

Application Type _____
Facility Type _____

Major / Minor

Renewal
Storm Water

Minor

NPDES PERMIT FACT SHEET INDIVIDUAL INDUSTRIAL WASTE (IW) AND IW STORMWATER

Application No.

PAS208302

APS ID

981015

Authorization ID 1252107

	Applicant a	and Facility Information	
Applicant Name	Keystone Powdered Metal Co.	Facility Name	Keystone Powdered Metal Lewis Run
Applicant Address	251 State Street	Facility Address	PO Box 424 8 Hanley Drive
	Saint Marys, PA 15857-1658		Lewis Run, PA 16738-0424
Applicant Contact	Andrew Yetzer	Facility Contact	Wesley Horton
Applicant Phone (office)	(814) 781-4264	Facility Contact Phone	(814) 368-5603
Applicant Phone (Cell)	(814) 594-4852	Main Facility Phone	(814) 368-5320
Applicant Email	ayetzer@keystonepm.com	Facility Contact Email	whorton@keystonepm.com
Client ID	84518	Site ID	481792
SIC Code	3496	SIC Code	3499
SIC Description	Mfg - Misc Fabricated Wire Products	SIC Description	Fabricated Metals
Municipality	Lewis Run Borough		
Date Application Recei	ved October 29, 2018	EPA Waived?	Yes
Date Application Accep	oted November 20, 2018	If No, Reason	
Purpose of Application	NPDES Permit Renewal		

Summary of Review

The permit is for storm water and emergency non-contact cooling water discharges in a high-quality cold-water fishery. The facility predates the high-quality cold water fishery designations. No changes are proposed that would impact the anti-degradation status of this facility.

No violations are on file.

Robert Bauer has retired. Andrew Yetzer has assumed his duties and is the main contact. Wesley Horton is the new facility contact.

The existing permit regulates Outfalls 002 and 003. The requirements were established with the original permit issuance. Outfall 002 is currently conditioned for a 0.5-MGD emergency non-contact cooling water discharge with flow, pH, TSS and Oil & Grease monitoring when cooling water is discharged. Sampling methods and storm water controls should be improved. This was discussed with Andrew Yetzer in September 2021 and he confirmed that there is no way to currently collect a discreet NCCW sample and there is no location to install a sampling port with the current configuration. The Department may review this at the next facility inspection to determine if this can be addressed for future permit renewals. With no aquatic life protection needed prior to the East Branch, no modelling is on file and modelling at the East Branch should not be necessary. The toxics management spreadsheet identifies copper and iron for possible water-quality based limitations at the East Branch.

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*,

Approve	Deny	Signatures	Date
X		William H. Mentzer William H. Mentzer, P.E.	
		Environmental Engineering Specialist	October 6, 2021
X		Justin C. Dickey Justin C. Dickey, P.E. Environmental Engineer Manager	October 6, 2021

Summary of Review

DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Discharge, Receiving	Waters and Water Supply Inforn	nation	
Outfall No.	001	Design Flow (MGD)	0
Latitude DP	41° 52' 29.80"	Longitude DP	-78° 39' 16.46"
Latitude	41° 52' 26.27"	Longitude	78° 39' 14.46"
Quad Name	Lewis Run	Quad Code	0416
Wastewater Descrip	otion: Stormwater		
5	Unnamed Tributary to East Branc		
Receiving Waters	Tunungwant Creek (HQ-CWF)	Stream Code	unknown
NHD Com ID	112369897	RMI	0.08
Drainage Area	0.1	Yield (cfs/mi²)	0
Q ₇₋₁₀ Flow (cfs)	0	Q ₇₋₁₀ Basis	0
Elevation (ft)	1537.39	Slope (ft/ft)	0.02
Watershed No.	16-C	Chapter 93 Class.	HQ-CWF
Existing Use	statewide	Existing Use Qualifier	None
Exceptions to Use	None	Exceptions to Criteria	None
Comments	Confluence at 57981 RMI 0.13, B	asin drainage 1.5748 sq miles;	0.13-cfs, 0.09-MGD,
	Perennial stream conditions at Ea	st Branch Tunungwant Creek.	
Assessment Status	Attaining Use(s)		
Cause(s) of Impairm			
Source(s) of Impairr	ment		
TMDL Status		Name	
Background/Ambier	nt Data	Data Source	
pH (SU)			
Temperature (°F)			
Hardness (mg/L)			
Other:			
Nearest Downstrear	m Public Water Supply Intake	New York State border	
PWS Waters T	unungwant Creek	Flow at Intake (cfs)	N/A
PWS RMI 1	0.02	Distance from Outfall (mi)	10.10

Discharge, Receiving	Water	s and Water Supply Info	rmation				
<u> </u>							
Outfall No.	002			Design	n Flow (MGD)	0.5	
Latitude DP	41º 52	2' 31.00"		Longit	ude DP	-78° 39	' 16.89"
Latitude	41º 52	2' 24.25"		Longit	ude	78º 39	9' 23.86
Quad Name	Lewis	Run		Quad (Code	0416	
Wastewater Descrip	otion:	Noncontact Cooling Water	er (NCCW),	Stormw	ater		
Receiving Waters	East E	Branch Tunungwant Creek	(HQ-CWF)		Stream Code		unknown
NHD Com ID	11236	9901			RMI		0.100
Drainage Area	0.1				Yield (cfs/mi²)		0
Q ₇₋₁₀ Flow (cfs)	0				Q ₇₋₁₀ Basis		Dry Stream
Elevation (ft)	1537	.39			Slope (ft/ft)		0.02
Watershed No.	16-C				Chapter 93 Cl	ass.	HQ-CWF
Existing Use	statev	wide			Existing Use C	Qualifier	None
Exceptions to Use	None				Exceptions to	Criteria	None
Comments	Conflu	uence at 57981 RMI 0.13					
Assessment Status		Attaining Use(s)					
Cause(s) of Impairm	nent						
Source(s) of Impairr	ment						
TMDL Status				Name			_
Background/Ambier	nt Data		Data Sou	rce			
pH (SU)							
Temperature (°F)							
Hardness (mg/L)							
Other:							
		c Water Supply Intake	New York				
PWS Waters T	unung	vant Creek	<u> </u>		t Intake (cfs)	N/A	
PWS RMI <u>1</u>	0.02			Outfall	ce from (mi)	10.12	

Discharge, Receiving	y Water	s and Water Supply Infor	mation			
Outfall No.	003		[Design Flow (MGD)	0	
Latitude DP	41º 52	2' 33.20"	l	Longitude DP	-78° 39	' 17.77"
Latitude	41º 52	2' 26.27"	l	Longitude	78° 39	9' 14.16"
Quad Name	Lewis	Run	(Quad Code	0416	
Wastewater Descrip	otion:	Stormwater				_
	·					_
		med Tributary to East Brand	ch			
Receiving Waters	•	ngwant Creek (HQ-CWF)		Stream Code		unknown
NHD Com ID	11236	59897		RMI		0.13
Drainage Area	0.1			Yield (cfs/mi²)		0
Q ₇₋₁₀ Flow (cfs)	0			Q ₇₋₁₀ Basis		Dry Stream
Elevation (ft)	1537	.39		Slope (ft/ft)		0.02
Watershed No.	16-C			Chapter 93 Cl	ass.	HQ-CWF
Existing Use	statev	wide		Existing Use 0	Qualifier	None
Exceptions to Use	None			Exceptions to	Criteria	None
Comments	Conflu	uence at 57981 RMI 0.13				
Assessment Status		Attaining Use(s)				
Cause(s) of Impairn	nent					
Source(s) of Impairr	ment					
TMDL Status			1	Name		
Background/Ambier	nt Data		Data Source	е		
pH (SU)						
Temperature (°F)						
Hardness (mg/L)						_
Other:						
Nearest Downstread	m Publi	c Water Supply Intake	New York S	State border		
		vant Creek	•	Flow at Intake (cfs)	N/A	
	<u>gr</u>			Distance from	. 47.	
PWS RMI 1	0.02		(Outfall (mi)	10.15	

Discharge, Receiving	Wate	rs and Water Supply Infor	mation				
Outfall No.	004			Design Flo	ow (MGD)	0	
Latitude DP	41º 52	2' 36.00"		Longitude	DP	-78° 39'	18.45"
Latitude	41º 52	2' 26.27"		Longitude		78° 39	9' 14.46"
Quad Name	Lewis	Run		Quad Cod	le	0416	_
Wastewater Descrip	otion:	Stormwater					_
		med Tributary to East Bran	ch		_		
Receiving Waters		ngwant Creek (HQ-CWF)			eam Code		unknown
NHD Com ID		69897		RM			0.18
Drainage Area	0.1				eld (cfs/mi ²)		0
Q ₇₋₁₀ Flow (cfs)	0				₋₁₀ Basis		Dry Stream
Elevation (ft)	1537	.39			pe (ft/ft)		0.02
Watershed No.	16-C			Ch	apter 93 Cl	ass.	HQ-CWF
Existing Use	state	wide		Ex	isting Use C	Qualifier	None
Exceptions to Use	None			Ex	ceptions to	Criteria	None
Comments	Confl	uence at 57981 RMI 0.13					
Assessment Status		Attaining Use(s)					
Cause(s) of Impairn	nent						
Source(s) of Impairr	ment						
TMDL Status				Name	-		
Background/Ambier	nt Data		Data Sour	ce			
pH (SU)							
Temperature (°F)							_
Hardness (mg/L)							_
Other:							
Nearest Downstrea	m Publi	ic Water Supply Intake	New York	State bord	ler		
		want Creek		Flow at Int		N/A	
	<u></u>			Distance f	, ,	,, .	
PWS RMI <u>1</u>	0.02			Outfall (mi	i)	10.15	

Discharge, Receiving	y Water	s and Water Supply Infor	mation			
Outfall No.	005			Design Flow (MGD)	0	
Latitude DP	41º 52	2' 37.00"		Longitude DP	-78° 39	' 20.00"
Latitude	41º 52	2' 26.27"		Longitude	78° 39	9' 14.46"
Quad Name	Lewis	Run		Quad Code	0416	
Wastewater Descrip	otion:	Stormwater				
		med Tributary to East Bran	ch			
Receiving Waters		ngwant Creek (HQ-CWF)		Stream Code		unknown
NHD Com ID	11236	9897		RMI		0.19
Drainage Area	0.1)	0
Q ₇₋₁₀ Flow (cfs)	0			Q ₇₋₁₀ Basis		Dry Stream
Elevation (ft)	1537.	.39		Slope (ft/ft)		0.02
Watershed No.	16-C			Chapter 93 C	lass.	HQ-CWF
Existing Use	statev	vide		Existing Use	Qualifier	None
Exceptions to Use	None			Exceptions to	Criteria	None
Comments	Conflu	uence at 57981 RMI 0.13				
Assessment Status		Attaining Use(s)				
Cause(s) of Impairn	nent					
Source(s) of Impair	ment					
TMDL Status				Name		
Background/Ambier	nt Data		Data Sour	ce		
pH (SU)						
Temperature (°F)						
Hardness (mg/L)						_
Other:						
Nearest Downstream	m Publi	c Water Supply Intake	New York	State border		
PWS WatersT	unungv	vant Creek		Flow at Intake (cfs)	N/A	
			_	Distance from		
PWS RMI <u>1</u>	0.02			Outfall (mi)	10.21	

Discharge, Receiving	Wate	rs and Water Supply Infor	mation			
Outfall No.	006			Design Flow (MGD)	0	
Latitude DP	41º 52	2' 39.00"		Longitude DP	-78° 39	' 20.00"
Latitude	41º 52	2' 26.27"		Longitude	78° 39	9' 14.46"
Quad Name	Lewis	Run		Quad Code	0416	
Wastewater Descrip	otion:	Stormwater				_
						_
		med Tributary to East Bran	ch			
Receiving Waters		ngwant Creek (HQ-CWF)		Stream Code		unknown
NHD Com ID	11236	89897		RMI		0.26
Drainage Area	0.1			Yield (cfs/mi ²))	0
Q ₇₋₁₀ Flow (cfs)	0			Q ₇₋₁₀ Basis		Dry Stream
Elevation (ft)	1537	.39		Slope (ft/ft)		0.02
Watershed No.	16-C			Chapter 93 C	lass.	HQ-CWF
Existing Use	state	wide		Existing Use	Qualifier	None
Exceptions to Use	None			Exceptions to	Criteria	None
Comments	Confl	uence at 57981 RMI 0.13				
Assessment Status		Attaining Use(s)				
Cause(s) of Impairm	nent					
Source(s) of Impairr	ment					
TMDL Status				Name		
Background/Ambier	nt Data		Data Sour	ce		
pH (SU)						
Temperature (°F)						
Hardness (mg/L)						_
Other:						
Nearest Downstread	m Publi	c Water Supply Intake	New York	State border		
		want Creek	-	Flow at Intake (cfs)	N/A	
1 VVO VVAICIO 1	ariarig	Tank Orook		Distance from	1 1/ /-1	
PWS RMI 1	0.02			Outfall (mi)	10.28	

SAMPLE RESULTS SUMARY

		001		002		003		004		005	006		QL ABAC	T3
Oil & Grease	<	5.0 1	<	5.0 1		6.41	1	5.19	1	0		0	5.0 NA	
BOD5		4.3 1		8.15 1		144	1	< 6.0	1	0		0	2.0	
CBOD5													10.0	0.91
COD		35.2 1		119 1		235	1	< 10	1	0		0	10.0	
TSS		56 1		364 1		688	1	3.30	1	0		0	25.0 10.0	9.0
Nitrogen	<	2 1		3.43 1		7.2	1	< 2	1	0		0	2.0	
Nitrite-Nitrate N														0.51
Ammonia Summer													1.5	0.029
Ammonia Winter													4.5	
Phosphorus		0.14 1		0.766 1		1.0	1	< 0.1	1	0		0	0.1	0.024
pН		7.4 1		7.52 1		7.27	1	7.14	1	0		0		
Copper		0.02071		0.16561		0.118	1	< 0.005	5 1	0		0	0.005	0.0046
Total Iron		0.61 1		0.678 1		10.9	1	0.168	3 1	0		0	0.020	0.230
Dissolved Iron					٧	0.2	1			0		0		
Molybdenum	٧	0.02 1	٧	0.02 1	٧	0.02	1	< 0.02	1	0		0	0.020	
Nickel	٧	0.02 1	٧	0.02 1		0.211	1	< 0.02	1	0		0	0.020	
Zinc		0.01541		0.01211		0.023	1		01 1	0		0	0.01	0.0087
Drainage Sq-Ft		77,500		33,200		51,000		125,0		126,000	64,800			
	ir	mpervious		mpervious	٠Ĭ٢	mperviou	S	83% per\	/ious					
	gr	oundwater	g	roundwater	gr	oundwat	er	groundw		groundwater				
		High St		NCCW				field		High St/field	field			
		parking		roofs		roofs		roofs/par	king					
Storm Length Min		480		480		489		480						
Rainfall inches		0,8		0.8		8.0		0.8	•					
Elapsed Stm Hrs		144		144		144		144						
Discharge galLOS		34809		14900		28889		1330	0					

Outfall 004 seems relatively clean except for zinc. Outfalls 001 through 003 show some mix of operation and groundwater contamination. Housekeeping should be improved and sampling methods improved to identify contamination sources.

Compliance History

DMR Data for Outfall 002 (from September 1, 2020 to August 31, 2021)

Parameter	AUG-21	JUL-21	JUN-21	MAY-21	APR-21	MAR-21	FEB-21	JAN-21	DEC-20	NOV-20	OCT-20	SEP-20
TSS (mg/L) Other Stormwater Instantaneous Maximum			6.50						9.60			
Oil and Grease (mg/L) Other Stormwater 			< 5.25						< 5.00			

DMR Data for Outfall 003 (from September 1, 2020 to August 31, 2021)

Parameter	AUG-21	JUL-21	JUN-21	MAY-21	APR-21	MAR-21	FEB-21	JAN-21	DEC-20	NOV-20	OCT-20	SEP-20
TSS (mg/L)												
Instantaneous												
Maximum			7.00						6.80			
Oil and Grease (mg/L)												
Instantaneous												
Maximum			< 5.15						< 5.00			
Dissolved Iron (mg/L)												
Instantaneous												
Maximum			< 0.200						< 0.200			

Maximum values are high and best management practices should be improved.

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

STORMWATER MONITORING:

Outfall 001, Outfall 002, Outfall 003, Outfall 004, Outfall 005, and Outfall 006, Effective Period: Permit Effective Date through Permit Expiration Date.

			Effluent L	imitations			Monitoring Red	quirements
Parameter	Mass Units	(lbs/day) (1)		Concentra	Minimum ⁽²⁾	Required		
Farameter	Average Monthly	Average Weekly	Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Measurement Frequency	Sample Type
pH (S.U.)	XXX	XXX	XXX	XXX	Report	XXX	1/6 months	Grab
TSS	xxx	XXX	XXX	XXX	Report	XXX	1/6 months	Grab
Oil and Grease	xxx	XXX	XXX	XXX	XXX	30	1/6 months	Grab
Nitrate-Nitrite	xxx	XXX	XXX	XXX	Report	XXX	1/6 months	Grab
Total Aluminum	xxx	XXX	XXX	XXX	Report	XXX	1/6 months	Grab
Dissolved Iron	xxx	XXX	XXX	XXX	XXX	7.0	1/6 months	Grab
Total Iron	xxx	XXX	XXX	XXX	Report	XXX	1/6 months	Grab
Total Zinc	xxx	XXX	XXX	XXX	Report	XXX	1/6 months	Grab

Compliance Sampling Location: Outfalls 001 to 006 prior to mixing with any other wastes. Dissolved iron is currently not monitored at Outfall 002 but will be added with this renewal to be consistent with stormwater monitoring at the other stormwater outfalls.

Other Comments: Oil and Grease and Dissolved Iron limitations are carried over from previous permit cycles and are based on 25 Pa. Code §§ 95.2 (2.ii), (4). Monitoring for pH, TSS, Nitrate-Nitrite, Total Aluminum, Total Iron, and Total Zinc is based on the current Appendix U of the PAG-03 NPDES General Permit for Stormwater Discharges Associated with Industrial Activity. A Total Suspended Solids (TSS) benchmark value of 100 mg/l will be established through the Part C condition for requirements applicable to stormwater outfalls, consistent with the current PAG-03 requirements. Additionally, the condition established Best Management Practices (BMPs) relative to Appendix U (Fabricated Metal Products) facilities.

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

NON-CONTACT COOLING WATER MONITORING

Outfall 002, Effective Period: Permit Effective Date through Permit Expiration Date.

			Effluent L	imitations			Monitoring Red	quirements
Parameter	Mass Units	(lbs/day) ⁽¹⁾		Concentra	tions (mg/L)		Minimum ⁽²⁾	Required
r ai ainetei	Average Monthly	Average Weekly	Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MOD)	Damant	VVV	VVV	VVV	VVV	VVV	Daily when	Estimata.
Flow (MGD)	Report	XXX	XXX	XXX	XXX	XXX	Discharging	Estimate
pH (S.U.)	XXX	XXX	6.0 Inst Min	XXX	XXX	9.0	1/discharge	Grab
TSS	XXX	XXX	XXX	30	60	60	1/discharge	Grab
Oil and Grease	XXX	XXX	XXX	15	30	30	1/discharge	Grab

Emergency Non-Contact Cooling Water Compliance Sampling Location: Outfall 002 prior to mixing with any other wastes

Other Comments: Only Outfall 002 has pH requirements.

The Toxics Management Spreadsheet was used to evaluate Outfall 002. The evaluation is based on a single semiannual analysis not the minimum recommended weekly monitoring thus the results and ignoring a long dry and intermittent stream reach to the East Branch Tunungwant Creek that should preclude its use to set limitations but could be used to verify stream degradation potential.

Outfall 005 and 006 should be monitored to provide stormwater reference points. Outfall 004 should be monitored to establish a facility stormwater reference point. Outfalls 001, 002 and 003 show BOD5, copper, iron and zinc degradation. As the NCCW discharge has not been reported, no effluent violations exist that would force an effluent study and improved treatment.

The implementation of the new PAG-03 stormwater requirements as a Part C condition should provide a means to further review and resolve any potential stormwater related issues.

Toxics Management Spreadsheet Version 1.0, July 2020

Instructions

Instructions	Discharge	Stream					
consists of fo addition there	ur hyperlink ta is a Referenc	abs: Instructions, ce worksheet wh	Discharge, Stream	n, and Results. riteria and other	Each tab has a co	I macros. This spreadsl orresponding workshee r use in calculations ar	t. In
Only those ce	lls that are hig	hlighted are avai	able for data entry	b y the user:			
Red asterisks	(*) are shown	where cells may	not be blank in ord	er to calculate e	effluent limitations.		
Click on the b	utton below to	open detailed in:	structions on the us	e of the Toxics I	Management Sprea	idsheet:	
			OPEN INST	TRUCTIONS			

If you have questions concerning use of this spreadsheet, contact the Bureau of Clean Water at RA-EPNPDES_Permits@pa.g

Toxics Management Spreadsheet Version 1.0, July 2020

Model Results

Keystone Metals Lewis Run, NPDES Permit No. PAS208302, Outfall 002

Instructions	Results	RETU	JRN TO INPUTS	(5	SAVE AS PD	F (PRINT	O A	ll ⊝ Inp	uts (Results	○ Limits	
	lynamics											
Q 7-10												
RMI	Stream Flow (cfs)	PWS Withdrawal (cfs)	Net Stream Flow (cfs)		ge Analysis w (cfs)	Slope (ft/ft	t) Depth	(ft) Width	(ft) W/D R	atio Velocity (fps)	Time (days)	Complete Mix Time (min)
0.13	0.20		0.20	U	J.//4	0.00001	0.64	9 13.8	9 21.38	38 0.108	(days) 0.073	8.549
0	2.60		2.6									
Q _n												
RMI	Stream Flow (cfs)	PWS Withdrawal (cfs)	Net Stream Flow (cfs)	Flo	ge Analysis w (cfs)	Slope (IVII				(fps)	Time (days)	Complete Mix Time (min)
0.13	1.86 17.127		1.86 17.13	0).//4	0.00001	1.004	4 13.8	9 13.83	0.189	0.042	50.636
✓ Wasteld	oad Allocatio	CCT (min):		PMF: [1	Analys	is Hardne	ss (mg/l):	100	Analysis pH	l: 7.35	
	Pollutants	Con (µg/l	c Stream	Trib Conc (µg/L)	Coef	(µg/L)	(µg/L)	WLA (µg/L)			Comments	
	Total Copper Dissolved Iro		0 8		0	N/A	14.0 N/A	17.7 N/A		Chem Tran	siator oi 0.96	аррпец
	Total Iron	0	0		0	N/A	N/A	N/A				
	Total Nickel	0	0		0 4	68.236	469	593			slator of 0.998	
	Total Zinc	0	0 8		0 1	17.180	120	152		Chem Trans	slator of 0.978	applied
☑ CF	С	CCT (min):		PMF: [1	Analys	sis Hardne	ess (mg/l):	100	Analysis ph	l: 7.35	
	Pollutants	Strea Con (µg/l	c Sueam	Trib Conc (µg/L)	Coef	(µg/L)	(µg/L)	WLA (µg/L)			Comments	
	Total Copper	. 0	0 8	******		8.956	9.33	11.8		Chem Iran	slator of 0.96	applied
<u> </u>	Dissolved Iron		0 8		0	N/A	N/A	N/A		14/00 - 00	[DME - 4
	Total Iron	0	0 👸		0	1,500	1,500	1,897		WQC = 30 d	lay average; F	2MF = 1

NPDES Permit No. PAS208302

Total Nickel	0	0		0	52.007	52.2	66.0	Chem Translator of 0.997 applied
Total Zinc	0	0		0	118.139	120	152	Chem Translator of 0.986 applied
☑ ТНН CC	T (min): 8.5	549	PMF:	1	Ana	llysis Hardne	ess (mg/l):	N/A Analysis pH: N/A
Pollutants	Conc (µg/L)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
i otal Copper	0	U		U	N/A	N/A	N/A	
Dissolved Iron	0	0		0	300	300	379	
Total Iron	0	0		0	N/A	N/A	N/A	
Total Nickel	0	0		0	610	610	771	
Total Zinc	0	0		0	N/A	N/A	N/A	
☑ CRL CC	T (min): 50.	636	PMF:	1	Ana	lysis Hardne	ess (mg/l):	N/A Analysis pH: N/A
Pollutants	Stream Conc (µg/L)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
l otal Copper	0	U		U	N/A	N/A	N/A	
Dissolved Iron	0	0		0	N/A	N/A	N/A	
Total Iron	0	0		0	N/A	N/A	N/A	
Total Nickel	0	0		0	N/A	N/A	N/A	
Total Zinc	0	0		0	N/A	N/A	N/A	

☑ Recommended WQBELs & Monitoring Requirements

No. Samples/Month:

	Mass	Limits	Concentration Limits						
Pollutants	AML (lbs/day)	MDL (lbs/day)	AML	MDL	IMAX	Units	Governing WQBEL	WQBEL Basis	Comments
Total Copper	0.049	0.077	11.8	18.4	29.5	μg/L	11.8	CFC	Discharge Conc ≥ 50% WQBEL (RP)
Dissolved Iron	1.58	2.47	379	592	949	μg/L	379	THH	Discharge Conc ≥ 50% WQBEL (RP)
Total Iron	7.91	12.3	1,897	2,960	4,743	μg/L	1,897	CFC	Discharge Conc ≥ 50% WQBEL (RP)
Total Nickel	Report	Report	Report	Report	Report	μg/L	66.0	CFC	Discharge Conc > 10% WQBEL (no RP)
Total Zinc	Report	Report	Report	Report	Report	μg/L	120	AFC	Discharge Conc > 10% WQBEL (no RP)

☑ Other Pollutants without Limits or Monitoring

The following pollutants do not require effluent limits or monitoring based on water quality because reasonable potential to exceed water quality criteria was not determined and the discharge concentration was less than thresholds for monitoring, or the pollutant was not detected and a sufficiently sensitive analytical method was used (e.g., <= Target QL).

Pollutants	Governing WQBEL	Units	Comments

							ı				
Pollutant Name	Most Stringent Criterion (µg/L)	AFC WQC (µg/L)	CFC WQC (µg/L)	THH WQC (µg/L)	CRL WQC (µg/L)	Chem Trans - AFC Default	Chem Trans - CFC Default	Chem Trans - Site-Specific	Target QL (µg/L)	Conservative	PWS
1,1,1-Trichloroethane	610	3000	610				ĺ		0.5		
1,1,2,2-Tetrachloroethane	0.17	1000	210		0.17				0.5		
1,1,2-Trichloroethane	0.59	3400	680		0.59				0.5		
1,1-Dichloroethane									0.5		
1,1-Dichloroethylene	33	7500	1500	33					0.5		
1,2,3-Trichloropropane	210			210					0.5		
1,2,4-Trichlorobenzene	26	130	26	35					0.5		
1,2,4-Trimethylbenzene	72			72		ĺ			0.5		
1,2-Dichlorobenzene	160	820	160	420					0.5		
1,2-Dichloroethane	0.38	15000	3100		0.38				0.5		
1,2-Dichloropropane	2200	11000	2200						0.5		
1,2-Diphenylhydrazine	0.036	15	3		0.036				10		
1,2-cis-Dichloroethylene	12			12					0.5		
1,2-trans-Dichloroethylene	140	6800	1400	140					0.5		
1,3,5-Trimethylbenzene	72			72		ľ			0.5		
1,3-Dichlorobenzene	69	350	69	420					0.5		
1,3-Dichloropropylene	0.34	310	61		0.34				0.5		
1,4-Dichlorobenzene	150	730	150	420					0.5		
1,4-Dioxane									1		
1-Propanol	46000	230000	46000						100		
2,3,7,8-TCDD	0.00000000500				0.000000005				0.000005		
2,4,6-Trichlorophenol	1.4	460	91		1.4				10		
2,4-Dichlorophenol	77	1700	340	77					10		
2,4-Dimethylphenol	130	660	130	380					10		
2,4-Dinitrophenol	69	660	130	69		ĺ			10		
2,4-Dinitrotoluene	0.05	1600	320		0.05				5		
2,6-Dinitrotoluene	0.05	990	200		0.05	Î			5		
2-Butoxyethanol	700			700					2		
2-Chloroethyl Vinyl Ether	3500	18000	3500						5		
2-Chloronaphthalene	1000			1000					5		
2-Chlorophenol	81	560	110	81					10		
2-Hexanone	4300	21000	4300						2.5		7
2-Nitrophenol	1600	8000	1600						10		
2-Propanol	89000	440000	89000						0.5		
3,3-Dichlorobenzidine	0.021				0.021				5		
3,4-Benzofluoranthene	0.0038				0.0038				2.5		
4,4-DDD	0.00031	1.1	0.001		0.00031				0.05		
4,4-DDE	0.00022	1.1	0.001		0.00022				0.05		
4,4-DDT	0.00022	1.1	0.001		0.00022				0.05		
4,6-Dinitro-o-Cresol	13	80	16	13					10		
4-Bromophenyl Phenyl Ether	54	270	54						5		
4-Chlorophenyl Phenyl Ether									5		
4-Nitrophenol	470	2300	470						10		
Acenaphthene	17	83	17	670					2.5		
Acenaphthylene									2.5		

Pollutant Name	Most Stringent Criterion (µg/L)	AFC WQC (µg/L)	CFC WQC (µg/L)	THH WQC (µg/L)	CRL WQC (µg/L)	Chem Trans - AFC Default	Chem Trans - CFC Default	Chem Trans - Site-Specific	Target QL (μg/L)	Conservative	PWS
Acetone	3500	450000	86000	3500					2.5		
Acrolein	3	3	3	6					2		
Acrylamide	0.07				0.07				0.1		
Acrylonitrile	0.051	650	130		0.051				5		
Aldrin	0.000049	3	0.1		0.000049				0.05		
alpha-BHC	0.0026				0.0026				0.05		
alpha-Endosulfan	0.056	0.22	0.056	62					0.05		
Anthracene	8300			8300					2.5		
Benzene	1.2	640	130		1.2				0.5		
Benzene Metadisulfonic Acid	1600000	2600000	1600000								
Benzene Monosulfonic Acid	1200000	2000000	1200000								
Benzidine	0.000086	300	59		0.000086				50		
Benzo(a)Anthracene	0.0038	0.5	0.1		0.0038				2.5		
Benzo(a)Pyrene	0.0038				0.0038				2.5		
Benzo(ghi)Perylene									2.5		
Benzo(k)Fluoranthene	0.0038				0.0038				2.5		
Benzyl Chloride	0.2				0.2				0.5		
beta-BHC	0.0091				0.0091				0.05		
beta-Endosulfan	0.056	0.22	0.056	62					0.05		
Bis(2-Chloroethoxy)Methane									5		
Bis(2-Chloroethyl)Ether	0.03	30000	6000		0.03				5		
Bis(2-Chloroisopropyl)Ether	1400			1400					5		
Bis(2-Ethylhexyl)Phthalate	1.2	4500	910		1.2				5		
Bromide									200	Υ	
Bromoform	4.3	1800	370		4.3				0.5		
Butyl Benzyl Phthalate	35	140	35	150					5		
Carbon Tetrachloride	0.23	2800	560		0.23				0.5		
Chlordane	0.0008	2.4	0.0043		0.0008				1		
Chloride (PWS)	250000			250000					500	Y	Υ
Chlorobenzene	130	1200	240	130					0.5		
Chlorodibromomethane	0.4				0.4				0.5		
Chloroethane									0.5		
Chloroform	5.7	1900	390		5.7				0.5		
Chrysene	0.0038				0.0038				2.5		
Color	75			75					5	Y	
Cyclohexylamine	1000			1000							
delta BHC									0.05		
Diazinon	0.17	0.17	0.17						0.0015		
Dibenzo(a,h)Anthrancene	0.0038				0.0038				2.5		
Dibromochloromethane									0.5		
Dibromomethane									0.5		
Dichlorobromomethane	0.55				0.55				0.5		
Dichlorodifluoromethane									0.5		
Dieldrin	0.000052	0.24	0.056		0.000052				0.05		
Diethyl Phthalate	800	4000	800	17000					5		

Pollutant Name	Most Stringent Criterion (μg/L)	AFC WQC (µg/L)	CFC WQC (µg/L)	THH WQC (µg/L)	CRL WQC (µg/L)	Chem Trans - AFC Default	Chem Trans - CFC Default	Chem Trans - Site-Specific	Target QL (μg/L)	Conservative	PWS
Dimethyl Phthalate	500	2500	500	270000					5		
Di-n-Butyl Phthalate	21	110	21	2000					5		
Di-n-Octyl Phthalate									5		
Dissolved Iron	300			300					20	Y	
Endosulfan Sulfate									0.05		
Endrin	0.036	0.086	0.036	0.059					0.05		
Endrin Aldehyde	0.29		7	0.29					0.05		
Ethylbenzene	530	2900	580	530					0.5		
Ethylene Glycol									1000		
Fluoranthene	40	200	40	130					2.5		
Fluorene	1100			1100					2.5		
Fluoride (PWS)	2000			2000					200	Y	Υ
Formaldehyde	440	2200	440	700			1		21.5		
Free Available Cyanide	5.2	22	5.2	140					1		
gamma-BHC	0.098	0.95		0.098					0.05		
Gross Alpha									3		
Heptachlor	0.000079	0.52	0.0038		0.000079				0.05		
Heptachlor Epoxide	0.000039	0.5	0.0038		0.000039				0.05		
Hexachlorobenzene	0.00028				0.00028				5		
Hexachlorobutadiene	0.44	10	2		0.44				0.5		
Hexachlorocyclopentadiene	1	5	1	40					5		
Hexachloroethane	1.4	60	12		1.4				5		
Hexavalent Chromium	10.0	16.0	10.0			0.982	0.962		1	Υ	
Indeno(1,2,3-cd)Pyrene	0.0038			0.0038					2.5		
Isophorone	35	10000	2100	35					5		
Methyl Bromide	47	550	110	47					0.5		
Methyl Chloride	5500	28000	5500						0.5		
Methyl Ethyl Ketone	21000	230000	32000	21000					2.5		
Methyl Isobutyl Ketone	5000	26000	5000						2.5		
Methylene Chloride	4.6	12000	2400		4.6				0.5		
Metolachlor	69			69					0.05		
MTBE									0.5		
Naphthalene	43	140	43						0.5		
Nitrite plus Nitrate as N (PWS)	10000			10000					40	Υ	Υ
Nitrobenzene	17	4000	810	17					5		
n-Nitrosodimethylamine	0.00069	17000	3400		0.00069				5		
n-Nitrosodi-n-Propylamine	0.005				0.005				5		
n-Nitrosodiphenylamine	3.3	300	59		3.3				5		
Nonylphenol	6.6	28	6.6						5		
Osmotic Pressure	50	50							5	Υ	
PCB-1016									0.25		
PCB-1221									0.25		
PCB-1232									0.25		
PCB-1242									0.25		
PCB-1248									0.25		

Pollutant Name	Most Stringent Criterion (µg/L)	AFC WQC (µg/L)	CFC WQC (µg/L)	THH WQC (µg/L)	CRL WQC (µg/L)	Chem Trans - AFC Default	Chem Trans - CFC Default	Chem Trans - Site-Specific	Target QL (µg/L)	Conservative	PWS
PCB-1254									0.25		
PCB-1260									0.25		
PCBs, Total	0.000064		0.014		0.000064				1.75		
p-Chloro-m-Cresol	30	160	30						10		
p-Cresol	160	800	160						20		
p-Phenol Sulfonic Acid	1400000	3500000	1400000								
Parathion											
Pentachlorophenol	0.27	12.38	9.50		0.27				10		
Phenanthrene	1	5	1						2.5		
Phenol	10400			10400					10		
Pyrene	830			830					2.5		
Radium 226/228									1		
Resorcinol	2700	28000	7200	2700							
Sulfate (PWS)	250000			250000					1000	Υ	Υ
Tetrachloroethylene	0.69	700	140		0.69				0.5		
Toluene	330	1700	330	1300					0.5		
Total Aluminum	750	750							10	Y	
Total Antimony	5.6	1100	220	5.6					2	Y	
Total Arsenic	10	340	150	10		1.000	1.000		3	Υ	
Total Barium	2400	21000	4100	2400					2	Υ	
Total Beryllium									1	Y	
Total Beta									4		
Total Boron	1600	8100	1600	3100					200	Y	
Total Cadmium	0.25	2.01	0.25			0.944	0.909		0.2	Υ	
Total Chromium									4	Y	
Total Chromium (III)	74	570	74			0.316	0.860		4	Y	
Total Cobalt	19	95	19						1	Y	
Total Copper	9.0	13.44	8.96			0.960	0.960		4	Y	
Total Cyanide									10		Ÿ
Total Dinitrotoluene					0.05						
Total Dissolved Solids (PWS)	500000			500000					2000	Y	Υ
Total Iron	1500		1500						20	Y	
Total Lead	2.5	65	2.5			0.791	0.791		1	Y	
Total Manganese	1000			1000					2	Υ	
Total Mercury	0.05	1.40	0.77	0.05		0.850	0.850		0.2	Y	
Total Molybdenum						,			4	Y	
Total Nickel	52	468.2	52.0	610		0.998	0.997		4	Υ	
Total Phenols (Phenolics) (PWS)	5			5					5	Y	Υ
Total Residual Chlorine	0.011	0.019	0.011	7					20		
Total Selenium	4.6	A STATE OF THE STA	4.6			0.922	0.922		5	Y	
Total Silver	3.2	3.2				0.850			0.4	Y	
Total Strontium	4000.0			4000		\$ 000 00 00000000			10	Y	
Total Strontium (Gross) 90				TO \$ 1.0000					Total Control of the		
Total Thallium	0.24	65	13	0.24					2	Y	
Total Tungsten									1000	Υ	

NPDES Permit No. PAS208302

Pollutant Name	Most Stringent Criterion (μg/L)	AFC WQC (μg/L)	CFC WQC (µg/L)	THH WQC (µg/L)	CRL WQC (µg/L)	Chem Trans - AFC Default	Chem Trans - CFC Default	Chem Trans - Site-Specific	Target QL (μg/L)	Conservative	PWS
Total Uranium									2	Y	
Total Vanadium	100	510	100				t.		13	Y	
Total Xylenes	210	1100	210	70000					1.5		
Total Zinc	117	117	118			0.978	0.986		5	Y	
Toxaphene	0.0002	0.73	0.0002	0.00028	0.00028	0.070	0.000		0.5	***	
Trichloroethylene	2.5	2300	450	0.00028	2.5				0.5		-
Trichlorofluoromethane	2.0	2300	450		2.5				0.5		
	0.005				0.005				#505,4870CO		
Vinyl Chloride	0.025				0.025				0.5		
Other (TYPE HERE)			-								
Other (TYPE HERE)											
Other (TYPE HERE)											
Other (TYPE HERE)											
Other (TYPE HERE)											
Other (TYPE HERE)						,					
Other (TYPE HERE)											
Other (TYPE HERE)											
Other (TYPE HERE)											
Other (TYPE HERE)											
Other (TYPE HERE)											
Other (TYPE HERE)											
Other (TYPE HERE)											
Other (TYPE HERE)											
Other (TYPE HERE)											
Other (TYPE HERE)											
Other (TYPE HERE)											
Other (TYPE HERE)		-									
Other (TYPE HERE)		-									
Other (TYPE HERE)											
Other (TYPE HERE)											
Other (TYPE HERE)											
Other (TYPE HERE)											
Other (TYPE HERE)											
Other (TYPE HERE)											
Other (TYPE HERE)											
Other (TYPE HERE)											
Other (TYPE HERE)											
Other (TYPE HERE)											
Other (TYPE HERE)											

Date	Version	Change(s)
7/1/2020	1.0	Original