N/A	
Hexavalent Chromium	0	0		0	N/A	N/A	N/A	
Total Cobalt	0	0		0	N/A	N/A	N/A	
Total Copper	0	0		0	N/A	N/A	N/A	
Dissolved Iron	0	0		0	300	300	79,361	
Total Iron	0	0		0	N/A	N/A	N/A	
Total Lead	0	0		0	N/A	N/A	N/A	
Total Manganese	0	0		0	1,000	1,000	264,537	
Total Mercury	0	0		0	0.050	0.05	13.2	
Total Nickel	0	0		0	810	810	161,368	
Total Phenols (Phenoolics) (PWS)	0	0		0	5	5.0	927	WQC applied at RMI 75.53 with a design stream flow of 530 cfs
Total Selenium	0	0		0	N/A	N/A	N/A	
Total Silver	0	0		0	N/A	N/A	N/A	
Total Thallium	0	0		0	0.24	0.24	63.5	
Total Zinc	0	0		0	N/A	N/A	N/A	
Acrolein	0	0		0	3	3.0	794	
Acrylamide	0	0		0	N/A	N/A	N/A	
Acrylonitrile	0	0		0	N/A	N/A	N/A	
Benzene	0	0		0	N/A	N/A	N/A	
Bromoform	0	0		0	N/A	N/A	N/A	

Carbon Tetrachloride	0	0		0	N/A	N/A	N/A
Chlorobenzene	0	0		0	100	100.0	26,454
Chlorodibromomethane	0	0		0	N/A	N/A	N/A
2-Chloroethyl Vinyl Ether	0	0		0	N/A	N/A	N/A
Chloroform	0	0		0	5.7	5.7	1,508
Dichlorobromomethane	0	0		0	N/A	N/A	N/A
1,2-Dichloroethane	0	0		0	N/A	N/A	N/A
1,1-Dichloroethylene	0	0		0	33	33.0	8,730
1,2-Dichloropropane	0	0		0	N/A	N/A	N/A
1,3-Dichloropropylene	0	0		0	N/A	N/A	N/A
Ethylbenzene	0	0		0	68	68.0	17,989
Methyl Bromide	0	0		0	100	100.0	26,454
Methyl Chloride	0	0		0	N/A	N/A	N/A
Methylene Chloride	0	0		0	N/A	N/A	N/A
1,1,2,2-Tetrachloroethane	0	0		0	N/A	N/A	N/A
Tetrachloroethylene	0	0		0	N/A	N/A	N/A
Toluene	0	0		0	57	57.0	15,079
1,2-trans-Dichloroethylene	0	0		0	100	100.0	26,454
1,1,1-Trichloroethane	0	0		0	10,000	10,000	2,645,374
1,1,2-Trichloroethane	0	0		0	N/A	N/A	N/A
Trichloroethylene	0	0		0	N/A	N/A	N/A
Vinyl Chloride	0	0		0	N/A	N/A	N/A
2-Chlorophenol	0	0		0	30	30.0	7,938
2,4-Dichlorophenol	0	0		0	10	10.0	2,645
2,4-Dimethylphenol	0	0		0	100	100.0	26,454
4,8-Dinitro-o-Cresol	0	0		0	2	2.0	529
2,4-Dinitrophenol	0	0		0	10	10.0	2,645
2-Nitrophenol	0	0		0	N/A	N/A	N/A
4-Nitrophenol	0	0		0	N/A	N/A	N/A
p-Chloro-m-Cresol	0	0		0	N/A	N/A	N/A
Pentachlorophenol	0	0		0	N/A	N/A	N/A
Phenol	0	0		0	4,000	4,000	1,058,149
2,4,6-Trichlorophenol	0	0		0	N/A	N/A	N/A
Acenaphthene	0	0		0	70	70.0	18,518
Anthracene	0	0		0	300	300	79,361
Benzidine	0	0		0	N/A	N/A	N/A
Benzo(a)Anthracene	0	0		0	N/A	N/A	N/A
Benzo(a)Pyrene	0	0		0	N/A	N/A	N/A
3,4-Benzofluoranthene	0	0		0	N/A	N/A	N/A
Benzo(k)Fluoranthene	0	0		0	N/A	N/A	N/A
Bis(2-Chloroethyl)Ether	0	0		0	N/A	N/A	N/A
Bis(2-Chloroisopropyl)Ether	0	0		0	200	200	52,907
Bis(2-Ethylhexyl)Phthalate	0	0		0	N/A	N/A	N/A
4-Bromophenyl Phenyl Ether	0	0		0	N/A	N/A	N/A
Butyl Benzyl Phthalate	0	0		0	0.1	0.1	26.5

2-Chloronaphthalene	0	0		0	800	800	211,630	
Chrysene	0	0		0	N/A	N/A	N/A	
Dibenzo(a,h)Anthracene	0	0		0	N/A	N/A	N/A	
1,2-Dichlorobenzene	0	0		0	1,000	1,000	264,537	
1,3-Dichlorobenzene	0	0		0	7	7.0	1,852	
1,4-Dichlorobenzene	0	0		0	300	300	79,381	
3,3-Dichlorobenzidine	0	0		0	N/A	N/A	N/A	
Diethyl Phthalate	0	0		0	600	600	158,722	
Dimethyl Phthalate	0	0		0	2,000	2,000	529,075	
Di-n-Butyl Phthalate	0	0		0	20	20.0	5,291	
2,4-Dinitrotoluene	0	0		0	N/A	N/A	N/A	
2,6-Dinitrotoluene	0	0		0	N/A	N/A	N/A	
1,2-Diphenylhydrazine	0	0		0	N/A	N/A	N/A	
Fluoranthene	0	0		0	20	20.0	5,291	
Fluorene	0	0		0	50	50.0	13,227	
Hexachlorobenzene	0	0		0	N/A	N/A	N/A	
Hexachlorobutadiene	0	0		0	N/A	N/A	N/A	
Hexachlorocyclopentadiene	0	0		0	4	4.0	1,058	
Hexachloroethane	0	0		0	N/A	N/A	N/A	
Indeno(1,2,3-cd)Pyrene	0	0		0	N/A	N/A	N/A	
Isophorone	0	0		0	34	34.0	8,994	
Naphthalene	0	0		0	N/A	N/A	N/A	
Nitrobenzene	0	0		0	10	10.0	2,645	
n-Nitrosodimethylamine	0	0		0	N/A	N/A	N/A	
n-Nitrosodi-n-Propylamine	0	0		0	N/A	N/A	N/A	
n-Nitrosodiphenylamine	0	0		0	N/A	N/A	N/A	
Phenanthrene	0	0		0	N/A	N/A	N/A	
Pyrene	0	0		0	20	20.0	5,291	
1,2,4-Trichlorobenzene	0	0		0	0.07	0.07	18.5	
ChemChlor 160	0	0		0	1,350	1,350	357,125	
CWT-360	0	0		0	66,080	66,080	17,480,829	
Sodium Bisulfite	0	0		0	N/A	N/A	N/A	
Sulfuric Acid	0	0		0	N/A	N/A	N/A	

CRL

CCT (min): #####

PMF: 0.700

Analysis Hardness (mg/l):

N/A

Analysis pH: N/A

Pollutants	Stream Conc (mg/L)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A	
Chloride (PWS)	0	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
Fluoride (PWS)	0	0		0	N/A	N/A	N/A	
Total Aluminum	0	0		0	N/A	N/A	N/A	
Total Antimony	0	0		0	N/A	N/A	N/A	
Total Arsenic	0	0		0	N/A	N/A	N/A	

Total Barium	0	0		0	N/A	N/A	N/A	
Total Boron	0	0		0	N/A	N/A	N/A	
Total Cadmium	0	0		0	N/A	N/A	N/A	
Total Chromium (III)	0	0		0	N/A	N/A	N/A	
Hexavalent Chromium	0	0		0	N/A	N/A	N/A	
Total Cobalt	0	0		0	N/A	N/A	N/A	
Total Copper	0	0		0	N/A	N/A	N/A	
Dissolved Iron	0	0		0	N/A	N/A	N/A	
Total Iron	0	0		0	N/A	N/A	N/A	
Total Lead	0	0		0	N/A	N/A	N/A	
Total Manganese	0	0		0	N/A	N/A	N/A	
Total Mercury	0	0		0	N/A	N/A	N/A	
Total Nickel	0	0		0	N/A	N/A	N/A	
Total Phenols (Phenolics) (PWS)	0	0		0	N/A	N/A	N/A	
Total Selenium	0	0		0	N/A	N/A	N/A	
Total Silver	0	0		0	N/A	N/A	N/A	
Total Thallium	0	0		0	N/A	N/A	N/A	
Total Zinc	0	0		0	N/A	N/A	N/A	
Acrolein	0	0		0	N/A	N/A	N/A	
Acrylamide	0	0		0	0.07	0.07	43.6	
Acrylonitrile	0	0		0	0.08	0.08	37.4	
Benzene	0	0		0	0.58	0.58	361	
Bromoform	0	0		0	7	7.0	4,360	
Carbon Tetrachloride	0	0		0	0.4	0.4	249	
Chlorobenzene	0	0		0	N/A	N/A	N/A	
Chlorodibromomethane	0	0		0	0.8	0.8	498	
2-Chloroethyl Vinyl Ether	0	0		0	N/A	N/A	N/A	
Chloroform	0	0		0	N/A	N/A	N/A	
Dichlorobromomethane	0	0		0	0.95	0.95	592	
1,2-Dichloroethane	0	0		0	9.9	9.9	6,166	
1,1-Dichloroethylene	0	0		0	N/A	N/A	N/A	
1,2-Dichloropropane	0	0		0	0.9	0.9	561	
1,3-Dichloropropylene	0	0		0	0.27	0.27	168	
Ethylbenzene	0	0		0	N/A	N/A	N/A	
Methyl Bromide	0	0		0	N/A	N/A	N/A	
Methyl Chloride	0	0		0	N/A	N/A	N/A	
Methylene Chloride	0	0		0	20	20.0	12,457	
1,1,2,2-Tetrachloroethane	0	0		0	0.2	0.2	125	
Tetrachloroethylene	0	0		0	10	10.0	6,228	
Toluene	0	0		0	N/A	N/A	N/A	
1,2-trans-Dichloroethylene	0	0		0	N/A	N/A	N/A	
1,1,1-Trichloroethane	0	0		0	N/A	N/A	N/A	
1,1,2-Trichloroethane	0	0		0	0.55	0.55	343	
Trichloroethylene	0	0		0	0.6	0.6	374	
Vinyl Chloride	0	0		0	0.02	0.02	12.5	

2-Chlorophenol	0	0		0	N/A	N/A	N/A
2,4-Dichlorophenol	0	0		0	N/A	N/A	N/A
2,4-Dimethylphenol	0	0		0	N/A	N/A	N/A
4,6-Dinitro-o-Cresol	0	0		0	N/A	N/A	N/A
2,4-Dinitrophenol	0	0		0	N/A	N/A	N/A
2-Nitrophenol	0	0		0	N/A	N/A	N/A
4-Nitrophenol	0	0		0	N/A	N/A	N/A
p-Chloro-m-Cresol	0	0		0	N/A	N/A	N/A
Pentachlorophenol	0	0		0	0.030	0.03	18.7
Phenol	0	0		0	N/A	N/A	N/A
2,4,6-Trichlorophenol	0	0		0	1.5	1.5	934
Acenaphthene	0	0		0	N/A	N/A	N/A
Anthracene	0	0		0	N/A	N/A	N/A
Benzidine	0	0		0	0.0001	0.0001	0.062
Benzo(a)Anthracene	0	0		0	0.001	0.001	0.62
Benzo(a)Pyrene	0	0		0	0.0001	0.0001	0.062
3,4-Benzofluoranthene	0	0		0	0.001	0.001	0.62
Benzo(k)Fluoranthene	0	0		0	0.01	0.01	6.23
Bis(2-Chloroethyl)Ether	0	0		0	0.03	0.03	18.7
Bis(2-Chloroisopropyl)Ether	0	0		0	N/A	N/A	N/A
Bis(2-Ethylhexyl)Phthalate	0	0		0	0.32	0.32	199
4-Bromophenyl Phenyl Ether	0	0		0	N/A	N/A	N/A
Butyl Benzyl Phthalate	0	0		0	N/A	N/A	N/A
2-Chloronaphthalene	0	0		0	N/A	N/A	N/A
Chrysene	0	0		0	0.12	0.12	74.7
Dibenzo(a,h)Anthracene	0	0		0	0.0001	0.0001	0.062
1,2-Dichlorobenzene	0	0		0	N/A	N/A	N/A
1,3-Dichlorobenzene	0	0		0	N/A	N/A	N/A
1,4-Dichlorobenzene	0	0		0	N/A	N/A	N/A
3,3-Dichlorobenzidine	0	0		0	0.05	0.05	31.1
Diethyl Phthalate	0	0		0	N/A	N/A	N/A
Dimethyl Phthalate	0	0		0	N/A	N/A	N/A
Di-n-Butyl Phthalate	0	0		0	N/A	N/A	N/A
2,4-Dinitrotoluene	0	0		0	0.05	0.05	31.1
2,6-Dinitrotoluene	0	0		0	0.05	0.05	31.1
1,2-Diphenylhydrazine	0	0		0	0.03	0.03	18.7
Fluoranthene	0	0		0	N/A	N/A	N/A
Fluorene	0	0		0	N/A	N/A	N/A
Hexachlorobenzene	0	0		0	0.00008	0.00008	0.05
Hexachlorobutadiene	0	0		0	0.01	0.01	6.23
Hexachlorocyclopentadiene	0	0		0	N/A	N/A	N/A
Hexachloroethane	0	0		0	0.1	0.1	62.3
Indeno(1,2,3-cd)Pyrene	0	0		0	0.001	0.001	0.62
Isophorone	0	0		0	N/A	N/A	N/A
Naphthalene	0	0		0	N/A	N/A	N/A

Nitrobenzene	0	0		0	N/A	N/A	N/A
n-Nitrosodimethylamine	0	0		0	0.0007	0.0007	0.44
n-Nitrosodi-n-Propylamine	0	0		0	0.005	0.005	3.11
n-Nitrosodiphenylamine	0	0		0	3.3	3.3	2,055
Phenanthrene	0	0		0	N/A	N/A	N/A
Pyrene	0	0		0	N/A	N/A	N/A
1,2,4-Trichlorobenzene	0	0		0	N/A	N/A	N/A
ChemChlor 160	0	0		0	N/A	N/A	N/A
CWT-380	0	0		0	N/A	N/A	N/A
Sodium Bisulfite	0	0		0	N/A	N/A	N/A
Sulfuric Acid	0	0		0	N/A	N/A	N/A

Recommended WQBELs & Monitoring Requirements

No. Samples/Month: 4

Pollutants	Mass Limits		Concentration Limits				Governing WQBEL	WQBEL Basis	Comments
	AML (lbs/day)	MDL (lbs/day)	AML	MDL	IMAX	Units			
Total Aluminum	Report	Report	Report	Report	Report	µg/L	20,731	AFC	Discharge Conc > 10% WQBEL (no RP)
Acrylamide	0.47	0.74	43.6	68.0	109	µg/L	43.6	CRL	Discharge Conc ≥ 50% WQBEL (RP)
Hexachlorobutadiene	Report	Report	Report	Report	Report	µg/L	6.23	CRL	Discharge Conc > 25% WQBEL (no RP)

Other Pollutants without Limits or Monitoring

The following pollutants do not require effluent limits or monitoring based on water quality because reasonable potential to exceed water quality criteria was not determined and the discharge concentration was less than thresholds for monitoring, or the pollutant was not detected and a sufficiently sensitive analytical method was used (e.g., <= Target QL).

Pollutants	Governing WQBEL	Units	Comments
Total Dissolved Solids (PWS)	92,738	mg/L	Discharge Conc ≤ 10% WQBEL
Chloride (PWS)	46,389	mg/L	Discharge Conc ≤ 10% WQBEL
Bromide	N/A	N/A	No WQS
Sulfate (PWS)	46,389	mg/L	Discharge Conc ≤ 10% WQBEL
Fluoride (PWS)	371	mg/L	Discharge Conc ≤ 10% WQBEL
Total Antimony	1,481	µg/L	Discharge Conc ≤ 10% WQBEL
Total Arsenic	2,645	µg/L	Discharge Conc ≤ 10% WQBEL
Total Barium	580,473	µg/L	Discharge Conc ≤ 10% WQBEL
Total Beryllium	N/A	N/A	No WQS
Total Boron	223,897	µg/L	Discharge Conc ≤ 10% WQBEL
Total Cadmium	50.9	µg/L	Discharge Conc ≤ 10% WQBEL
Total Chromium (III)	16,240	µg/L	Discharge Conc ≤ 10% WQBEL
Hexavalent Chromium	450	µg/L	Discharge Conc ≤ 10% WQBEL

Total Cobalt	2,826	µg/L	Discharge Conc ≤ 10% WQBEL
Total Copper	418	µg/L	Discharge Conc ≤ 10% WQBEL
Total Cyanide	N/A	N/A	No WQS
Dissolved Iron	79,361	µg/L	Discharge Conc ≤ 10% WQBEL
Total Iron	398,806	µg/L	Discharge Conc ≤ 10% WQBEL
Total Lead	605	µg/L	Discharge Conc ≤ 10% WQBEL
Total Manganese	264,537	µg/L	Discharge Conc ≤ 10% WQBEL
Total Mercury	13.2	µg/L	Discharge Conc < TQL
Total Nickel	9,835	µg/L	Discharge Conc ≤ 10% WQBEL
Total Phenols (Phenolics) (PWS)	927	µg/L	Discharge Conc ≤ 10% WQBEL
Total Selenium	925	µg/L	Discharge Conc ≤ 10% WQBEL
Total Silver	120	µg/L	Discharge Conc ≤ 10% WQBEL
Total Thallium	63.5	µg/L	Discharge Conc ≤ 10% WQBEL
Total Zinc	3,547	µg/L	Discharge Conc ≤ 10% WQBEL
Total Molybdenum	N/A	N/A	No WQS
Acrolein	82.9	µg/L	Discharge Conc ≤ 25% WQBEL
Acrylonitrile	37.4	µg/L	Discharge Conc < TQL
Benzene	361	µg/L	Discharge Conc < TQL
Bromoform	4,380	µg/L	Discharge Conc < TQL
Carbon Tetrachloride	249	µg/L	Discharge Conc ≤ 25% WQBEL
Chlorobenzene	26,454	µg/L	Discharge Conc < TQL
Chlorodibromomethane	498	µg/L	Discharge Conc ≤ 25% WQBEL
Chloroethane	N/A	N/A	No WQS
2-Chloroethyl Vinyl Ether	497,548	µg/L	Discharge Conc < TQL
Chloroform	1,508	µg/L	Discharge Conc ≤ 25% WQBEL
Dichlorobromomethane	592	µg/L	Discharge Conc ≤ 25% WQBEL
1,1-Dichloroethane	N/A	N/A	No WQS
1,2-Dichloroethane	6,166	µg/L	Discharge Conc < TQL
1,1-Dichloroethylene	8,730	µg/L	Discharge Conc < TQL
1,2-Dichloropropane	581	µg/L	Discharge Conc < TQL
1,3-Dichloropropylene	168	µg/L	Discharge Conc ≤ 25% WQBEL
1,4-Dioxane	N/A	N/A	No WQS
Ethylbenzene	17,989	µg/L	Discharge Conc < TQL
Methyl Bromide	15,203	µg/L	Discharge Conc ≤ 25% WQBEL
Methyl Chloride	773,964	µg/L	Discharge Conc ≤ 25% WQBEL
Methylene Chloride	12,457	µg/L	Discharge Conc ≤ 25% WQBEL
1,1,2,2-Tetrachloroethane	125	µg/L	Discharge Conc < TQL
Tetrachloroethylene	6,228	µg/L	Discharge Conc < TQL
Toluene	15,079	µg/L	Discharge Conc < TQL
1,2-trans-Dichloroethylene	26,454	µg/L	Discharge Conc < TQL
1,1,1-Trichloroethane	82,925	µg/L	Discharge Conc < TQL
1,1,2-Trichloroethane	343	µg/L	Discharge Conc < TQL
Trichloroethylene	374	µg/L	Discharge Conc < TQL
Vinyl Chloride	12.5	µg/L	Discharge Conc ≤ 25% WQBEL
2-Chlorophenol	7,936	µg/L	Discharge Conc < TQL

2,4-Dichlorophenol	2,645	µg/L	Discharge Conc < TQL
2,4-Dimethylphenol	18,243	µg/L	Discharge Conc < TQL
4,6-Dinitro-o-Cresol	529	µg/L	Discharge Conc < TQL
2,4-Dinitrophenol	2,645	µg/L	Discharge Conc < TQL
2-Nitrophenol	221,133	µg/L	Discharge Conc < TQL
4-Nitrophenol	63,576	µg/L	Discharge Conc < TQL
p-Chloro-m-Cresol	4,423	µg/L	Discharge Conc < TQL
Pentachlorophenol	18.7	µg/L	Discharge Conc < TQL
Phenol	1,058,149	µg/L	Discharge Conc < TQL
2,4,6-Trichlorophenol	934	µg/L	Discharge Conc < TQL
Acenaphthene	2,294	µg/L	Discharge Conc < TQL
Acenaphthylene	N/A	N/A	No WQS
Anthracene	79,361	µg/L	Discharge Conc < TQL
Benzidine	0.062	µg/L	Discharge Conc < TQL
Benzo(a)Anthracene	0.62	µg/L	Discharge Conc < TQL
Benzo(a)Pyrene	0.062	µg/L	Discharge Conc < TQL
3,4-Benzofluoranthene	0.62	µg/L	Discharge Conc < TQL
Benzo(ghi)Perylene	N/A	N/A	No WQS
Benzo(k)Fluoranthene	6.23	µg/L	Discharge Conc < TQL
Bis(2-Chloroethoxy)Methane	N/A	N/A	No WQS
Bis(2-Chloroethyl)Ether	18.7	µg/L	Discharge Conc < TQL
Bis(2-Chloroisopropyl)Ether	52,907	µg/L	Discharge Conc < TQL
Bis(2-Ethylhexyl)Phthalate	199	µg/L	Discharge Conc < TQL
4-Bromophenyl Phenyl Ether	7,463	µg/L	Discharge Conc < TQL
Butyl Benzyl Phthalate	26.5	µg/L	Discharge Conc < TQL
2-Chloronaphthalene	211,630	µg/L	Discharge Conc < TQL
4-Chlorophenyl Phenyl Ether	N/A	N/A	No WQS
Chrysene	74.7	µg/L	Discharge Conc < TQL
Dibenzo(a,h)Anthracene	0.062	µg/L	Discharge Conc < TQL
1,2-Dichlorobenzene	22,666	µg/L	Discharge Conc ≤ 25% WQBEL
1,3-Dichlorobenzene	1,852	µg/L	Discharge Conc ≤ 25% WQBEL
1,4-Dichlorobenzene	20,178	µg/L	Discharge Conc ≤ 25% WQBEL
3,3-Dichlorobenzidine	31.1	µg/L	Discharge Conc < TQL
Diethyl Phthalate	110,566	µg/L	Discharge Conc < TQL
Dimethyl Phthalate	69,104	µg/L	Discharge Conc < TQL
Di-n-Butyl Phthalate	3,041	µg/L	Discharge Conc < TQL
2,4-Dinitrotoluene	31.1	µg/L	Discharge Conc < TQL
2,6-Dinitrotoluene	31.1	µg/L	Discharge Conc < TQL
Di-n-Octyl Phthalate	N/A	N/A	No WQS
1,2-Diphenylhydrazine	18.7	µg/L	Discharge Conc < TQL
Fluoranthene	5,291	µg/L	Discharge Conc ≤ 25% WQBEL
Fluorene	13,227	µg/L	Discharge Conc < TQL
Hexachlorobenzene	0.05	µg/L	Discharge Conc < TQL
Hexachlorocyclopentadiene	138	µg/L	Discharge Conc < TQL
Hexachloroethane	62.3	µg/L	Discharge Conc < TQL

Indeno(1,2,3-cd)Pyrene	0.62	µg/L	Discharge Conc < TQL
Isophorone	8,994	µg/L	Discharge Conc < TQL
Naphthalene	3,870	µg/L	Discharge Conc ≤ 25% WQBEL
Nitrobenzene	2,645	µg/L	Discharge Conc < TQL
n-Nitrosodimethylamine	0.44	µg/L	Discharge Conc < TQL
n-Nitrosodi-n-Propylamine	3.11	µg/L	Discharge Conc < TQL
n-Nitrosodiphenylamine	2,055	µg/L	Discharge Conc < TQL
Phenanthrene	138	µg/L	Discharge Conc ≤ 25% WQBEL
Pyrene	5,291	µg/L	Discharge Conc < TQL
1,2,4-Trichlorobenzene	18.5	µg/L	Discharge Conc ≤ 25% WQBEL
ChemChlor 160	482	µg/L	Discharge Conc ≤ 25% WQBEL
CWT-360	792,651	µg/L	Discharge Conc ≤ 25% WQBEL
Sodium Bisulfite	55,095	µg/L	Discharge Conc ≤ 25% WQBEL
Sulfuric Acid	46,369	µg/L	Discharge Conc ≤ 25% WQBEL

ATTACHMENT I:

Outfall 001 Thermal Discharge Evaluation

Facility Flows ¹					Stream Flows	
	Stream (Intake) (MGD)	External (Intake) (MGD)	Consumptive (Loss) (MGD)	Discharge (MGD)	Adj. Q7-10 Stream Flow (cfs)	Downstream ² Stream Flow (cfs)
Jan 1-31	5.04	0	3.74	1.3	1696.0	1690.2
Feb 1-29	5.04	0	3.74	1.3	1855.0	1849.2
Mar 1-31	5.04	0	3.74	1.3	3710.0	3704.2
Apr 1-15	5.04	0	3.74	1.3	4929.0	4923.2
Apr 16-30	5.04	0	3.74	1.3	4929.0	4923.2
May 1-15	5.04	0	3.74	1.3	2703.0	2697.2
May 16-30	5.04	0	3.74	1.3	2703.0	2697.2
Jun 1-15	5.04	0	3.74	1.3	1590.0	1584.2
Jun 16-30	5.04	0	3.74	1.3	1590.0	1584.2
Jul 1-31	5.04	0	3.74	1.3	901.0	895.2
Aug 1-15	5.04	0	3.74	1.3	742.0	736.2
Aug 16-31	5.04	0	3.74	1.3	742.0	736.2
Sep 1-15	5.04	0	3.74	1.3	583.0	577.2
Sep 16-30	5.04	0	3.74	1.3	583.0	577.2
Oct 1-15	5.04	0	3.74	1.3	636.0	630.2
Oct 16-31	5.04	0	3.74	1.3	636.0	630.2
Nov 1-15	5.04	0	3.74	1.3	848.0	842.2
Nov 16-30	5.04	0	3.74	1.3	848.0	842.2
Dec 1-31	5.04	0	3.74	1.3	1272.0	1266.2

¹ Facility flows are not required (and will not affect the permit limits) if all intake flow is from the receiving stream (Case 1),
consumptive losses are small, and permit limits will be expressed as Million BTUs/day.

² Downstream Stream Flow includes the discharge flow.

Please forward all comments to Tom Starosta at 717-787-4317, tstarosta@state.pa.us.

Version 1.0 -- 08/01/2004 Reference: Implementation Guidance for Temperature Criteria, DEP-ID: 391-2000-017

NOTE: The user can only edit fields that are blue.

NOTE: MGD x 1.547 = cfs.

Facility: Hill Top Energy Center		Permit Number: PA0255092		Stream: Monongahela River			
WWF		WWF		WWF			
	Ambient Stream	Ambient Stream	Target Maximum	Daily	Daily		
	Temperature (°F) (Default)	Temperature (°F) (Site-specific data)	Stream Temp. ¹ (°F)	WLA ² (Million BTUs/day)	WLA ³ (°F)	at Discharge	
Jan 1-31	35	0	40	45,551	110.0	1.3	
Feb 1-29	35	0	40	49,836	110.0	1.3	
Mar 1-31	40	0	46	119,794	110.0	1.3	
Apr 1-15	47	0	52	132,681	110.0	1.3	
Apr 16-30	53	0	58	132,681	110.0	1.3	
May 1-15	58	0	64	87,228	110.0	1.3	
May 16-30	62	0	72	145,380	110.0	1.3	
Jun 1-15	67	0	80	111,006	110.0	1.3	
Jun 16-30	71	0	84	111,006	110.0	1.3	
Jul 1-31	75	0	87	57,902	110.0	1.3	
Aug 1-15	74	0	87	51,587	110.0	1.3	
Aug 16-31	74	0	87	51,587	110.0	1.3	
Sep 1-15	71	0	84	40,445	110.0	1.3	
Sep 16-30	65	0	78	40,445	110.0	1.3	
Oct 1-15	60	0	72	40,762	110.0	1.3	
Oct 16-31	54	0	66	40,762	110.0	1.3	
Nov 1-15	48	0	58	45,395	110.0	1.3	
Nov 16-30	42	0	50	36,316	110.0	1.3	
Dec 1-31	37	0	42	34,124	110.0	1.3	

¹ This is the maximum of the WWF WQ criterion or the ambient temperature. The ambient temperature may be either the design (median) temperature for WWF, or the ambient stream temperature based on site-specific data entered by the user. A minimum of 1°F above ambient stream temperature is allocated.

² The WLA expressed in Million BTUs/day is valid for Case 1 scenarios, and disabled for Case 2 scenarios.

³ The WLA expressed in °F is valid only if the limit is tied to a daily discharge flow limit (may be used for Case 1 or Case 2). WLAs greater than 110°F are displayed as 110°F.

ATTACHMENT J:
Outfall 001 TRC Evaluation

TRC EVALUATION

530	= Q stream (cfs)	0.5	= CV Daily
13	= Q discharge (MGD)	0.5	= CV Hourly
4	= no. samples	0.16	= AFC_Partial Mix Factor
0.3	= Chlorine Demand of Stream	0.7	= CFC_Partial Mix Factor
0	= Chlorine Demand of Discharge	0	= AFC_Criteria Compliance Time (min)
0.5	= BAT/BPJ Value	0	= CFC_Criteria Compliance Time (min)
0	= % Factor of Safety (FOS)	0	= Decay Coefficient (K)
Source	Reference	AFC Calculations	Reference CFC Calculations
TRC	1.3.2.iii	WLA_afc = 13.470	1.3.2.iii WLA_cfc = 57.383
PENTOXSD TRG	5.1a	LTAMULT_afc = 0.373	5.1c LTAMULT_cfc = 0.581
PENTOXSD TRG	5.1b	LTA_afc = 5.019	5.1d LTA_cfc = 33.360
Source		Effluent Limit Calculations	
PENTOXSD TRG	5.1f	AML MULT = 1.720	
PENTOXSD TRG	5.1g	AVG MON LIMIT (mg/l) = 0.500	BAT/BPJ
		INST MAX LIMIT (mg/l) = 1.170	
WLA_afc	$(.019/e(-k*AFC_tc)) + [(AFC_Yc*Qs*.019/Qd*e(-k*AFC_tc))...\\... + Xd + (AFC_Yc*Qs*Xs/Qd)]*(1-FOS/100)$		
LTAMULT_afc	$\text{EXP}((0.5*\text{LN}(cvh^{2+1}))-2.326*\text{LN}(cvh^{2+1})^{0.5})$		
LTA_afc	$wla_afc*LTAMULT_afc$		
WLA_cfc	$(.011/e(-k*CFC_tc)) + [(CFC_Yc*Qs*.011/Qd*e(-k*CFC_tc))...\\... + Xd + (CFC_Yc*Qs*Xs/Qd)]*(1-FOS/100)$		
LTAMULT_cfc	$\text{EXP}((0.5*\text{LN}(cvd^{2/no_samples+1}))-2.326*\text{LN}(cvd^{2/no_samples+1})^{0.5})$		
LTA_cfc	$wla_cfc*LTAMULT_cfc$		
AML MULT	$\text{EXP}(2.326*\text{LN}((cvd^{2/no_samples+1})^{0.5})-0.5*\text{LN}(cvd^{2/no_samples+1}))$		
AVG MON LIMIT	$\text{MIN}(\text{BAT_BPJ},\text{MIN}(\text{LTA_afc},\text{LTA_cfc})*\text{AML_MULT})$		
INST MAX LIMIT	$1.5*((\text{av_mon_limit}/\text{AML_MULT})/\text{LTAMULT_afc})$		